$Cs_5Mo_8O_{24}(OH)_2AsO_4 \cdot 2H_2O$ and $Cs_7Mo_8O_{26}AsO_4$: Two Novel Molybdenum(VI) Arsenates Containing Heteropolyanions $[AsMo_8O_{30}H_2]^{5-}$ and $[AsMo_8O_{30}]^{7-}$

Kuei-Fang Hsu and Sue-Lein Wang*

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043

Received December 4, 1996^{\otimes}

Two novel molybdenum(VI) arsenates, $Cs_5Mo_8O_{24}(OH)_2AsO_4 \cdot 2H_2O$ and $Cs_7Mo_8O_{26}AsO_4$, have been prepared and their structures determined. $Cs_5Mo_8O_{24}(OH)_2AsO_4 \cdot 2H_2O$ was synthesized by a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction, IR spectroscopy, and thermogravimetric analysis. Diffraction measurements were performed on a CCD area detector system. It crystallizes in the orthorhombic space group *Cmcm* with a = 8.8048(3) Å, b = 23.4314(9) Å, c = 16.0499(6) Å, and Z = 4. The structure consists of $[AsMo_8O_{30}H_2]^{5-}$ cluster anions which are made up of two tetranuclear $\{Mo_4O_{15}H\}$ cores linked by an arsenic(V) atom. Upon heating, half of the structural unit first transforms to $Cs_7Mo_8O_{26}AsO_4$, and the other half decomposes to Cs_3AsO_4 and MoO_3 at higher temperature. $Cs_7Mo_8O_{26}AsO_4$ crystallizes in the orthorhombic space group *Ibca* with a = 12.1247(4) Å, b = 22.9153(7) Å, c = 24.3777(7) Å, and Z = 8. It possesses $[AsMo_8O_{30}]^{7-}$ cluster anions resembling to those found in the original structure. $Cs_7Mo_8O_{26}AsO_4$ may be viewed as a dehydrated form of $Cs_5Mo_8O_{24}(OH)_2AsO_4 \cdot 2H_2O$ from which the lability of $[AsMo_8O_{30}H_2]^{5-}$ with respect to dissociation of AsO_4^{3-} is first shown in the solid state. Structural differences between $[AsMo_8O_{30}H_2]^{5-}$ and $[AsMo_8O_{30}]^{7-}$ are closely correlated with the cesium cations and water molecules present in the crystals. The title compounds are also the first structurally characterized examples in the Cs-Mo-As-O system.

Introduction

A large number of new compounds have been synthesized and structurally characterized in the A-Mo-P-O system, where A is an organic or inorganic cation.¹ They exhibit varieties of novel frameworks and are of much interest as catalysts or as ionic exchangers.² In contrast to the rich structural chemistry of molybdenum phosphates, the Mo/As/O system remains relatively undeveloped. In an effort to obtain new materials with novel structures and interesting properties, we recently employed hydrothermal methods for the synthesis of molybdenum arsenates. Molybdenum is well-known for its ability to adopt different oxidation states. Many reported phosphates have Mo in oxidation states below VI, where polyanion clusters with Mo-Mo bonds often occur.³ On the other hand, the chemistry of MoVI/XV/O in aqueous solution has been dominated by the so-called Keggin ions⁴ $[Mo_{12}O_{40}X]^{3-}$, and Dawson polyanions⁵ $[Mo_{18}O_{62}X_2]^{6-}$, where X = P, As.

These cluster anions are formed of edge- and corner-shared MoO₆ octahedra. By employing hydrothermal reactions under mild conditions, we had obtained the Mo(VI) compound, (C5H5-NH)₂(Mo₂O₅)(HAsO₄)₂•H₂O,⁶ which contained the cluster anions [(Mo₄O₁₀)(HAsO₄)₄]⁴⁻ made up of two pairs of binuclear $[Mo_2O_{10}]^{2-}$ cores without Mo-Mo bonds. In an attempt to prepare structures containing larger metal-oxygen clusters, a new molybdenum(VI) arsenate, Cs5Mo8O24(OH)2AsO4·2H2O, has been obtained under more rigorous hydrothermal conditions. The structure consists of [AsMo₈O₃₀H₂]⁵⁻ cluster anions which are formed of two $\{MO_4O_{15}H\}$ cores linked by an arsenic(V) atom. The tetranuclear core was first characterized in the wellknown anion [R₂AsMo₄O₁₄(OH)]^{2-,7} Interestingly, the dialkyl tetramolybdoarsinate anion consists of one {Mo₄O₁₅H} core whereas the [AsMo₈O₃₀H₂]⁵⁻ cluster anion has two. Such a dimer structure is unprecedented in the heteropolyoxometalates. Furthermore, $\{Mo_4O_{15}H\}$ cores lose protons in the solid state⁸ to form the higher negatively charged [AsMo₈O₃₀]⁷⁻ anion as observed in the dehydrate Cs7Mo8O30AsO4. Structural differences between $[AsMo_8O_{30}H_2]^{5-}$ and $[AsMo_8O_{30}]^{7-}$ are closely correlated with the number of cesium cations and water molecules in their crystals. Being the first structurally characterized examples in the Cs-Mo-As-O system, Cs₅Mo₈O₂₄-(OH)₂AsO₄·2H₂O and Cs₇Mo₈O₂₆AsO₄ belong to a new class of anion clusters distinctly different from those of Keggin and Dawson types. In this paper, we present the hydrothermal synthesis, structure, and IR data of Cs₅Mo₈O₂₄(OH)₂ AsO₄·2H₂O. The thermal decomposition scheme of Cs₅Mo₈O₂₄(OH)₂ AsO₄·2H₂O to Cs₇Mo₈O₂₆AsO₄ and their structural relationship are discussed as well.

