Silylphosphide Reagents in Synthetic Routes to Cyclophosphines

Paul F. Brandt,^{1a} David M. Schubert,^{1b} and Arlan D. Norman*

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215

Received November 8, 1996

Introduction

We demonstrated previously that radical reactions of (trimethylsilyl)phosphine (Me₃SiPH₂) with acyclic 1,4- and 1,5dienes (e.g., 1-4) efficiently yield six- and seven-membered

1, 5, 9;
$$E = CH_2$$
: 2, 6, 10; $E = PPh$:
3, 7, 11; $E = Me_2Si$: 4, 8, 12; $E = CH_2CH_2$

cyclic organo(silyl)phosphines (5-8).²⁻⁴ In these reactions, the favored products are the result of anti-Markovnikov addition to the diene. Subsequently, **5–8** can be converted to the parent P–H bond containing phosphines (**9–12**) by methanolysis,²⁻⁴ taking advantage of the readily cleaved silicon–phosphorus bond.^{5–7} However, analogous reactions between Me₃SiPH₂ and allene or 1,3-butadiene do not yield the smaller four- and five-membered rings, phosphetanes (**13a**) or phospholanes (**14a**). These reactions yield only mixtures of acyclic propenyl- and butenylphosphine isomers, Me₃SiP(H)C₃H₅ and Me₃SiP(H)-C₄H₇.⁸

In an attempt to further determine the usefulness of silylphosphines Me₃SiPH₂ and Me₂Si(PH₂)₂ in cyclic phosphine synthe-

* Author to whom correspondence should be addressed.

- Present address: (a) Department of Chemistry, Western Carolina University, Cullowhee, NC 28723-9050. (b) U. S. Borax Inc., 26877 Tourney Rd., Valencia, CA 91355-1847.
- (2) (a) Schubert, D. M.; Brandt, P. F.; Norman, A. D. *Inorg. Chem.* 1996, 35, 6204. (b) Schubert, D. M.; Norman, A. D. *Inorg. Chem.* 1984, 23, 4131.
- (3) (a) Hackney, M. L. J.; Schubert, D. M.; Brandt, P. F.; Haltiwanger, R. C.; Norman, A. D. Submitted for publication. (b) Hackney, M. L. J.; Haltiwanger, R. C.; Brandt, P. F.; Norman, A. D. J. Organometal. *Chem.* **1989**, *359*, C36.
- (4) Hackney, M. L. J.; Norman, A. D. J. Chem. Soc., Chem. Commun. 1986, 850.
- (5) (a) Drake, J. E.; Riddle, C. Q. Rev. 1970, 263. (b) Jolly, W. L.; Norman, A. D. Prep. Inorg. React. 1968, 4, 1.
- (6) (a) Norman, A. D. Chem. Commun. 1968, 812. (b) Norman, A. D.; Wingeleth, D. C. Inorg. Chem. 1970, 9, 98.
- (7) (a) Askam, F. R.; Stanley, G. G.; Marques, E. C. J. Am. Chem. Soc. 1985, 107, 7423. (b) Romanenko, V. D.; Shul'gin, V. F.; Scopenko, V. V.; Markovski, L. N. J. Chem. Soc., Chem. Commun. 1983, 808.
- (8) Brandt, P. F.; Hackney, M. L. J.; Schubert, D. M.; Norman, A. D. In press.

sis, and to obtain viable routes to several potential phosphine ligands containing P-X functional bonds, we now have examined some prototype reactions between silylphosphides and alkenyl halides (i) as routes to subsequently cyclizable alkenylphosphine intermediates or (ii) as routes directly to new cyclophosphines. Our results are reported below.

Experimental Section

Materials and Apparatus. Trimethylsilylphosphine $(Me_3SiPH_2)^9$ and $Me_2Si(PH_2)_2^9$ were prepared as described previously. The 3-bromopropene (Aldrich) and monoglyme (Eastman Kodak) were distilled from CaH₂ and stored over molecular sieves. The 1,3-dibromopropane (Aldrich) was distilled from P₄O₁₀. The 4-bromo-1-butene (Pfaltz and Bauer), MeI (Aldrich), *n*-BuLi (Aldrich; standardized, 1.6 M in hexanes), AIBN [2,2'-bis(isobutyronitrile)], and MeOH (Aldrich) were used as obtained. Benzene and toluene were distilled from Na/Pb alloy. Tetrahydrofuran was distilled over sodium benzophenone immediately before use.

