Theoretical Evidence for Two New Intermediate Xenon Species: Xenon Azide Fluoride, $FXe(N_3)$, and Xenon Isocyanate Fluoride, $FXe(NCO)^{\dagger}$

Axel Schulz[‡] and Thomas M. Klapötke^{*,‡}

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.

Received November 14, 1996[⊗]

The reaction behavior of xenon difluoride, XeF₂, toward HN₃, NaN₃, and NaOCN was investigated in H₂O, aHF (anhydrous HF), and SO₂ClF solution. The analysis of the final reaction products (XeF₂ + HN₃ (NaN₃) in H₂O \rightarrow HF, N₂, N₂O, Xe; XeF₂ + HN₃ in aHF \rightarrow N₂, Xe, N₂F₂; XeF₂ + HOCN (NaOCN) in H₂O \rightarrow HF, N₂, N₂O, NH₃, CO₂, Xe) indicated the intermediate formation of FXe(N₃) and FXe(NCO) and revealed different reaction mechanisms for both compounds. Both intermediates, FXe(N₃) and FXe(NCO), were studied on the basis of ab initio computations at HF and correlated MP2 levels using a quasirelativistic LANL2DZ pseudopotential for Xe. Both were shown to possess stable minima at HF and MP2 levels (no imaginary frequencies) with the following structural parameters (MP2/LANL2DZ). FXe(N₃): C_s ; d(F-Xe) = 2.051, d(Xe-N1) = 2.318, d(N1-N2) = 1.241, d(N2-N3) = 1.180 Å; \angle (FXeN1) = 178.1, \angle (XeN1N2) = 112.2, \angle (N1N2N3) = 174.7°. FXe(NCO): C_s ; d(F-Xe) = 2.024, d(Xe-N) = 2.206, d(N-C) = 1.194, d(C-N) = 1.231 Å; \angle (FXeN) = 178.7, \angle (XeNC) = 125.4, \angle (NCO) = 174.2°. The experimentally unobserved cyanate isomer, FXe(OCN), was calculated to be higher in energy than the isocyanate isomer FXe(NCO): $\Delta E = 19.8$ (HF), 18.3 (MP2) kcal mol⁻¹.

Introduction

We have been studying various neutral compounds and cations containing a direct main-group-element-azide bond.¹ Due to the lability of the nitrogen—iodine bond (all binary N–I species and more than a few compounds containing a direct N–I bond are very unstable and often explosive), we especially focused on iodine azide compounds, *e.g.* IN₃, (IN₃)_x, I(N₃)₂⁺, and I₂N₃⁺.² This pronounced instability of many N–I compounds has facilitated both experimental and theoretical research exploring the thermodynamics of such compounds and especially the N–I bond energy.^{3,4}

We now want to explore xenon azide compounds since Xe is the next neighbor of iodine. (*N.B.* Although XeF⁺ is a well-known and stable cation, the isoelectronic counterpart to I_2 , XeI⁺, is still an unknown species.) For an excellent review covering the history of xenon chemistry see ref 5.

Whereas numerous examples of xenon bonded to oxygen or fluorine are known, much fewer compounds containing a direct

- (4) Schulz, A.; Tornieporth-Oetting, I. C.; Klapötke, T. M. Inorg. Chem. 1995, 34, 4343.
- (5) Laszlo, P.; Schrobilgen, G. J. Angew. Chem. 1988, 100, 495; Angew. Chem. Int. Ed. Engl. 1998, 27, 479.
- (6) LeBlond, R. D.; DesMarteau, D. D. J. Chem. Soc., Chem. Commun. 1974, 555.

Xe–N bond have been reported. The first Xe–N compound FXeN(SO₂F)₂ was prepared by DesMarteau et al. in 1974,⁶ and it was not before 1987 that Schrobilgen et al. reported the XeF⁺ cation bonded to H–CN, *i.e.* [HC \equiv N–Xe–F]⁺.⁷ Further xenon–nitrogen-bonded derivatives of the –N(SO₂F)₂ and –N(SO₂CF₃)₂ groups⁸ as well as XeF⁺ cations bonded to other organo–nitrogen ligands have been reported.⁹

Experimental Section

Caution! Neat hydrazoic acid is shock sensitive, and proper safety precautions, such as working on a small scale and using safety shields, should be taken when the material is handled.