[®] Abstract published in Advance ACS Abstracts, June 1, 1997.

Haushalter, R. C.; Mundi, L. A. Chem. Mater. 1992, 4, 31. (b) Lii, K. H.; Haushalter, R. C. Angew. Chem., Int. Ed. Engl. 1987, 69, 320. (c) Haushalter, R. C.; Strohmaier, K. G.; Lai, F. W. Science 1989, 246, 1289. (d) Lii, K. H.; Chen, J. J.; Wang, S. L. J. Solid State Chem. 1989, 78, 178. (e) Mundi, L. A; Strohmaier, K. G.; Haushalter, R. C. Inorg. Chem. 1991, 30, 153. (f) Costentin, G.; Leclaire A.; Borel, M. M.; Grandin, A.; Raveau, B. Rev. Inorg. Chem. 1993, 13, 77. (g) Guesdon, A.; Borel, M. M; Leclaire, A.; Grandin, A.; Raveau, B. J. Solid State Chem. 1994, 111, 315. (h) Harrison, W. T. A.; Laurie, Dussack, L. L.; Jacobson, A. J. Inorg. Chem. 1995, 34, 4774. (i) Lightfoot, P.; Masson, D. Mater. Res. Bull. 1995, 30, 1005. (j) Ledain, S.; Leclaire, A.; Borel, M. M.; Provost, J.; Raveau, B. J. Solid State Chem. 1996, 124, 24.

⁽²⁾ Eur. J. Solid State Inorg. Chem. 1991, 28, Special Issue.

^{(3) (}a) Cao, G.; Haushalter, R. C.; Strohmaier, K. G. *Inorg. Chem.* 1993, 32, 127. (b) Mundi, L.; Strohmaier, K. G.; Goshorn, D. P.; Haushalter, R. C. J. Am. Chem. Soc. 1990, 112, 8182. (c) Haushalter, R. C.; Lai, F. W. Angew. Chem., Int. Ed. Engl. 1989, 28, 743. (d) Mundi L. A.; Haushalter, R. C. J. Am. Chem. Soc. 1991, 113, 6340.

⁽⁴⁾ Muller, U. In *Inorganic Structural Chemistry*; John Wiley & Sons Ltd: Chichester, 1993.

⁽⁵⁾ Ichida, H.; Sasaki, Y. Acta Crystallogr. 1983, C39, 529.

⁽⁶⁾ Wang, S. L.; Hsu, K. F.; Nieh, Y. P. J. Chem. Soc., Dalton Trans. 1994, 1681.

⁽⁷⁾ Barkigia, K. M.; Bajkovic-Blazer, L. M.; Pope, M. T.; Prince, E.; Quicksall, C. O. *Inorg. Chem.* **1980**, *19*, 2531.

⁽⁸⁾ Various magnitudes of protonation in aqueous solution could occur for polyanions including [(CH₃)₂AsMo₄O₁₅H]²⁻. See: Takahama, H. A.; Yagasaki, A.; Sasaki, Y. *Chem. Lett.* **1982**, 1953.

Experimental Section

Synthesis. Hydrothermal reactions were performed in gold ampules contained in a Leco Tem-Pres autoclave where pressure was provided by water. Chemicals of reagent grade or better were used as received. CsH₂AsO₄ was prepared from a solution of As₂O₃ dissolved in H₂O₂ with cesium hydroxide. Colorless chunk crystals of Cs5Mo8O24 (OH)2-AsO₄·2H₂O were obtained by reacting CsH₂AsO₄ (0.2728 g, 1.0 mmol), MoO₂ (0.0512 g, 0.4 mmol), 3 M H₃AsO₄ (0.334 mL, 1.0 mmol), and H₂O (0.084 mL) in sealed gold ampules (0.234 cm inside diameter) with 65% filling and heated at 550 °C and an estimated pressure of 33 000 psi for 8 h. The autoclave was first cooled at 5 °C/h to 250 °C and then cooled to room temperature by turning off the power of the furnace. The product was filtered off, washed with water, rinsed with ethanol, and dried in a desiccator at ambient temperature. The reaction product obtained was a pure phase of Cs5Mo8O24(OH)2AsO4·2H2O. The X-ray powder diffraction pattern of the product compared well with that calculated from the single-crystal data. Energy-dispersive X-ray fluorescence analysis on several crystals showed that the Cs:Mo:As mole ratio was close to 5:8:1, which is in accord with the structural analysis results (see below).