All manipulations were made in standard high-vacuum systems or an inert atmosphere apparatus.¹⁰ Infrared spectra were obtained on IBM (IR/32 Type 9132) or Hewlett-Packard 5965 IR detector spectrometers. Mass spectra (EI) were measured on VG Analytical 7070 EQ-HF and Hewlett-Packard 5988 GC/MS spectrometers. ³¹P (36.2 and 121.4 MHz) and ¹H (89.9 and 250 MHz) NMR spectra were obtained using JEOL FX-90Q and Bruker WM-250 FT NMR spectrometers. ¹³C NMR spectra were obtained at 22.5 and 75.4 MHz using JEOL FX 90Q and Varian VXR300S spectrometers. Chemical shifts downfield from Me₄-Si for ¹H and ¹³C NMR spectra and from H₃PO₄ for ³¹P NMR spectra are assigned positive (+ δ) values.

Caution! The silylphosphines and organo(silyl)phosphines studied are malodorous, sometimes flammable in air, and probably highly toxic. Extreme care should be exercised in their handling.

Me₃SiP(H)Me (16). Tetrahydrofuran (THF) (2 mL) in a 5-mL vessel with a stir bar was triply freeze-thaw-degassed. Me₃SiPH₂ (10.3 Torr, 1.8 L, 22 °C; 1.0 mmol) was condensed in, and the mixture was warmed to -78 °C and stirred. The flask was filled with N₂ before n-BuLi (0.63 mL, 1.0 mmol) was slowly added via syringe. The solution turned dull yellow as it warmed to 25 °C over 1.5 h. The contents were freeze-thaw-degassed, MeI (0.28 g, 2.0 mmol) was condensed into the flask, and the reaction was allowed to warm first to -78 °C and then to 25 °C over 1.8 h. Volatile materials were removed. ³¹P spectral analysis showed 16 (65%) along with lesser amounts of MePH₂ (17%) and Me₂PH (18%). Fractional condensation through traps at -45 and -63 °C, followed by column distillation¹⁰ of the -63 °C trap condensate, gave pure **16**. ³¹P NMR (C₆D₆); δ -175.0 (d, ${}^{1}J_{PH} = 187.5$ Hz); in agreement with earlier report.¹¹ ${}^{1}H$ NMR (C₆D₆): δ 1.97 (d of mult, 1H, ¹J_{HP} = 180 Hz), 0.85 (d of d, 3H, ³J_{HH} = 7.4 Hz, ${}^{2}J_{\text{HP}}$ = 2.8 Hz), 0.11 (d, 6H, ${}^{3}J_{\text{HP}}$ = 4.1 Hz). IR (gaseous, cm⁻¹): 2963(s), 2917(m), 2283(s, PH), 1427(w), 1255(s), 988(m), 845-(vs). MS (GC, EI⁺; M⁺, *m/e*): 120 [¹²C₄H₁₃PSi⁺].

Me₃SiP(H)CH₂CH=CH₂ (17). THF (2 mL), monoglyme (0.5 mL) and a spin bar in a 5-mL reactor were triply freeze-thaw-degassed. Me₃SiPH₂ (10.4 Torr, 1.8 L, 22 °C; 1.0 mmol) was condensed in and the reaction was warmed to -78 °C and stirred. N₂ was added before *n*-BuLi (0.63 mL, 1.0 mmol) was slowly added via syringe. The solution turned light yellow. The reaction was allowed to warm to room temperature over 2 h; then the contents were freeze-thawdegassed, and H₂C=CHCH₂Br (15 Torr, 1.8 L; 1.5 mmol) was condensed in. The contents were allowed to warm to -78 °C and then to 25 °C over 0.5 h. Volatile materials were removed; a ³¹P NMR spectrum of the mixture showed both **17** (90%)¹² and H₂C=CHCH₂-PH₂ (10%).¹³ Passage of the mixture through traps at -45, -63, and

- (10) Shriver, D. F.; Drezdzon, M. A. *The Manipulation of Air-Sensitive Compounds*, 2nd ed.; Wiley-Interscience: New York, 1986.
- (11) Fritz, G.; Schaeffer, H. Z. Anorg. Allg. Chem. 1971, 385, 243.
- (12) Schubert, D. M.; Norman, A. D. Inorg. Chem. 1985, 24, 1107.
- (13) Shay, R. H.; Diel, B. N.; Schubert, D. M.; Norman, A. D. *Inorg. Chem.* **1988**, *27*, 2378.