Materials. XeF₂ (Fluorochem), NaN₃ (Aldrich), and NaOCN (Aldrich) were used as supplied. HF (Merck) was dried by storage over BiF_5 .¹⁰ HN₃ was prepared from NaN₃ and stearic acid at 110–130 °C.¹¹

Apparatus. All reactions were carried out on a vacuum line constructed largely from 316 stainless steel and nickel to which the reaction vessel was connected via ≈ 1 ft length, $\frac{1}{4}$ in. o.d. flexible FEP tubing. The T-shaped reaction vessel originally described by Bartlett et al. was constructed from FEP tubing (Bohlender). The commonly

- (8) (a) DesMarteau, D. D. J. Am. Chem. Soc. 1978, 100, 6270. (b) DesMarteau, D. D.; LeBlond, R. D.; Hossain, S. F.; Nothe, D. J. Am. Chem. Soc. 1981, 103, 7734. (c) Sawyer, J. F.; Schrobilgen, G. J.; Sutherland, S. J. Inorg. Chem. 1982, 21, 4064. (d) Schumacher, G. A.; Schrobilgen, G. J. Inorg. Chem. 1983, 22, 2178. (e) Faggiani, R.; Kennepohl, D. K.; Lock, C. J. L.; Schrobilgen, G. J. Inorg. Chem. 1986, 25, 563. (f) Foropoulos, J.; DesMarteau, D. D. J. Am. Chem. Soc. 1987, 104, 4260.
- (9) (a) Emara, A. A. A.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1988, 257. (b) Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1988, 1506. (c) Emara, A. A. A.; Schrobilgen, G. J. Inorg. Chem. 1992, 31, 1323.
- (10) Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978, 11, 71.
- (11) (a) Krakow, B.; Lord, R. C.; Neely, G. O. J. Mol. Spectrosc. 1968, 27, 198. (b) Klapötke, T. M.; Tornieporth-Oetting, I. C. Nichtmetallchemie; VCH: Weinheim, New York, 1994.
- (12) (a) Zemva, B.; Hagiwara, T.; Casteel, W. J., Jr.; Lutar, K.; Jesih, A.; Bartlett, N. J. Am. Chem. Soc. 1990, 112, 4846. (b) Zemva, B.; Lutar, K.; Chacon, L.; Fele-Beuermann, M.; Allman, J.; Shen, C.; Bartlett, N. J. Am. Chem. Soc. 1995, 117, 10025.

^{*} Corresponding author. Tel: 011 49 89 5902 630. Fax: 011 49 89 5902 382. E-mail: tmk@anorg.chemie.uni-muenchen.de.

[†] Dedicated to Professor Neil Bartlett on the occasion of his 65th birthday. [‡]New address: Institute of Inorganic Chemistry, LMU Munich, Meiserstrasse 1, D-80333 Munich, Germany.

[®] Abstract published in *Advance ACS Abstracts*, April 1, 1997.

 ⁽a) Tornieporth-Oetting, I. C.; Klapötke, T. M. Angew. Chem. 1995, 107, 509; Angew. Chem., Int. Ed. Engl. 1995, 34, 511. (b) Klapötke, T. M. Chem. Ber. (Review), in press.

^{(2) (}a) Hargittai, M.; Molnar, J.; Klapötke, T. M.; Tornieporth-Oetting, I. C.; Kolonits, M.; Hargittai, I. J. Phys. Chem. 1994, 98, 10095. (b) Buzek, P.; Klapötke, T. M.; Schleyer, P. v. R.; Tornieporth-Oetting, I. C.; White, P. S. Angew. Chem. 1993, 105, 289; Angew. Chem., Int. Ed. Engl. 1993, 32, 275. (c) Tornieporth-Oetting, I. C.; Klapötke, T. M.; Schleyer, P. v. R. Inorg. Chem. 1993, 32, 5640. (d) Tornieporth-Oetting, I. C.; Buzek, P.; Schleyer, P. v. R.; Klapötke, T. M. Angew. Chem. 1992, 104, 1391; Angew. Chem., Int. Ed. Engl. 1992, 31, 1338.

⁽³⁾ Otto, M.; Lotz, S. D.; Frenking, G. Inorg. Chem. 1992, 31, 3647.

⁽⁷⁾ Emara, A. A. A.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1987, 1646.

Table 1. Gaseous Products of the Reactions of XeF_2 with HN_3/NaN_3 and XeF_2 with NaOCN