Thermal Analysis. Thermogravimetric (TG) and differential thermal (DT) analysis (a DuPont thermal analyzer) were performed on a powder sample of Cs₅Mo₈O₂₄(OH)₂AsO₄•2H₂O in flowing N₂. The weight loss occurs in two steps between ~ 110 and ~ 450 °C. Two endothermic peaks occurred at ca. 385 and 520 °C in the DTA curve. The latter one has no counterpart in the TGA curve. In order to characterize the decomposition products, two experiments were performed in which crystals of Cs5M08O24(OH)2AsO4·2H2O were separately heated in flowing N2 at 450 and 550 °C for 12 h followed by furnace cooling to room temperature. Both reactions yielded polycrystalline products. One pale-green crystal was obtained from the product of the thermal treatment at 550 °C. Single-crystal structural analysis revealed that the crystal was Cs7Mo8O26AsO4 (vide infra). Powder X-ray diffraction measurements identified the bulk product as a mixture of three phases, i.e., MoO39 and Cs3AsO410 together with Cs7M08O26AsO4. FT-IR absorption spectra for the samples of Cs5-Mo₈O₂₄ (OH)]₂AsO₄·2H₂O and its thermal treatments in KBr pellets were recorded in the range 500-4000 cm⁻¹ with a resolution of 4 cm⁻¹ (BOMEM Michelson spectrophotometer).

Single-Crystal X-ray Structure Analysis. Two crystals of dimensions $0.20 \times 0.20 \times 0.33$ mm for Cs₅Mo₈O₂₄ (OH)]₂AsO₄·2H₂O and $0.13 \times 0.18 \times 0.23$ for Cs₇Mo₈O₂₆AsO₄ were selected for indexing and intensity data collection on a Siemens Smart-CCD diffractometer system equipped with a normal focus, 3 kW sealed tube X-ray source $(\lambda = 0.71073 \text{ Å})$. Intensity data were collected in 1271 frames with increasing ω (width of 0.3°/frame). The intensity data for the two crystals were corrected for Lp and absorption effects. Corrections for absorption effects were based on symmetry-equivalent reflections using the program SAINT.¹¹ On the basis of the systematic absences and statistics of intensity distribution, the space group was determined to be Cmcm for Cs5M08O24(OH)2AsO4·2H2O and Ibca for Cs7M08O26-AsO₄. Direct methods were used to locate the Mo, the As, and a few oxygen atoms with the remaining non-hydrogen atoms being found from successive difference maps. Bond-valence calculations¹² were used to identify hydroxo and water oxygen atoms. All of the hydrogen atoms could be located from difference maps calculated at the final stage of structure refinements. Both structures were refined by fullmatrix least-squares refinement based on F values. All of the nonhydrogen atoms were refined with anisotropic temperature factors. The atomic coordinates and isotropic thermal parameters for the hydrogen atoms were fixed. Corrections for secondary extinction and anomalous dispersion were applied. Neutral-atom scattering factors for all atoms were taken from standard sources. Calculations were performed on a DEC VAX 4000/90 workstation using the SHELXTL-Plus programs.13 The summary of crystallographic data is listed in Table 1, and atomic

- (11) SAINT, Version 4; Siemens Analytical X-ray Instruments: Madison, WI, 1995.
- (12) Brown, I. D.; Altrmatt, D. Acta Crystallogr. 1985, B41, 244.
- (13) Sheldrick, G. M. *SHELXTL-Plus Crystallographic System*; release 4.21; Siemens Analytical X-ray Instruments: Madison, WI, 1991.

Table 1. Crystallographic Data for $Cs_5Mo_8O_{24}(OH)_2AsO_4 \cdot 2H_2O$ (1) and $Cs_7Mo_8O_{26}AsO_4$ (2)

	1	2
empirical formula	H ₆ AsCs ₅ Mo ₈ O ₃₂	AsCs7Mo8O30
<i>a</i> , Å	8.8048(3)	12.1247(4)
b, Å	23.4314(9)	22.9153(7)
<i>c</i> , Å	16.0499(6)	24.3777(7)
$V, Å^3$	3311.2(9)	6773.1(14)
Ζ	4	8
fw	2025.0	2252.9
space group	Cmcm	Ibca
T, °C ∎	23	23
λ, Å	0.710 73	0.710 73
$\rho_{\rm calcd}$, g cm ⁻³	4.058	4.418
μ , cm -1	94.42	113.45
$R(F_{o})^{a}$	0.0237	0.0554
$R_{\rm w}(F_{ m o})^b$	0.0294	0.080

 ${}^{a} \mathbf{R} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b} R_{w} = [\sum (|F_{o}| - |F_{c}|)^{2} / \sum w |F_{o}|^{2}]^{1/2}, w$ = $[\sigma^{2}(F_{o}) + gF_{o}^{2}]^{-1}, g = 0.0005$ for **1** and 0.0024 for **2**.

coordinates and thermal parameters are listed in Table 2 and selected bond lengths and bond valence sums in Table 3.