⁽⁹⁾ Norman, A. D. Inorg. Chem. 1970, 9, 870.

-196 °C followed by column distillation¹⁰ of the −45 and −63 °C condensates yielded **17** (25.0 °C, vapor pressure = 1 Torr). ³¹P NMR (C₆D₆): δ −148.8 (d, ¹*J*_{PH} = 189 Hz). ¹³C NMR (C₆D₆): δ 138.5 (d, ²*J*_{CP} = 4.9 Hz), 114.2 (d, ³*J*_{CP} = 9.3 Hz), 19.6 (d, ¹*J*_{CP} = 14.3 Hz), 0.0 (d, ²*J*_{CP} = 9.9 Hz). IR (gaseous, cm⁻¹): 3087(w), 2962(s), 2906(m), 2283(s; PH), 1821(w), 1636(w), 1413(w), 1255(vs), 1201(w), 1075-(w), 990(w), 909(s), 845(vs). MS (GC, EI⁺; M⁺, *m/e*): 146 [¹²C₄H₁₃-PSi⁺]. ¹H NMR data had been reported previously.¹² Neat samples of **17** in vacuo at 25 °C were stable for periods of hours. Reaction of **17** with excess MeOH produced CH₂=CHCH₂PH₂¹³ quantitatively.

Me₃SiP(H)CH₂CH₂CH=CH₂ (18) and (Me₃Si)₂PCH₂CH₂CH=CH₂ (19). THF (4.0 mL), monoglyme (2.0 mL), and a stir bar in a 10-mL flask were triply freeze-thaw-degassed. Me₃SiPH₂ (61 Torr, 920 mL, 23 °C; 3.0 mmol) was added, and the reactants were warmed to -78°C. N2 and then n-BuLi (1.9 mL, 3.0 mmol) were slowly added via syringe. The solution turned bright yellow. The solution was allowed to warm to 25 °C over 2 h, after which the solution was cooled to -78°C and CH2=CHCH2CH2Br (0.50 mL, 5.0 mmol) was slowly syringed in. During 30 min the solution was warmed to room temperature. Volatile materials were removed and distilled through traps at -23, -45, and -196 °C. Approximately 30% of the material, 19, was too nonvolatile to transfer from the reaction vessel. The -45 °C trap contained a mixture of 18 and H₂PCH₂CH₂CH=CH₂.¹³ Distillation of the -23 °C fraction yielded pure 18: ³¹P NMR (C_6D_6); δ -154.4 (d, ${}^{1}J_{\text{PH}} = 188 \text{ Hz}$). ${}^{13}\text{C} \text{ NMR} (\text{C}_6\text{D}_6)$: $\delta 138.9 \text{ (d, } {}^{4}J_{\text{CP}} = 9.9 \text{ Hz}$), 114.8 (s), 36.1 (d, ${}^{2}J_{CP} = 12.1$ Hz), 13.9 (d, ${}^{1}J_{CP} = 13.2$ Hz), -0.1 (d, ${}^{2}J_{CP}$ = 9.9 Hz). ¹H NMR (C₆D₆): δ 5.8 (compl mult, 1H), 5.0 (compl mult, 2H), 2.35 (compl mult, 0.5H), 2.17 (compl mult, 2H), 1.52 (compl mult, 2.5H), 0.13 (d, 9H, ${}^{3}J_{HP} = 4.1$ Hz). IR (gaseous, cm⁻¹): 3087-(m), 2961(s), 2909(m), 2280(s, PH), 1834(w), 1641(w), 1417(w), 1316-(w), 1254(s), 992(m), 915(m), 845(vs). MS (GC, EI+; M+, m/e): 160 [¹²C₇H₁₇PSi⁺]. Anal (EI⁺, exact mass MS). Calcd for C₇H₁₇PSi: 160.0837. Found: 160.0814. Extraction of nonvolatile materials in the reaction vessel with benzene followed by removal of benzene in vacuo yielded **19**. ³¹P NMR (C₆D₆): δ -175.4 (s). ¹³C NMR (C₆D₆): δ 139.4 (d, ${}^{4}J_{CP} = 13.2$ Hz), 114.6 (s), 36.7 (d, ${}^{2}J_{CP} = 18.1$ Hz), 15.0 (d, ${}^{1}J_{CP} = 15.4 \text{ Hz}$), 1.1 (d, ${}^{2}J_{CP} = 11.5 \text{ Hz}$). ${}^{1}\text{H} \text{ NMR} (C_{6}D_{6})$: $\delta 5.85$ (compl mult, 1H), 5.0 (compl mult, 2H), 2.27 (compl mult, 2H), 1.65 (t of d, 2H, ${}^{2}J_{HP} = 2.7$ Hz, ${}^{3}J_{HH} = 8.1$ Hz), 0.30 (d, 18H, ${}^{3}J_{HP} = 4.1$ Hz). IR (gaseous, cm⁻¹): 3087(m), 2960(s), 2905(s), 1641(w), 1407-(w), 1253(vs), 1066(w), 992(w), 913(m), 838(vs). MS (GC, EI+; M+, m/e): 232 [¹²C₁₀H₂₅PSi₂⁺]. Anal (EI⁺, exact mass MS). Calcd for C10H25PSi2: 232.1232. Found: 232.1212. Reaction of 18 and 19 with excess MeOH produced CH₂=CHCH₂CH₂PH₂¹³ quantitatively.