reaction	solvent	IR/cm^{-1}	assignment	ref
$HN_3 + XeF_2$	aHF	990 ^a	v_5 , v_{as} (N–F), trans-N ₂ F ₂	21
$HN_{3 + XeF2}$	H_{2O}	3338 vw ^b	ν (N-H), HN ₃	3
		2565 w	$2 \times \nu_3$, N ₂ O	22
		2298 vw	$2 \times \nu_{\rm s}$ (NNN), HN ₃	3
		2225 s	$\nu_1(NN), N_2O$	22
		2140 m	$\nu_{\rm as}(\rm NNN), HN_3$	3
		2075 vw	δ (NNN), HN ₃	3
		1285 m	$\nu_3(NO), N_2O$	22
		1151 w	$\nu_{\rm s}(\rm NNN), HN_3$	3
		590 w	$\nu_2(\delta, \text{NNO}), \text{N}_2\text{O}$	22
$NaN_3 + XeF_2$	H_2O	2225 s	$\nu_1(NN), N_2O$	22
		2140 m	$\nu_{\rm as}(\rm NNN), HN_3$	3
		2075 vw	δ (NNN), HN ₃	3
		1285 m	$\nu_{3}(NO), N_{2}O$	22
		1151 w	$\nu_{\rm s}(\rm NNN), HN_3$	3
		590 w	$\nu_2(\delta, \text{NNO}), \text{N}_2\text{O}$	22
$NaOCN + XeF_2$	H_2O	3718 m	CO_2^{23}	23
		3618 m	CO ₂ ²³	23
		2568 w	$2 \times \nu_3$, N ₂ O	22
		2355 vs	$\nu_3(\nu, OCO), CO_2$	23
		2228 s	$\nu_1(NN), N_2O$	22
		1282 m	$\nu_3(NO), N_2O$	22
		720 m	CO_2^{23}	23
		665 s	$\nu_2(\delta, OCO), CO_2$	23

^a Beside HF, NH₃, and small amounts of HN₃. ^b Beside HF.

used reactor was constructed from ${}^{3/_{4}}$ in. o.d. FEP tubes which were joined at right angles by a Teflon valve (Bohlender).¹²

Spectroscopy. Gas infrared spectra were recorded at 20 °C (2 mmHg, 10 cm Monel cell, NaCl windows) on a Philips PU9800 FTIR spectrometer. The NMR spectra (¹⁴N, ¹⁹F) were recorded in 10 mm NMR tubes using a Bruker WP 200 SY spectrometer operating at 14.462 MHz (¹⁴N) or 188.313 MHz, respectively. NMR spectra in aHF solution were recorded in 8 mm FEP NMR tubes fitted into 10 mm glass NMR tubes. All spectra are reported in ppm on the δ scale and are referred to external MeNO₂ (¹⁴N) or CFCl₃ (¹⁹F), respectively. Good ¹⁴N spectra could usually be obtained after 5000 scans and a pulse width of 48 μ s, and ¹⁹F spectra, after 20 scans and a pulse width of 2 μ s. Peak positions appearing downfield (high frequency) of the reference are reported as *plus*.

We also attempted to observe ¹²⁹Xe NMR spectra (55.316 MHz; directly referenced to external XeOF₄); however, the only resonance found could be assigned to XeF₂ ($\delta = -1680$ ppm, triplet, ² J_{Xe-F} (¹²⁹Xe satellites) = 5604 Hz.).^{9c}

Computational Methods. The structures and the vibrational spectra of the molecules FXe(N₃), FXe(NCO), and FXe(OCN) were computed ab initio at the HF and electron-correlated MP2 levels of theory with the program package Gaussian 94.¹³ For C, N, O, and F, a 6-31G(d) basis set was used; for Xe, a quasi-relativistic pseudopotential (LANL2DZ)¹⁴ was used where the basis functions for the valence s and p electrons consist of the standard double- ζ basis set (notation HF/LANL2DZ) or MP2/LANL2DZ). An NBO analysis was carried out to account for non-Lewis contributions to the most appropriate valence

structure. In the quantum mechanical computation (NBO analysis, subjecting the HF density matrix as represented in the localized NBOs to a second-order perturbative analysis), the energy for the donor– acceptor interaction was computed according to eq 1 with h^F being the Fock operator.¹⁵

$$E_{\varphi\varphi^*}^{(2)} = -2 \frac{\langle \varphi | \mathbf{h}^{\mathbf{F}} | \varphi^* \rangle^2}{E\varphi^* - E\varphi}$$
(1)

Reaction of HN₃ with XeF₂ in aHF. In a typical reaction, XeF₂ (0.51 g, 3.01 mmol) was dissolved in aHF (5 mL) in one arm of an FEP T-reactor and HN₃ (0.13 g, 3.02 mmol) was dissolved in aHF (5 mL) in the other arm. Both solutions were cooled to -78° C. The HN₃ solution was slowly added to the XeF₂ solution. When the addition was complete, the colorless solution was allowed to slowly warm to room temperature. No reaction was observed at or below -20° C. At ca. -18° C, the fast reaction started with evolution of gaseous products. Cessation of the gas evolution signaled completion of the reaction. The gaseous products were analyzed by gas IR spectroscopy (Table 1).