Results and Discussion

The structure of Cs₅Mo₈O₂₄(OH)₂ AsO₄·2H₂O (1) consists of [AsMo₈O₃₀H₂]⁵⁻ cluster anions, cesium cations, and water molecules, while Cs7M08O26AsO4 (2) consists of cesium cations and the more negatively charged [AsMo₈O₃₀]⁷⁻ cluster anions with atomic connectivities nearly identical with those of [AsMo₈O₃₀H₂]⁵⁻. Perspective views of the two structures along the *a* axis are shown in Figure 1, and ORTEP drawings of cluster anions are shown in Figure 2. In structure 1, the $[AsMo_8O_{30}H_2]^{5-1}$ anion is formed of two crystallographically independent ${Mo_4O_{15}H}$ cores linked by an arsenic(V) atom. The anion possesses m2m symmetry in that all four molybdenum atoms in the $\{Mo_4O_{15}H\}$ core are coplanar. On the other hand, the [AsMo₈O₃₀]⁷⁻ anion in structure 2 contains symmetry-related ${Mo_4O_{15}}$ cores linked by the atom As residing on a 2-fold axis. The $\{Mo_4O_{15}\}$ core possesses no symmetry, but the four Mo atoms are nearly coplanar. As depicted in Figure 2, both the $\{Mo_4O_{15}H\}$ and $\{Mo_4O_{15}\}$ cores are composed of two pairs of confacial bioctahedral {Mo₂O₉} units with the μ_4 -O atoms out of the Mo₄ least-squares planes by ~0.56-0.75 Å. Facesharing bioctahedra are uncommon structural motifs in molybdenum chemistry. Other than the salts of $[R_2AsMo_4O_{15}H]^{2-7,14}$ and $[(C_6H_5As)_2Mo_6O_{25}H_2]^{4-,15}$ the two molybdenum(III) silicophosphates Mo₃P₅SiO₁₉¹⁶ and Mo₄P₆Si₂O₂₅¹⁷ are the only known examples in which isolated face-sharing binuclear {Mo₂O₉} units exist.

In both structures, connections between cluster anions are primarily provided by the O–Cs–O bonds. In structure 1, three crystallographically distinct Cs sites are all in 10-fold coordination.¹⁸ The $[AsMo_8O_{30}H_2]^{5-}$ cluster anions are bridged together by Cs(1) into one-dimensional strings running parallel to [100] (Figure 3). The anion–cation interactions are further extended into a three-dimensional architecture by cations Cs(2) and Cs-(3) with each linking four cluster anions and one water molecule. In turn, the water molecules also connect cluster anions by forming hydrogen bonds with the hydroxo groups of [AsMo₈-

- (15) Matsumoto, K. Bull. Chem. Soc. Jpn. 1978, 51, 492.
- (16) Wang, S. L.; Wang, C. C.; Lii, K. H. J. Solid State Chem. 1988, 74, 403.
- (17) Leclaire, A.; Lamire, M.; Raveau, B. Acta Crystallogr. 1988, C44, 1181.
- (18) The coordination number of the Cs atom was determined on the basis of the maximum gap in the Cs–O distance ranked in increasing order. The maximum cation–oxygen distance, L_{max}, according to Donnay and Allmann in Am. Mineral., **1970**, 55, 1003, was also considered.

⁽⁹⁾ Parise, J. B.; Mccarron, E. M.; Sleight, A. W. Mater. Res. Bull. 1987, 22, 803.

⁽¹⁰⁾ Hay, W. J.; Nelmes, R. J. J. Phys. 1981, C14, 1043.

⁽¹⁴⁾ Rosenheim, A.; Bilecki, R. Chem. Ber. 1913, 4, 543.