Me₂Si(PH₂)(PHMe) (20) and Me₂Si(PHMe)₂ (21). THF (4 mL), monoglyme (1 mL), and a spin bar were added to a 5-mL reaction vessel, and the mixture was triply freeze-thaw-degassed. Me₂Si(PH₂)₂ (20 Torr, 920 mL, 24 °C; 1.0 mmol) was condensed into the vessel, the contents were warmed to -78 °C, and the mixture was stirred. Under N2, n-BuLi (1.3 mL, 2.0 mmol) was slowly added. The solution turned yellow immediately. The reaction was stirred for 5 min and then quickly cooled to -196 °C. MeI (31 Torr, 1.8 L, 22 °C; 3.0 mmol) was condensed into the reaction vessel, and the contents were warmed to -78 °C for 5 min, until effervesence ceased. Volatile materials were removed. The ³¹P NMR spectrum showed peaks attributed to PH₃ (δ -245.0, 12%),¹⁴ **20**, **21**, and MePH₂ (δ -163.0, 26%).¹⁴ Volatile materials were fractionally condensed through traps at -45, at -63, and into -196 °C. Compounds 20 and 21 condensed at -63 and -45 °C, respectively. Compound 20: ³¹P{¹H} NMR (C₆D₆): δ -238.8 (d, ²J_{PP} = 11.5 Hz, PH₂), -165.9 (d, ²J_{PP} = 11.5 Hz, PHMe). ³¹P NMR (C₆D₆): δ -238.8 (t of mult, ¹J_{PH} = 184 Hz), -165.9 (d of mult, ${}^{1}J_{PH} = 189$ Hz). ${}^{13}C{}^{1}H$ NMR (C₆D₆): δ 1.2 (t, ${}^{2}J_{CP} = 9.9$ Hz, MeSi), 0.8 (t, ${}^{2}J_{CP} = 10.2$ Hz, MeSi), -3.4 (d of d, ${}^{1}J_{CP}$ = 16.2 Hz, ${}^{3}J_{CP}$ = 3.0 Hz, MeP). ¹H NMR (C₆D₆): δ 2.10 (d of q of d, 1H, ${}^{1}J_{\text{HP}} = 190$ Hz, ${}^{3}J_{\text{HH}} = 7.3$ Hz, ${}^{3}J_{\text{HP}} = 3.7$ Hz, PHMe), 1.37 (d of d, 2H, ${}^{1}J_{HP} = 184$ Hz, ${}^{3}J_{HP} = 3.7$ Hz, PH₂), 0.84 (d of d, 3H, ${}^{2}J_{HP}$ $= 3.2 \text{ Hz}, {}^{3}J_{\text{HH}} = 7.3 \text{ Hz}, \text{PH}Me$, 0.24 (t, 3H, ${}^{3}J_{\text{HP}} = 4.15 \text{ Hz}, \text{Me}_{2}\text{Si}$), 0.22 (t, 3H, ${}^{3}J_{HP} = 4.15$ Hz, Me₂Si). IR (gaseous, cm⁻¹): 2968(m), 2921(w), 2290(vs, PH), 1423(w), 1254(s), 1060(m), 988(m), 836(vs). MS (GC, EI⁺; M⁺, *m/e*): 138 [¹²C₃H₁₂P₂Si⁺]. Compound: **21**: ³¹P-{¹H} NMR (C₆D₆): δ -177.7 (s), -176.2 (s). ³¹P NMR (C₆D₆): δ -177.7 (d, ¹J_{PH} = 191 Hz), -176.2 (d, ¹J_{PH} = 189 Hz). ¹³C{¹H} NMR (C₆D₆): δ -1.5 (t, 1C, ²J_{CP} = 10.2 Hz, MeSi), -1.8 (t, 2C, ²J_{CP} = 11.0 Hz, Me₂Si), -2.0 (t, 1C, ²J_{CP} = 9.9 Hz, MeSi), -3.8 (compl mult, MeP). ¹H NMR (C₆D₆): δ 2.11 (d of mult, 2H, ¹J_{HP} = 190 Hz, PHMe), 0.87 (d of d, 3H, ³J_{HH} = 7.3 Hz, ²J_{HP} = 3.2 Hz, ³J_{HH} = 7.3 Hz, PHMe), 0.20-0.24 (compl mult, 6H, Me₂Si). IR (gaseous, cm⁻¹): 2969(s), 2926(s), 2283(vs, PH), 1429-(w), 1253(s), 988(s), 816(vs). MS (GC, EI⁺; M⁺, *m/e*): 152 [¹²C₄H₁₄P₂Si⁺]. Anal (EI⁺, exact mass MS). Calcd for C₄H₁₄P₂Si: 152.0340. Found: 152.0357.