Reaction of HN₃ with XeF₂ in H₂O. This reaction was carried out as described above for the reaction of XeF₂ with HN₃ in aHF with the difference that both solutions were reacted at 0 °C (HN₃, 0.13 g, 3.02 mmol; in 3 mL of H₂O/XeF₂, 0.51 g, 3.01 mmol; in 7 mL of H₂O). A pinkish color appeared for a short moment. The total volume of the gaseous products formed corresponded to 7.0 mmol of gas (calculated from expansion of the reaction products from the known-volume reaction vessel into the calibrated vacuum line). Variation of the temperature at which the reaction vessel was held revealed ca. 3.4 mmol of N₂, 1.1 mmol of N₂O, and 2.5 mmol of Xe (bp: N₂, -196 °C; N₂O, -88.5 °C; Xe, -108.1 °C).^{11b} The gaseous products were analyzed by gas IR spectroscopy (Table 1). The mass spectrum of the gaseous products which were volatile at -196 °C revealed the presence of a large amount of N₂ (and traces of O₂, the level of which was close to that of the "background" air).

Reaction of NaN₃ with XeF₂ in H₂O. This reaction was carried out as described above for the reaction of XeF₂ with HN₃ in H₂O at 0 $^{\circ}$ C (NaN₃, 0.20 g, 3.08 mmol/XeF₂, 0.51 g, 3.01 mmol). The gaseous products were analyzed by gas IR spectroscopy (Table 1).

NMR Experiment: Reaction of HN₃ with XeF₂ in aHF. In an NMR experiment, XeF₂ (0.38 g, 2.24 mmol) was reacted with HN₃ (0.01 g, 2.24 mmol) in 5 mL of aHF. Below -20 °C, HN₃ (¹⁴N NMR) and XeF₂ (¹⁹F NMR) were detected. During the rapid reaction, no spectrum could be obtained due to bubbling of the solution. Immediately after cessation of the gas evolution, the sample was recooled to -40 °C and N₂F₂ was detected in the ¹⁴N NMR spectrum.

Before reaction: ¹⁴N NMR (-30 °C, aHF) -134 (N2, HN₃), -162 (N3, HN₃), -318 ppm (N1, HN₃);^{16 19}F NMR (-30 °C, aHF) -175 ppm (XeF₂), ² J_{Xe-F} (¹²⁹Xe satellites) = 5611 Hz.¹⁷

After reaction: ¹⁴N NMR (-40 °C, aHF) +67 ppm, t, ¹ $J_{N-F} = 137$ Hz (*trans*-N₂F₂);^{18 a 19}F NMR (-40 °C, aHF) +95 ppm s, br (*trans*-N₂F₂).^{18a}

NMR Experiment: Reaction of HN₃ with XeF₂ in SO₂CIF. The NMR experiment in SO₂CIF was performed with the same amounts of XeF₂ and HN₃ as described above for the NMR experiment in aHF. Before the reaction started, only HN₃ and XeF₂ were detected in the ¹⁴N and ¹⁹F NMR spectra. After the reaction started ($T_{max} = -20$ °C), however, before it was complete, the NMR tube was rapidly recooled to -80 °C. The spectra obtained at this temperature were indicative for a mixture of the starting materials (XeF₂ and HN₃) and the final products; however, no intermediate was detected. N₂F₂ could not be detected in the ¹⁹F NMR spectrum of the quenched-reaction mixture due to the strong solvent resonance of SO₂CIF at +100 ppm.

⁽¹³⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. A.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*, Revision B.2; Gaussian, Inc.: Pittsburgh, PA, 1995.

 ^{(14) (}a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (b) Wadt,
 W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (c) Hay, P. J.; Wadt,
 W. R. J. Chem. Phys. 1985, 82, 299.

^{(15) (}a) Reed, A.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
(b) Reed, A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1987, 109, 7362.
(c) Reed, A.; Schleyer, P. v. R. Inorg. Chem. 1988, 27, 3969. (d) Klapötke, T. M.; Schulz, A. Quantenmechanische Methoden in der Hauptgruppenchemie; Spektrum: Heidelberg, Oxford, 1996.

⁽¹⁶⁾ Klapötke, T. M.; White, P. S.; Tornieporth-Oetting, I. C. Polyhedron 1996, 15, 2579 and references therein.

⁽¹⁷⁾ Schrobilgen, G. J.; Holloway, S. H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980.

^{(18) (}a) Gmelin Handbook of Inorganic Chemistry, 8th ed.; Springer: Berlin, New York, 1986; p 391 and references therein. (b) Jander, G.; Blasius, E. Lehrbuch der analytischen und präparativen Chemie; Hirzel: Leipzig, 1979.