 $Cs_5Mo_8O_{24}(OH)_2AsO_4{\boldsymbol{\cdot}} 2H_2O$ and $Cs_7Mo_8O_{26}AsO_4$

Table 2. Atomic Coordinates and Thermal Parameters $({\rm \AA}^2)$ for 1 and 2

atom	x/a	y/b	z/c	$U_{ m eq}{}^a$	atom	x/a	y/b	z/c	$U_{ m eq}{}^a$
		1					2		
Cs(1)	0.50000	0.12047(3)	0.75000	0.0330(2)	Cs(1)	0.00000	0.25000	0.12482(8)	0.0378(5)
Cs(2)	0.00000	0.38421(2)	0.53924(3)	0.0287(2)	Cs(2)	0.25000	0.00441(6)	0.00000	0.0447(6)
Cs(3)	0.00000	0.14096(2)	0.47368(3)	0.0298(2)	Cs(3)	0.25000	0.24091(7)	0.00000	0.0455(6)
Mo(1)	0.19016(5)	0.01461(2)	0.65054(3)	0.0192(2)	Cs(4)	0.2409(1)	0.00000	0.25000	0.0452(7)
Mo(2)	0.18102(5)	0.24035(2)	0.64588(3)	0.0204(2)	Cs(5)	0.25000	0.25000	0.25000	0.0484(7)
As(1)	0.00000	0.12728(4)	0.75000	0.0145(3)	Cs(6)	-0.0037(1)	0.0394(1)	0.12437(7)	0.0785(7)
O(1)	0.1560(5)	0.0849(2)	0.7500	0.020(1)	Mo(1)	0.5064(1)	0.12955(7)	0.21785(6)	0.0344(5)
O(2)	0.0000	0.1706(2)	0.6655(3)	0.018(1)	Mo(2)	0.6865(1)	0.12946(6)	0.12686(5)	0.0344(5)
O(3)	0.0000	0.0428(2)	0.6104(3)	0.025(1)	Mo(3)	0.50083(8)	0.12939(7)	0.03385(7)	0.0341(5)
O(4)	0.3032(5)	-0.0052(2)	0.7500	0.025(1)	Mo(4)	0.3190(1)	0.12867(6)	0.12340(5)	0.0341(5)
O(5)	0.3155(4)	0.0570(2)	0.5977(2)	0.033(1)	As(1)	0.50000	0.25000	0.1253(1)	0.0260(6)
O(6)	0.1996(4)	-0.0502(2)	0.6024(2)	0.035(1)	O(1)	0.5832(8)	0.2070(4)	0.1657(4)	0.038(3)
O(7)	0.0000	-0.0162(3)	0.7500	0.020(2)	O(2)	0.4217(8)	0.2068(4)	0.0863(4)	0.035(3)
O(8)	0.0000	0.2724(3)	0.7500	0.022(2)	O(3)	0.3720(8)	0.1582(5)	0.1918(4)	0.047(4)
O(9)	0.0000	0.2581(2)	0.5835(3)	0.024(1)	O(4)	0.6583(9)	0.1131(5)	0.2030(4)	0.047(4)
O(10)	0.2529(6)	0.2114(2)	0.7500	0.024(1)	O(5)	0.4712(10)	0.0638(5)	0.2431(5)	0.058(4)
O(11)	0.2852(4)	0.2006(2)	0.5779(2)	0.036(1)	O(6)	0.5203(9)	0.1702(7)	0.2755(6)	0.059(5)
O(12)	0.2624(5)	0.3067(2)	0.6441(2)	0.038(1)	O(7)	0.5037(7)	0.1046(5)	0.1220(5)	0.040(4)
O(13)	0.0000	0.1322(3)	0.2500	0.038(3)	O(8)	0.8019(9)	0.1709(6)	0.1338(5)	0.054(5)
O(14)	0.0000	0.3950(4)	0.7500	0.040(3)	O(9)	0.736(1)	0.0628(5)	0.1078(4)	0.056(4)
H(7)	0.0000	-0.0653	0.7500	0.050	O(10)	0.6380(8)	0.1599(5)	0.0594(4)	0.047(4)
H(8)	0.0000	0.3123	0.7500	0.050	O(11)	0.5379(10)	0.0628(5)	0.0096(5)	0.062(5)
H(13)	0.1106	0.1284	0.2500	0.050	O(12)	0.4884(8)	0.1735(7)	-0.0214(6)	0.053(5)
H(14)	0.0765	0.4217	0.7500	0.050	O(13)	0.3500(8)	0.1125(5)	0.0477(4)	0.044(4)
					O(14)	0.2056(9)	0.1699(6)	0.1172(4)	0.048(4)
					O(15)	0.2726(11)	0.0618(5)	0.1415(5)	0.062(5)

 $^{\it a}$ $U_{\rm eq}$ is defined as one-third of the trace of the orthogonalized ${\bf U}_{\it ij}$ tensor.

Table 3.	Selected Bond Length	hs (Å) and Bond	Valence Sums $(\sum s)$ for	or 1 and 2