Me₂Si[(H)P(CH₂)₃P(H)] (22). THF (2.0 mL) and monoglyme (2.0 mL) in a 10-mL reaction flask were triply freeze-thaw-degassed. Me2-Si(PH₂)₂ (17 \times 2 Torr, 920 mL, 22 °C; 1.7 mmol) was condensed in, and the flask was warmed to -95 °C and stirred. n-BuLi (2.1 mL, 3.4 mmol) was slowly syringed in, and the mixture was stirred for 5 min. To the resulting vellow solution, Br(CH₂)₃Br (0.18 mL, 1.8 mmol) was slowly added, and the mixture was warmed to 25 °C. Column distillation of volatile materials yielded 22 (yield, 40%). $^{31}P\{^{1}H\}$ NMR (C₆D₆): δ -155.6 (s), -136.6 (s). ³¹P NMR (C₆D₆): δ -155.6 (d, ${}^{1}J_{\text{PH}} = 184 \text{ Hz}$, $-136.5 \text{ (d, } {}^{1}J_{\text{PH}} = 191 \text{ Hz}$). ${}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR (C}_{6}\text{D}_{6})$: δ 32.7 (t, 1C, ${}^{2}J_{CP} = 4.4$ Hz), 29.3 (s, 1C), 15.4 (d, 2C, ${}^{1}J_{CP} = 16.5$ Hz), 14.8 (d, 2C, ${}^{1}J_{CP} = 14.3$ Hz), -0.4 (compl mult, 3C), -1.5 (t, 1C, ${}^{2}J_{CP} = 20.3$ Hz). ¹H NMR (C₆D₆): δ 2.3 (d of mult, 4H, ${}^{1}J_{HP} =$ 190 Hz), 1.0-1.8 (compl mult, 8H), 0.88 (t, 4H, J = 7.3 Hz), 0.28-0.35 (compl mult, 9H, Me₂Si), 0.21 (t, 3H, ${}^{3}J_{HP} = 4.1$ Hz). IR (gaseous, cm⁻¹): 2964(m), 2922(vs), 2854(m), 2278(vs, PH), 1430(w), 1253(s), 1012(w), 840(vs), 804(vs). MS (GC, EI⁺; M⁺, m/e): 164 [¹²C₅H₁₄P₂-Si⁺]. Anal (EI⁺, exact mass MS). Calcd for C₅H₁₄P₂Si: 164.0340. Found: 164.0325. Compound 22 reacted with an excess of MeOH to form the previously reported H₂P(CH₂)₃PH₂¹⁵ quantitatively.