Theoretical Evidence for Intermediate Xe Species

Before reaction: ¹⁴N NMR (-30 °C, SO₂CIF) -136 (N2, HN₃), -169 (N3, HN₃), -324 ppm (N1, HN₃);^{16 19}F NMR (-30 °C, SO₂CIF) -174.8 ppm (XeF₂), ²J_{Xe-F}(¹²⁹Xe satellites) = 5605 Hz.¹⁷

Recooled during reaction: ¹⁴N NMR (-80 °C, SO₂ClF) +63 ppm, s, br (*trans*-N₂F₂),^{18a} -136 (N2, HN₃), -172 (N3, HN₃), -324 ppm (N1, HN₃);¹⁶ ¹⁹F NMR (-80 °C, SO₂ClF) -175.0 ppm (XeF₂), ²J_{Xe-F}(¹²⁹Xe satellites) = 5606 Hz.¹⁷

Reaction of NaOCN with XeF₂ in H₂O. In a typical reaction, XeF₂ (0.51 g, 3.01 mmol) was dissolved in H₂O (6 mL) in one arm of an FEP T-reactor and NaOCN (0.20 g; 3.08 mmol) was dissolved in H₂O (6 mL) in the other arm. Both solutions were cooled to 0 °C. The NaOCN solution was slowly added to the XeF₂ solution. The fast reaction started immediately with evolution of gaseous products. A pinkish color appeared for a short moment. Cessation of the gas evolution signaled completion of the reaction. The gaseous products were analyzed by gas IR spectroscopy (Table 1). Ammonia was detected by its characteristic odor and identified as [Hg₂NI·H₂O].^{18b}

NMR Experiment: Reaction of NaOCN with XeF₂ in **aHF.** In an NMR experiment, XeF₂ (0.38 g, 2.24 mmol) was reacted with NaOCN (0.15 g, 2.31 mmol) in 5 mL of aHF. Below -20 °C, HNCO (formed from NaOCN in aHF; ¹⁴N NMR) and XeF₂ (¹⁹F NMR) were detected. During the rapid reaction, no spectrum could be obtained due to bubbling of the solution. Immediately after cessation of the gas evolution, the sample was recooled to -40 °C.

Before reaction: ¹⁴N NMR (-30 °C, aHF) -304 ppm (HNCO);¹⁹ I⁹F NMR (-30 °C, aHF) -175.1 ppm (XeF₂), ² J_{Xe-F} (¹²⁹Xe satellites) = 5611 Hz.¹⁷

After reaction: no ¹⁴N NMR (-40 °C, aHF) resonance found.

NMR Experiment: Reaction of NaOCN with XeF₂ in H₂O. This reaction was carried out as described above for the reaction of XeF₂ with NaOCN in aHF with the difference that both solutions were reacted at 0 °C (NaOCN, 0.15 g, 2.31 mmol/XeF₂, 0.38 g, 2.24 mmol). Immediately after cessation of the gas evolution, the NMR spectrum was recorded at 0 °C and NH₄⁺ was detected in the ¹⁴N NMR spectrum.

After reaction: ¹⁴N NMR (0 °C, aHF) -355.0 ppm (NH₄⁺).²⁰

Due to the very poor solubility of NaOCN in SO₂ClF, no attempt was made to obtain NMR data in this solvent.

Results and Discussion

Reactions in Water. It is well-known that fluorine gas reacts at room temperature with moist NaN₃ or with NaN₃ suspended in H₂O/HF to intermediately form N₃F, which thermally decomposes into N₂ and NF radicals, which then combine to give N_2F_2 .²⁴ However, in no experiment in which we reacted NaN₃, HN₃, or NaOCN with XeF₂ in aqueous conditions did we observe the formation of N₂F₂ (see below for reaction of NaN₃ in aHF). Although we cannot completely rule out that any N₂F₂ formed in the course of the reaction could have entirely hydrolyzed by the time the reaction was over, it is far less likely that XeF₂ behaves as a simple fluorination agent in these reactions but intermediately forms F-Xe-N3 or F-Xe-NCO, respectively (cf. Scheme 1). Both intermediates (F-Xe-N₃ and F-Xe-NCO) are not expected to be stable in water but are expected to hydrolyze according to mechanism A or B shown in Scheme 1.

Whereas N_2O was identified by IR spectroscopy (Table 1) as one of the products of the azide as well as of the isocyanate

- (19) Logan, N. In *Nitrogen NMR*; Witanowski, M., Webb, G. A., Eds.; Plenum: London, New York, 1973; Chapter 6.
- (20) Geissler, P.; Klapötke, T. M.; Kroth, H.-J. Spectrochim. Acta 1995, 51A, 1075.
- (21) King, S.-T.; Overend, J. Spectrochim. Acta 1966, 22, 689.
- (22) (a) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley, New York, Chichester, 1986. (b) Mecke, R.; Langenbucher, F. Infrared Spectra; Heyden: London, 1965; Serial No. 106.
- (23) Mecke, R.; Langenbucher, F. *Infrared Spectra*; Heyden: London, 1965; Serial No. 6.
- (24) Gmelin Handbook of Inorganic Chemistry, 8th ed.; Springer: Berlin, New York, 1986; p 385 and references therein.