Compound 1								
Cs(1) = O(10)	3.046(4)	(x2)	Cs(1) - O(1)	3.141(4)	(x2)	Cs(1) - O(5)	3.291(4)	(x4)
$C_{s(1)} = O(4)$	3.417(5)	(x2)	$\sum s[Cs(1) - O] = 1.16$. ,			
$C_{s(2)} = O(9)$	3.040(5)	· /	$\overline{Cs(2)} - O(5)$	3.061(4)	(x2)	Cs(2) = O(6)	3.222(4)	(x2)
$C_{s(2)} = O(11)$	3.326(4)	(x2)	$C_{s(2)} - O(12)$	3.386(4)	(x2)	$C_{s(2)} = O(14)$	3.392(1)	. ,
$\Sigma_{s}[C_{s}(2) - O] = 1.15$								
$C_{s(3)} = O(6)$	3.017(4)	(x2)	$C_{s(3)} = O(12)$	3.075(4)	(x2)	$C_{s(3)} = O(2)$	3,156(4)	
$C_{s}(3) = O(3)$	3 178(5)	()	$C_{s(3)} = O(9)$	3 261(5)	()	$C_{s(3)} = O(11)$	3 325(4)	(x^2)
$C_{s}(3) = O(13)$	3.596(1)		$\Sigma_{s}[C_{s}(3) - 0] = 1.31$	5.201(5)		05(0) 0(11)	5.525(1)	(112)
$M_0(1) = O(6)$	1.706(4)		$M_0(1) = O(3)$	1.912(2)		$M_0(1) = O(1)$	2314(3)	
$M_0(1) = O(5)$	1.700(4) 1.710(4)		$M_0(1) = O(4)$	1.912(2) 1.938(3)		$M_0(1) = O(7)$	2.314(3) 2 423(2)	
$\Sigma_{\rm e}[M_{\rm O}(1) - O] = 5.01$	1.710(4)		WI0(1) 0(4)	1.750(5)		MO(1) O(7)	2.423(2)	
$\Delta s[MO(1) \ O] = 5.91$ Mo(2)=O(11)	1 703(4)		$M_{0}(2) = O(10)$	1.011(2)		$M_{0}(2) = O(2)$	2,304(3)	
$M_0(2) = O(12)$	1.703(4) 1.712(4)		$M_0(2) = O(10)$	1.911(2) 1.028(4)		$M_0(2) = O(2)$ $M_0(2) = O(8)$	2.30+(3) 2.428(4)	
$\Sigma_{\rm s}[M_{\rm o}(2) - O(12)] = 5.05$	1./12(4)		MO(2) = O(3)	1.928(4)		MO(2) = O(3)	2.420(4)	
$\sum [WO(2) - O] = 3.95$	1 605(5)	(\mathbf{r}^2)	$A_{2}(1) - O(2)$	1 604(4)	($\sum a[Aa(1) - O] = 4.07$		
As(1) = O(1)	1.093(3) 1.150(6)	(X2)	As(1) = O(2) O(12) = U(12)	1.094(4)	(\mathbf{x}_2)	$\sum S[AS(1)=0] = 4.97$	1.560	
O(7) = H(7)	1.130(6)		O(13) - H(13)	0.978(1)	(\mathbf{x}_2)	$H(7) \cdots O(13)$	1.309	
$O(\delta) = H(\delta)$	0.935(6)		O(14) - H(14)	0.921(6)	(X2)	$H(8) \cdots O(14)$	1.935	
$O(7) \cdots O(13)$	2.719		$O(8) \cdots O(14)$	2.871				
			Compo	und 2				
Cs(1) - O(8)	3.017(13)	(x2)	Cs(1) - O(6)	3.052(15)	(x2)	Cs(1) - O(12)	3.074(14)	(x2)
Cs(1) = O(14)	3.101(12)		$\sum s[Cs(1)-O] = 1.41$					
$C_{s(2)} - O(13)$	2.992(11)		$C_{s}(2) = O(11)$	3.007(12)	(x2)	Cs(2) - O(9)	3.052(11)	(x2)
$\sum s[Cs(2) - O] = 1.31$								
$C_{s}(3) - O(10)$	3.017(11)	(x2)	Cs(3) - O(2)	3.062(10)	(x2)	Cs(3) - O(12)	3.318(11)	(x2)
$C_{s(3)} - O(14)$	3.332(12)	. ,	$C_{s(3)} - O(13)$	3.388(11)	(x2)	$\sum s[Cs(3) - O] = 1.32$. ,
$C_{s}(4) - O(4)$	3.006(11)	(x2)	$C_{s}(4) = O(15)$	3.025(13)	(x2)	Cs(4) = O(5)	3.157(12)	(x2)
$\sum s[Cs(4) - O] = 1.20$	~ /	. ,		~ /	. ,			. ,
$\overline{Cs}(5) - O(3)$	2.937(11)	(x2)	$C_{s}(5) = O(1)$	3.047(10)	(x2)	$C_{s}(5) - O(6)$	3.390(13)	(x2)
$C_{s}(5) = O(8)$	3.421(12)	(x2)	Cs(5) = O(4)	3.519(11)	(x2)	$\sum s[C_s(5) - O] = 1.33$. ,
$C_{s}(6) - O(9)$	3.225(13)		$C_{s}(6) - O(5)$	3.293(13)	()	$C_{s(6)} = O(7)$	3.302(11)	
$C_{s}(6) = O(11)$	3.335(14)		$C_{s}(6) = O(15)$	3.415(14)		$\Sigma_{s}[C_{s}(6) - O] = 0.65$		
$M_0(1) = O(5)$	1.682(12)		$M_0(1) = O(3)$	1.868(10)		$M_0(1) = O(1)$	2.374(9)	
$M_0(1) = O(6)$	1.693(15)		$M_0(1) - O(4)$	1.915(11)		$M_0(1) - O(7)$	2.405(12)	
$R_{1}(1) - 01 = 625$								
$M_0(2) = O(8)$	1 699(13)		$M_0(2) = O(10)$	1.880(10)		$M_0(2) = O(7)$	2 292(9)	
$M_0(2) = O(9)$	1.099(13) 1.705(13)		$M_0(2) = O(4)$	1.000(10) 1.923(10)		$M_0(2) = O(1)$	2.252(5) 2.372(10)	
M(2) = 0(1) = 0(1) $M(2) = 0(1)$								
$M_0(3) = O(12)$	1 690(14)		$M_0(3) = O(13)$	1 901(10)		$M_{0}(3) = O(7)$	2.224(12)	
$M_0(3) = O(11)$	1.000(14) 1.696(13)		$M_0(3) = O(10)$	1.909(10)		$M_0(3) = O(2)$	2.224(12) 2 388(10)	
$\Sigma_{\rm s}[M_0(3) - 0] = 6.27$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\Delta_{S[MO(3)]} = 0.27$ Mo(4)=O(2)	2 360(10)		$M_0(4) = O(3)$	1 010(11)		$M_{O}(4) = O(7)$	2308(0)	
$M_0(4) = O(2)$ $M_0(4) = O(12)$	2.300(10) 1 020(10)		$M_0(4) = O(3)$ $M_0(4) = O(14)$	1.510(11) 1.674(12)		$M_{0}(4) = O(7)$ $M_{0}(4) = O(2)$	2.300(3) 2.3608(10)	
m(4) = 0(13) $1.520(10)$ $m(4) = 0(14)$ $1.0/4(12)$ $m(4) = 0(2)$ $2.3008(10)$								
$\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{i$	1 710(10)	(2)	$\Lambda_{\alpha}(1) = O(2)$	1 660(10)	(2)	$\sum -[A_{0}(1), O] = 4.99$		
As(1) = O(1)	1./19(10)	(X2)	As(1) = O(2)	1.009(10)	(X2)	$\Delta s[As(1) - 0] = 4.88$		

Figure 1. Perspective views of $Cs_5Mo_8O_{24}(OH)_2AsO_4 \cdot 2H_2O$ (1) and $Cs_7Mo_8O_{26}AsO_4$ (2) along the *a* axis. In these representations the corners of polyhedra are O atoms and the Mo and As atoms are at the center of each octahedron and tetrahedron, respectively. The dark stippled polyhedra represent MOO₆; the dotted tetrahedra AsO₄; the letter "W" H₂O; the large open, dotted, and stippled circles Cs; the smallest open circles H.