Cyclization of 17 and 18. Me₃**SiP**(**CH**₂)₄ (**14a**) **and HP**(**CH**₂)₄ (**14b**). Compound **18** (16.5 mg, 0.10 mmol), AIBN (5 mg, 0.03 mmol), and benzene-*d*₆ (0.55 mL) in a sealed NMR tube were heated at 75 °C for 3 h (conversion, 80%; yield of **14a**, 85%). Repeated fractional condensation into a -45 °C trap yielded **14a**. ³¹P NMR (C₆D₆): δ -101.3 (s). ¹³C NMR (C₆D₆): δ 30.4 (d, 2C, ²*J*_{CP} = 2.7 Hz; CH₂), 19.5 (d, 2C, ¹*J*_{CP} = 14.3 Hz; CH₂), -1.8 (d, 3C, ²*J*_{CP} = 11.5 Hz; SiMe₃). ¹H NMR (C₆D₆): δ 1.6 (compl mult, 8H; CH₂), 0.08 (d, 9H, ³*J*_{HP} = 4.1 Hz; SiMe₃). IR (GC, gas; cm⁻¹): 2950(vs), 2869(w), 1442(w), 1253(s), 840(vs). MS (GC, EI⁺; M⁺, *m*/*e*): 160 [¹²C₇H₁₇PSi⁺). Anal (EI⁺, exact mass MS). Calcd for C₇H₁₇PSi: 160.0837. Found: 160.0836. Reaction of **14a** with excess MeOH yielded phospholane HP(CH₂)₄ (**14b**) quantitatively.^{2,16}

Compound **17** (0.1 mmol) with AIBN (4 mg, 0.02 mmol) in benzene was sealed in an NMR tube and heated to 75 °C for 4 h. The solution turned bright yellow. The ³¹P NMR spectra showed decomposition to mainly (Me₃Si)₂PH;^{17,18} product was identified as (CH₂=CHCH₂)₂PH and several undetermined species. No resonance was exhibited clearly attributable to the phosphetane (**13a**, R = Me₃Si).

Results and Discussion

Silylphosphines Me₃SiPH₂ and Me₂Si(PH₂)₂ react readily with *n*-BuLi at -78 °C to form silylphosphides, which subsequently react with alkyl and alkenyl halides, as shown in Schemes 1 and 2. The *n*-BuLi reaction with Me₃SiPH₂ yields the mono-lithiophosphide. However, with Me₂Si(PH₂)₂ the reaction yields both mono- and bislithio products, even when using only 1 equiv of the butyl lithium reagent. Apparently, deprotonation of Me₂Si(PH₂)₂ and Me₂Si(PH₂)(PHLi) occur at comparable rates, indicating that the electronic effect of deprotonating the first PH₂ group is not strongly transmitted to the second.

⁽¹⁴⁾ Crutchfield, M. M; Dungan, C. H.; Letcher, J. H.; Mark, V.; Van Wazer, J. R. *Topics in Phosphorus Chemistry*; Interscience: New York, 1963; Vol. 5.

 ^{(15) (}a) Issleib, K.; Thorausch, P. Phosphorus Sulfur 1977, 3, 203. (b) Maier, L. Helv. Chim. Acta 1966, 49, 842.

⁽¹⁶⁾ Burg, A. B.; Slota, P. J. J. Am. Chem. Soc. 1960, 82, 2148.

⁽¹⁷⁾ Parshall, G. E.; Lindsey, R. V. J. Am. Chem. Soc. 1959, 81, 6273.

⁽¹⁸⁾ Uhlig, W.; Tzschach, A. Z. Anorg. Allg. Chem. 1989, 576, 281.