Scheme 1. Pathways for the Formation and Decomposition of $FXeN_3$ and FXe(NCO)

reaction in water, NH₃ was only detected as a reaction product in the reaction of NaOCN with XeF2 (14N NMR, $\rm NH_4^+$ in solution; analytically in H₂O solution, Experimental Section). Moreover, the volumetric analysis of the gaseous products formed in the reaction of HN₃ with XeF₂ in water revealed that for 4 equiv of reacted XeF₂ (or HN₃; cf. Scheme 1 and Experimental Section) and 9.4 equiv of gaseous products were found (N₂, 4.5; N₂O, ca. 1.5; Xe, ca. 3.4 equiv). This corresponds within experimental errors to mechanism A (Scheme 1), where one would expect the total formation of 10 equiv of gas (i.e.: N₂, 4.0; N₂O, 2.0; Xe, 4.0 equiv), rather than to mechanism B (total 9 equiv: N₂, 0.0; N₂O, 5.0; Xe, 4.0 equiv). (N.B. The volumetric analysis for the products of the isocyanate reaction was not conclusive due to the high solubility of ammonia and carbon dioxide in water.) The brief observation of the pinkish color (see Experimental Section) for both the cyanate and the azide reactions with XeF₂ in aqueous solution indicates a short-lived derivative of the aqueous system only. So far, we have been unable to identify this species; it could, for example, be a short-lived product of the interaction of HON (formed from HON₃ or HONCO) with water.

Both mechanisms (A and B) can easily be understood by initial hydrolysis of the Xe–F and Xe–N bonds according to their polarity (eqs 2 and 3). It is known that thermal fragmenta-

$$F-Xe-N_3 + H_2O \rightarrow H-O-N_3 + HF + Xe \qquad (2)$$

$$F-Xe-NCO + H_2O \rightarrow H-O-NCO + HF + Xe$$
 (3)

tion of covalently bound azides, XN₃, is induced not by breaking the X–N₃ bond but rather by dissociation into XN and N₂ (*i.e.*, HN₃ decomposes into HN and N₂).^{3,25} Therefore, HON₃ will dissociate into N₂ and HON radicals which will combine into hyponitrous acid, *i.e. trans*-(HNO)₂ (eq 4).²⁶ Although neat hyponitrous acid is known,²⁷ a the compound rapidly decomposes to form N₂O and H₂O (eq 5).^{27b} In case of mechanism

$$HON_{3} \rightarrow \{HON\} + N_{2} \rightarrow$$

$$^{1}/_{2} trans-HO-N=N-OH + N_{2} (4)$$

$$trans-HO-N=N-OH \rightarrow N_{2}O + H_{2}O (5)$$

B (isocyanate reaction), the initially formed H-O-NCO (eq 3) reacts with water according to eq 6 to form (i) carbonic acid, which liberates CO₂ (eq 7), and (ii) hydroxylamine, which decomposes into a complex mixture of NH₃, N₂O, and H₂O

- (25) (a) Richardson, W. C.; Setser, D. W. Can. J. Chem. 1969, 47, 2725.
 (b) Alexander, M. H.; Werner, H.-J.; Dagdigian, P. J. J. Chem. Phys. 1988, 89, 1388.
- (26) (a) Harteck, P. Ber. Dtsch. Chem. Ges. 1933, 66, 423. (b) McGraw,
 G. E.; Bernitt, D. L.; Hisatsune, I. C. Spectrochim. Acta 1967, 23A,
 25. (c) Lüttke, W.; Skancke, P. N.; Traetteberg, M. Theor. Chim. Acta 1994, 87, 321.
- (27) (a) Hughes, M. N. Q. Rev., Chem. Soc. 1968, 22, 1. (b) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon: Oxford, 1984; p 527. (c) Ibid., pp 495–496.

Table 2. Ab Initio Calculated Energies and Structural Parameters of FXeN₃, FXeNCO, and FXe(OCN) (Notation: F-Xe-A-B-C)

	FXeN ₃		FXeNCO		FXe(OCN)	
	HF^{a}	$MP2^a$	HF^{a}	$MP2^a$	HF ^a	MP2 ^a
<i>—E</i> /a.u.	277.681 89	278.415 03	281.608 47	282.286 74	281.576 83	282.257 64
d(F-Xe)/Å	1.980	2.051	1.944	2.024	1.910	2.009
d(Xe-A)/Å	2.184	2.318	2.138	2.206	2.139	2.207
d(A-B)/Å	1.218	1.241	1.192	1.194	1.265	1.292
d(B-C)/Å	1.107	1.180	1.158	1.231	1.142	1.192
∠(FXeA)/deg	178.2	178.1	178.9	178.7	178.5	179.1
∠(XeAB)/deg	114.6	112.2	134.5	125.4	119.2	113.7
∠(ABC)/deg	177.2	174.7	177.4	174.2	178.8	179.1

^{*a*} For C, N, O, and F, a 6-31G(d) basis set was used; for Xe, a quasi-relativistic pseudopotential (LANL2DZ)¹⁴ was used where the basis functions for the valence s and p electrons consist of the standard double- ζ basis set (notation: HF/LANL2DZ) or MP2/LANL2DZ).