 $O_{30}H_{21}^{5-}$. The hydroxo oxygen O(7) is a stronger hydrogenbond donor than O(8) as indicated by less saturation in its bond valence [$\Sigma s = 1.47$ for O(7) vs 1.84 v.u. for O(8)] and the shorter O···H (1.569 vs 1.935 Å) and O···O distances (2.719 vs 2.871 Å). The H-bonding interactions are also evidenced by IR data. Three broad bands centered at 3072, 3288, and 3440 cm⁻¹ are due to the O–H stretchings for two water molecules and one hydroxo group (O(7)–H) involved in the stronger H-bonding. The relatively sharper band at 3578 cm⁻¹ is due to O(8)–H stretchings involved in the weaker H-bonding. In cases where the water molecules are missing, the structure may require more cations in order to "hold" cluster anions in place. This explains why the cesium content increases from the structures of **1** to **2** upon dehydration.

In contrast to 1, structure 2 consists of six crystallographically independent Cs sites with coordination numbers ranging from 5 to 10. According to the bond-length bond-strength calculations,¹² the valence sums for all Cs cations except Cs(6) are greater than 1, indicating that five Cs sites are tightly bound to anions. Cs(6) is only loosely bound to anions with an average

Table 4. Comparison of the $[AsMo_8O_{30}H_2]^{5-}$ and $[AsMo_8O_{30}]^{7-}$ Cluster Anions"

	$[AsMo_8O_{30}H_2]^{5-}$	[AsMo ₈ O ₃₀] ⁷⁻
anion symmetry core symmetry Mo····Mo (bw face-sharing) Mo····Mo (bw edge-sharing) Mo····Mo (bw two cores) μ_4 -O····Mo ₄ plane	m2m m2m in {Mo ₄ O ₁₅ H} 3.193, 3.188 Å 3.510, 3.342 Å 5.350 Å 0.722, 0.751 Å	2 1 in {M04O15} 3.113 Å 3.235 Å 5.532 Å 0.566 Å

 a bw = between.

distance greater than 3.3 Å. From a structural point of view, the cation $C_{s}(6)$ in 2 occupies the same site as water molecules in 1 (Figures 1 and 2). By excluding two cations associated with the Cs(6) sites, the content of 2 becomes " $Cs_5Mo_8O_{26}$ -AsO₄", differing from 1 by only two hydroxo H atoms. It is also noticed that 1 readily dissolves in basic solutions. Therefore, taking into account the possibility of breaking two O-H bonds by heating, transformation from 1 to 2 can take place at a higher temperature. The unit cell of 2 keeps the same b axial length as that in 1 whereas the other two axes are altered according to the relations $a_2 = a_1 - c_1/2$ and $c_2 = 2a_1 + c_1$. It is worth mentioning that the five-coordinated Cs(6) in a squarepyramidal geometry is rarely observed. Because of the fifth coordination of the μ_4 -O(7) atom, the presence of the larger Cs(6) instead of a hydroxo H apparently compresses the μ_4 -O atom more toward the Mo₄ plane, i.e., ~ 0.74 Å in 1 and 0.56 Å in 2. In addition, the Mo····Mo distances (Table 4) vary significantly from the anions $[AsMo_8O_{30}H_2]^{5-}$ to $[AsMo_8O_{30}]^{7-}$, indicating different effects of cesium cations relative to water molecules and hydrogen bonds. Variations in the Mo...Mo distances due to the influence of hydroxo hydrogens¹⁹ and different cation structures have been observed in other polyoxoanions.20

A three-stage weight-loss scheme was observed on the TGA curve of **1** (Figure 4). The first stage, which occurs from ~ 110 to \sim 320 °C, is attributed to the loss of the two lattice water molecules. The second stage, which is not resolved well from the first step, occurs between temperatures of \sim 320 and \sim 450 °C. During this stage one water molecule is released from the $[AsMo_8O_{30}H_2]^{5-}$ cluster anion as the observed total weight loss (3.44%) of the first two stages can be compared well with the calculated value (3.46%) based on the above interpretation. Powder X-ray diffraction measusrements reveal that compound 2 exists in the product of the thermal treatment of compound 1 at 450 °C. It is proposed that the $[AsMo_8O_{30}H_2]^{5-}$ cluster anions may lose H^+ cations to form $[AsMo_8O_{30}]^{7-}$, from which the structure of 2 emerges. The $[AsMo_8O_{30}H_2]^{5-}$ anions may as well lose OH^- groups to give {AsMo₈O₂₈}, an intermediate species that decomposes to Cs₃AsO₄ and MoO₃ by a prolonged heating to 550 °C. The small endothermic peak at ca. \sim 385 °C on the DTA curve may account for the breaking of Mo-OH and O-H bonds. Considering bonding interactions (see Table 3), the [AsMo₈O₃₀H₂]⁵⁻ anion may be alternatively described as an AsO43- group linking two Mo4O12 rings with two OH⁻ groups on the opposite sides of the rings by weak (>2.3 Å) Mo-O bonds, yielding the structural formula $(AsO_4^{3-})[(Mo_4O_{12})(OH^{-})]_2$, which in turn implies potential lability with respect to dissociation of AsO₄^{3-.21} Furthermore, the Mo₄O₁₂ ring is composed of four distorted MoO₄ tetrahedra sharing corners.²² Along with the dissociation of AsO_4^{3-} , the