Scheme 1

Scheme 2

Reactions of the lithiosilylphosphides with MeI yield the known methylated derivative 16^{11} and the bisphosphines 20 and 21. These reactions also produced small quantities of Me₂PH and MePH₂, perhaps the result of alkyl(silyl)phosphine redistribution, e.g., for 16 according to eq 3. Similar redistributions

 $2Me_{3}SiPHMe \rightarrow (Me_{3}Si)_{2}PH + Me_{2}PH$ (3)

of unsymmetrically substituted alkylphosphines such as MeP-(H)CH₂CH=CH₂ have been previously established.¹⁹ Similarly, [Me₃SiPH]Li reacts with CH₂=CHCH₂Br and CH₂=CHCH₂-CH₂Br to form the alkenyl(silyl)phosphines **17**¹² and the new **18**, respectively. Formation of **18** is also accompanied by significant amounts of **19**, likely to be the result of redistribution of **18** in the reaction medium. Reaction of 1,3-dibromopropane with Me₂Si(PHLi)₂, prepared by reaction of Me₂Si(PH₂)₂ with greater than 2 equiv of *n*-BuLi, occurs cleanly to form **22**. Only small amounts of products were attributable to Me₂Si(PHLi)₂ with more than 1 equiv of 1,3-dibromopropane. These minor products were not characterized.

The methylated silylphosphine $16^{11,20}$ has been prepared previously from KPHMe or LiAl(PHMe)₄ reactions with trimethylsilyl halides, although, from the LiAl(PHMe)₄/Me₃SiCl reaction, **16** underwent rapid redistribution to (Me₃Si)₂PH and MePH₂. Small quantitities of MePH₂ also are obtained from our [Me₃SiPH]Li/MeI reaction; however, the product once purified is thermally stable. Compound **21** is claimed from the Me₂SiCl₂/(MePH)Li reaction, but only as an intermediate to the observed trimer (Me₂SiPMe)₃.²¹ In our system, similar high thermal instability of **21** was not observed. Phosphorussubstituted derivatives of **22** have been reported.²² However, little of their chemistry is known.

- (21) Fritz, G.; Uhlman, R. Z. Anorg. Allg. Chem. 1978, 442, 95.
- (22) Issleib, K.; Thorausch, P. Phosphorus Sulfur 1977, 3, 203.

Characterization of the new organo(silyl)phosphines 18-22 was readily accomplished by spectral techiniques (³¹P, ¹H, ¹³C NMR, IR, and MS). Also, ¹H NMR spectral data for 16 were remeasured, since we found the reported chemical shift data¹¹ to be in error. All compounds exhibit unambiguous mass spectral parent ions (M⁺). Compounds 16-18 and 20-22display characteristic IR P-H stretching absorptions²³ at 2278-2290 cm⁻¹ and ³¹P NMR spectral P-H doublets ($^{1}J = 184 -$ 190 Hz) in the δ -154 to -175 region;¹⁴ in addition **20** shows a clear PH₂ group triplet (${}^{1}J$ = 184 Hz) at δ -238.8. ${}^{1}H$ NMR spectra are as expected; the Me₃Si and Me₂Si group protons for the series and the Me group protons of 16, 20, and 21 correlate well with those for known methylphosphines and silylphosphines.^{17,21,24,25} The resonance patterns for the allyl, propenyl, and trimethylene groups of 17-19 and 22, respectively, are closely similar to those seen in CH_2 =CHCH₂PH₂,¹³ CH2=CHCH2CH2PH2,¹³ and 1,3-(PH2)2C3H6 (15).¹⁵

Alkenyl(silyl)phosphines 17 and 18 were heated in toluene in the presence of a radical initiator, under conditions previously established for radical addition of phosphine P-H bonds to alkenes.^{2,3,26,27} After heating **17** in the presence of AIBN for 4 h, no ³¹P NMR resonances were observed attributable to the phosphetane 13a. Only peaks due to (Me₃Si)₂PH,¹⁷ (CH₂= CHCH₂)₂PH and minor uncharacterized species appear. The observed products might result from redistribution, a reaction that becomes competitive in cases where the silvlphosphinyl radical does not react readily with the alkene.² In contrast, 18 when heated at 75 °C for 3 h in the presence of AIBN yields the silvlphospholane $Me_3SiP(CH_2)_4$ (14a, X = Me_3Si) in greater than 85% yield. Similar radical intramolecular ring closures to five- and six-membered P-alkyl and P-aryl substituted rings are known;^{27,28} perhaps they occur readily, whereas cyclization of 17 does not because of the greater strain associated with the four-membered ring.^{29,30}