Table 3. Ab Initio Calculated Frequencies (cm⁻¹), Intensities in Parentheses (km mol⁻¹), and Zero-Point Energies (zpe) of FXeN₃, FXeNCO, and FXe(OCN) (Notation: F-Xe-A-B-C)

	FXe	FXeN ₃		FXeNCO		FXe(OCN)	
approx assign	HF^{a}	$MP2^a$	HF^{a}	$MP2^a$	HF^{a}	MP2 ^a	
$\nu_{\rm as}(ABC), A'$	2425 (1245)	2246 (836)	2439 (2521)	2300 (1147)	2572 (464)	2194 (140)	
$\nu_{\rm s}({\rm ABC}), {\rm A'}$	1375 (492)	1251 (24)	1519 (49)	1325 (25)	1256 (248)	1325 (25)	
$\delta(ABC), A'$	759 (10)	645(1)	756 (62)	637 (14)	697 (44)	586 (24)	
γ (ABC), A"	694 (27)	551 (6)	713 (73)	580 (24)	622 (32)	497 (10)	
ν (FXe), A'	511 (411)	470 (92)	562 (261)	482 (165)	608 (212)	482 (138)	
ν (XeABC), A'	403 (57)	277 (1)	385 (152)	344 (16)	402 (108)	350 (0)	
δ (FXeABC),A'	243 (28)	186 (15)	233 (48)	199 (29)	228 (25)	187 (18)	
γ (FXeABC),A"	221 (38)	172 (21)	240 (41)	200 (30)	236 (32)	200 (15)	
δ (FXeABC), A'	118 (8)	95 (5)	82 (5)	86 (29)	108 (12)	98 (9)	
$zpe/kcal mol^{-1}$	9.65	8.44	9.91	8.80	9.62	8.16	

^{*a*} For C, N, O, and F, a 6-31G(d) basis set was used; for Xe, a quasi-relativistic pseudopotential (LANL2DZ)¹⁴ was used where the basis functions for the valence s and p electrons consist of the standard double- ζ basis set (notation: HF/LANL2DZ) or MP2/LANL2DZ).

(eq 8) (occasionally, some N_2 is formed as well during the decomposition of hydroxylamine).^{27c}

$$H-O-NCO + 2H_2O \rightarrow HONH_2 + (HO)_2CO \qquad (6)$$

$$(HO)_2 CO \rightarrow H_2 O + CO_2 \tag{7}$$

$$HONH_2 \rightarrow {}^{1}\!/_{4}N_2O + {}^{3}\!/_{4}H_2O + {}^{1}\!/_{2}NH_3$$
(8)

Reactions in aHF. Whereas we do have evidence for the intermediate formation of FXeN₃ and FXe(NCO) in water, the final products from the reactions carried out in aHF are in accord with both (i) the intermediate formation of FXeN₃ and FXe(NCO) and (ii) the behavior of XeF₂ as a fluorinating agent, yielding FN₃ and or FNCO, respectively, and HF (NaF). We unequivocally identified small amounts of *trans*-N₂F₂ from the IR and ¹⁴N/¹⁹F NMR spectra looking at the products formed from the reaction of HN₃ and XeF₂ in aHF (eq 9).

$$FN_3 \xrightarrow{\text{aHF}} \{FN\} + N_2 \rightarrow \frac{1}{2} \text{ trans-} N_2F_2 + N_2 \qquad (9)$$

Thermodynamic Aspects. The formation of $FXeN_3$ and FXe(NCO) from XeF₂ and HN₃ or HNCO is thermodynamically feasible (largely due to the strong H–F bond) as indicated by an energy cycle describing the gas phase reactions according to eqs 10 and 11. The *upper* (*i.e.*, in reality, more negative)

$$XeF_2(g) + HN_3(g) \rightarrow FXeN_3(g) + HF(g)$$
 (10)

$$XeF_2(g) + HNCO(g) \rightarrow FXeNCO(g) + HF(g)$$
 (11)

values for ΔH° could be estimated using the literature data for the bond enthalpies and taking the Xe–N bond dissociation enthalpy equal to zero:²⁸ $\Delta H^{\circ}(10) < -12.1$ kcal mol⁻¹; $\Delta H^{\circ}(11)$ < -12.1 kcal mol⁻¹.

Figure 1. Structures of FXeN₃, FXeNCO, and FXe(OCN).