- (20) Khan, M. I.; Chen, Q.; Zubieta, J. Inorg. Chem. 1993, 32, 5408.
- (21) Day, V. W.; Fredrich, M. F.; Klemperer, W. G.; Shum, W. J. Am. Chem. Soc. 1977, 99, 952.
- (22) Kihlborg, L. Ark. Kemi 1963, 21, 357.

⁽¹⁹⁾ Ozeki, T.; Yamase, T.; Naruke, H.; Sasaki, Y. Bull. Chem. Soc. Jpn. **1994**, 67, 3249.

Cs5Mo8O24(OH)2AsO4·2H2O and Cs7Mo8O26AsO4

Figure 2. ORTEP drawings with atomic labeling of the cluster anions and their component Mo_4 cores: (a) { $Mo_4O_{15}H$ } (top) and { Mo_4O_{15} } (bottom); (b) [$AsMo_8O_{30}H_2$]⁵⁻ with hydrogen-bonded water oxygens (top) and [$AsMo_8O_{30}$]⁷⁻ with the cation Cs(6) in a square-pyramidal geometry (bottom). Thermal ellipsoids are shown at the 50% probability level.

Figure 3. Cluster anions are connected by Cs cations. Left: The $[AsMo_8O_{30}H_2]^{5-}$ anions are bridged together into 1-D strings running along the *a* axis. Right: The $[AsMo_8O_{30}]^{7-}$ anions are connected by cations Cs(1), Cs(3), and Cs(5) to form a cation–anion 2-D net perpendicular to the *b* axis.

cyclic Mo_4O_{12} ring is dissected into MoO_3 by breaking the stronger Mo–O bonds. This bond-breaking process accounts for the large endothermic peak at ca. 520 °C on the DTA curve which has no counterpart on the TGA curves. Finally, the sharp fall in weight loss on the TGA curve suggests vaporization of MoO_3 beyond 780 °C. Taking into account all our experiments, the following decomposition path for **1** is proposed:

$$2Cs_5Mo_8O_{24}(OH)_2 AsO_4 \cdot 2H_2O \xrightarrow{\sim 230 \circ C} 2^{\circ}Cs_5Mo_8O_{24}(OH)_2 AsO_4^{\circ} + 4H_2O(1)$$

$$\xrightarrow{\sim 385 \,^{\circ}\text{C}} \text{Cs}_7 \text{Mo}_8 \text{O}_{26} \text{AsO}_4 + 2\text{H}_2 \text{O}(\uparrow) + \\ \text{``Cs}_3(\text{AsO}_4^{3-})(\text{Mo}_4 \text{O}_{12})_2''$$

$$\xrightarrow{\sim 520 \,^{\circ}\mathrm{C}} \mathrm{Cs_7 Mo_8 O_{26} As O_4} + \mathrm{Cs_3 As O_4} + 8\mathrm{MoO_3}$$

$$\xrightarrow{\sim/80 \, ^{\circ} \text{C}}$$
 MoO₃(†)

Figure 4. Thermal analysis of Cs₅Mo₈O₂₄(OH)₂AsO₄•2H₂O: TGA and DTA curves.

In conclusion, two molybdenum(IV) arsenates containing unprecedented polyheteroanions $[AsMo_8O_{30}H_2]^{5-}$ and $[AsMo_8-O_{30}]^{7-}$ have been prepared and their structures characterized. Structure **1** was synthesized by a high-temperature, high-pressure hydrothermal method, while structure **2** was obtained from the dehydration product of **1** at 550 °C. Our study shows that the two structures are closely related to each other. The spatial arrangements of the cluster anions in the unit cells are influenced by the coordination geometries of the cesium cations. Water molecules in **1** can be replaced by additional cesium cations as observed in **2**. One of the most interesting results obtained from TGA/DTA and powder X-ray diffraction study of **1** is that the lability with respect to dissociation of AsO_4^{3-} from the $[AsMo_8O_{30}H_2]^{5-}$ cluster anion is first shown in the solid state. The hydrothermal technique that we have employed is useful for the crystal growth of novel metal arsenates. Further research on the hydrothermal synthesis of new molybdenum(VI) arsenates is in progress.

Acknowledgment. We are grateful to the National Science Council of the Republic of China for financial support of this work (NSC86-2113-M-007-011).

Supporting Information Available: Tables giving detailed crystal data, bond distances and angles, and anisotropic thermal parameters for $Cs_5Mo_8O_{24}(OH)_2AsO_4 \cdot 2H_2O$ and $Cs_7Mo_8O_{26}AsO_4$ (17 pages). Ordering information is given on any current masthead page.

IC961459Q