The organo(silyl)phosphines **16** and **17** and the new **14a** and **18–22** are potentially valuable synthons because they contain the readily cleaved P–SiMe₃ bond.^{2,5} Reaction of CH₂=CHCH₂-PH₂ with Me₃SiI in the presence of Et₃N was reported earlier to yield **17**;¹² however, the reaction is less efficient than our new silylphosphide reagent route. Moreover, the silylphosphines are quantitatively converted to the parent organophosphines by reaction with MeOH or H₂O. Solvolysis of **16**, **20**, and **21** yields MePH₂ (or MePH₂ and PH₃). Compounds **17–19** yield the known alkenylphosphines CH₂=CHCH₂PH₂¹³ and

- (23) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrophotometric Identification of Organic Compounds; Wiley: New York, 1974.
- (24) Baudler, M.; Scholz, G.; Oehlert, W. Z. Naturforsch. 1989, 44b, 627.
 (25) (a) Fritz, G.; Schaeffer, H.; Holderich, W. Z. Anorg. Allg. Chem. 1974, 407, 266. (b) Fritz, G.; Schaefer, H.; Demuth, R.; Grobe, J. Z. Anorg. Allo. Chem. 1974, 407, 287
- Allg. Chem. 1974, 407, 287.
 (26) (a) Stiles, A. R.; Rust, F. F.; Vaughn, W. E. J. Am. Chem. Soc. 1952, 74, 3282. (b) Harris, T. V.; Pretzer, W. R. Inorg. Chem. 1985, 24, 4437. (c) Rauhut, M. M.; Currier, H. A.; Semsel, A. M.; Wystrach, V. P. J. J. Org. Chem. 1961, 26, 5138.
- (27) (a) Issleib, K.; Kuhne, U.; Krech, F. *Phosphorus Sulfur* **1985**, *21*, 367.
 (b) Issleib, K.; Kuhne, U.; Krech, F. *Phosphorus Sulfur* **1983**, 17, 73.
- (28) (a) Keiter, R. L.; Brodock, J. W.; Borger, R. D.; Cary, L. W. Inorg Chem. 1982, 21, 1256. (b) Davies, J. H.; Downer, J. D.; Kirby, P. J. Chem. Soc. C 1966, 245. (c) Diel, B. N.; Haltiwanger, R. C.; Norman, A, D. J. Am. Chem. Soc. 1982, 104, 4700. (d) Diel, B. N.; Brandt, P. F.; Haltiwanger, R. C.; Hackney, M. L. J.; Norman, A. D. Inorg. Chem. 1989, 28, 2811. (e) Baacke, M.; Heitkamp, S.; Morton, S.; Stelzer, O. Chem. Ber. 114, 1981, 2568.
- (29) (a) Smith, D. J. H. In *Comprehensive Organic Chemistry*: Sutherland, I. O., Ed.; Pergamon Press: Oxford, England, 1979; Vol. 2, p 1121.
 (b) Baudler, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 419.
- (30) (a) Venkataramu, S. D.; Macdonell, G. D.; Purdum, W. R.; El-Deek, M.; Berlin, K. D. Chem. Rev. 1977, 77, 121. (b) Markl, G. Angew. Chem., Int. Ed. Engl. 1965, 4, 1023.

⁽¹⁹⁾ Wagner, R. I.; Wilson, C. O.; Inorg. Chem. 1966, 5, 1009.

 ^{(20) (}a) Bruker, A. B.; Balashova, L. D.; Soborovskii, L. Z. *Chem. Abstr.* 1961, 55, 13301a. (b) Becker, G.; Mundt, O.; Rössler, M.; Schneider, E. Z. Anorg. Allg. Chem. 1978, 443, 42.

Notes

CH₂=CHCH₂CH₂PH₂.¹³ Most significantly, solvolysis of **22** or **14a** readily yields the 1,3-diphosphinopropane (**15**)¹⁵ and the parent phospholane (CH₂)₄PH (**14b**),¹⁶ both ligands that are not otherwise readily available. Compound **15** has been prepared by reactions of the PH₂⁻ ion with 1,3-dibromopropane,¹⁵ and phospholane **14b** has been prepared by thermolysis of the adduct (CH₂)₄P(NMe₂)₂(BH₃);¹⁶ however, these reactions are lower-

yielding, making our current method based on silylphosphine precusors preferable.

Acknowledgment. Support of this work from National Science Foundation Grants CHE-8312856 and CHE-8714951 is gratefully acknowledged.

IC961350I