Computational Aspects. The structures of both observed intermediates, FXeN₃ and FXe(NCO), as well as the structure of the cyanate isomer, FXe(OCN), were computed ab initio at the HF and electron-correlated MP2 levels of theory and were fully optimized within C_s symmetry (Table 2, Figure 1). For xenon, a quasi-relativistic pseudopotential was used. All three molecules represent true minima at the energy hypersurface (no imaginary frequencies; Table 3). The experimentally unobserved cyanate isomer FXe(OCN) (N.B. Neither H₂O₂ nor HOCN-the most likely products of the decomposition of the hypothetical FXe(OCN), i.e. of HO-OCN-was detected) was found to be 19.8 kcal mol⁻¹ (HF level) and 18.3 kcal mol⁻¹ (MP2 level) higher in energy than the isocyanate form FXe-(NCO) (Table 2). This finding nicely compares to the fact that O=C-N-N-C=O is also much lower in energy than the O-O bound isomer $N \equiv C - O - O - C \equiv N$ (e.g., isocyanate radicals, $O=C=N^{\bullet}$, are much more stable than cyanate radicals N=C-**O**•).^{29,30}

(30) Thomson, C.; Wishart, B. Theor. Chim. Acta 1974, 35, 361.

^{(28) (}a) Bond enthalpy terms at 298.15 K (all values in kcal mol⁻¹): Xe-F (XeF₂), 31.3;^{11b} H-N (HN₃), 92.2;^{28b} H-F (HF), 135.6.^{11b} (b) Illenberger, E.; Comita, P. B.; Brauman, J. I.; Fenzlaff, H.-P.; Heni, M.; Heinrich, N.; Koch, W.; Frenking, G. *Ber. Bunsen-Ges. Phys. Chem.* **1985**, *89*, 1026.

^{(29) (}a) Klapötke, T. M.; Schulz, A. Inorg. Chem. 1996, 35, 4791. (b) Maier, G.; Naumann, M.; Reisenauer, H. P.; Eckwert, J. Angew. Chem. Int. Ed. Engl. 1996, 35, 1696. (c) Klapötke, T. M.; Schulz, A. Inorg. Chem. 1996, 35, 7897.

The MP2-computed F-Xe bond lengths for FXeN₃ and FXe-(NCO) of 2.05 and 2.02 Å are just slightly longer than the experimentally determined value of 1.97 Å for the F-Xe bond in the covalent molecule $FXeN(SO_2F)_2$, which also contains divalent xenon directly bound to one fluorine and one nitrogen atom (cf. XeF₂, d(Xe-F) = 1.977 Å).^{6,8,9c} Whereas the Xe–N bond length of 2.20 Å in FXeN(SO₂F)₂^{6,8} compares well to the calculated value of 2.21 Å in FXe(NCO), the Xe-N bond in the azide was computed to be 2.32 Å and is therefore expected to be substantially weaker than that in the iminodisulfuryl derivative. On the other hand, the Xe-N bond length in FXeN₃ is still substantially shorter than the calculated Xe-N bond length in the cationic adduct [FXe(NCH)]⁺ (2.42 Å).^{9c} The relatively weak Xe-N bond in FXeN₃ can be rationalized in the localized picture by an NBO analysis. A strong donoracceptor interaction (negative hyperconjugation) which weakens the Xe–N bond was found for FXeN₃: $\sigma(Xe-N1) \rightarrow \pi^*(N2-$ N3), 52 kcal mol⁻¹. (*N.B.* This interaction is much stronger in FXeN₃ than in FXe(NCO).)

Conclusions

The reaction behavior of XeF_2 toward azides and isocyanates has been studied experimentally in aqueous solution and in aHF. From the experimental and theoretical results discussed in this paper, the following conclusions can de drawn: (i) The formation of the observed hydrolysis products in the reaction of XeF₂ with HN₃ (or NaN₃) and HNCO (or NaOCN) in water can mechanistically be better explained by an intermediate formation of FXe(N₃) and FXe(NCO) than by a simple fluorination of the azide and isocyanate. No experimental evidence was found for the formation of the isomeric cyanate compound FXe(OCN). (ii) Xenon azide fluoride, FXe(N₃), and xenon isocyanate fluoride, FXe(NCO), both possess minimum structures (true minima; no imaginary frequencies) on their energy hypersurface at HF and electron-correlated MP2 levels of theory. (iii) The isomeric cyanate compound FXe(OCN) also represents true minima at HF and MP2 levels; however, this isomer is higher in energy than the isocyanate species by 19.8 kcal mol⁻¹ (HF level) and 18.3 kcal mol⁻¹ (MP2 level).

Acknowledgment. We thank Mr. Jim Gall for the multinuclear NMR measurements. Financial support from the University of Glasgow and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

IC9613671