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Expressions in the early literature for kinetic exchange in magnetically coupled systems are critically analyzed by

second-order perturbation theory and substituted by corrected versions. The widely held belief that kinetic exchange
is always antiferromagnetic is found to be incorrect. Ferromagnetic kinetic exchange terms are found to be more
important than hitherto assumed. The quantitfd, wherel stands for intraatomic exchange interactions and

U is the energy difference between the ground electron configuration and a charge-transfer configuration, plays

a crucial role in the competition between ferromagnetic and antiferromagnetic contribulidbsieadily exceeds
the valuel/s considered as an upper limit by Andersoh. is found to be proportional to the number of unpaired

electrons on a given magnetic center.

1. Introduction

With the recent developments in the area of molecular
magnetismy? there has been a revival of some old concepts,
which were developed thirty to forty years ago to rationalize
the properties of insulating magnetic materials. The principal

aim of these modern lines of research is the design and
construction of molecule-based ferromagnets. These might offer

some advantages over classical magnetic materials by their . . - .
9 9 y yielded reliable results¥14 One of the earliest theoretical

chemical nature. A molecular material is easier to modify and
manipulate, building blocks can be combined in many different

ways, and they can be incorporated into existing architectures.

It is conceivable that the magnetic properties could thus be
combined with optical, mechanical, and electrical properties,

hence creating combinations which cannot be achieved with the

classical magnets.

The old rules and concepts of exchange interactions play an

important part in this research, in particular the competition
between ferromagnetic and antiferromagnetic contributions to
the net exchange. The most widely used effective Hamiltonian

to account for the interactions between nearest-neighbor mag-

netic moments is the so-called Heisenbegrac—van Vleck
(HDwV) operatof

I:iHva = ‘]éA'éB (1)

which often appears in the formJSa-Sg or —2355-Sg. In our
formulation eq 1, ferro- and antiferromagnetic situations are
represented by negative and positivealues, respectively. This

process, and (i) potential exchange due to true two-center two-

electron exchange interactions. The latter contribution is always
ferromagnetic. It was recognized that in insulating transition

metal ion systems kinetic exchange usually domin&tedu-
merous theoretical models with widely varying degrees of

sophistication were then proposed to calculate the kinetic

exchange contributiorfs12 In general it can be said that the
most sophisticate@b initio calculations have only recently

approaches was a valence bond approach in which the mixing
of an electron-transfer configuration into the ground-state
configuration was the key eleméhtExperimental studies, in

an interplay with theoretical considerations, led to the formula-

tion of the so-called GoodenouglKanamori rules, a set of
semiempirical rules which proved to be highly successful in

rationalizing magnetic properties in a great variety of compounds
on a qualitative level81519 By consideration of the symmetry
and the electron occupancy of the interacting orbitals on
neighboring magnetic centers the sign and relative magnitude
of the resulting kinetic exchange can be predicted.

The most important contribution originates when an electron
in a half-filled orbital a on center A interacts with an electron
in a half-filled orbital  on center B. According to ref 20 this
contribution is given by

)

operator has been extremely successful not only in the field of where n, and ng are the numbers of unpaired electrons on

magnetically ordered materidfsbut also in the areas of low-

dimensional magnetic materiéksnd clusters of magnetic iofs.
Two distinct contributions td were recognized in the early

days: (i) kinetic exchange, originating in a one-electron-transfer
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Interpretation of the GoodenouglKanamori Rules

centers A and B, respectivelyn; is a so-called transfer integral
defined by
h; = @/hib0 €)

whereh is the appropriate one-electron interaction Hamiltonian.
The quantityU in eq 2 is theU defined in the Hubbard modél.
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We will show that kinetic exchange can lead to ferromagnetic
interactions. The quantity /U in eqs 4 and 5 will be examined
in detail. We will show that, depending on the electron
configuration, it can attain values up #. As a result the
ferromagnetic contributions 4 and 5 become competitive with
the antiferromagnetic contribution 2. In addition, we have
recently show?? and will briefly summarize here that for some

It corresponds to the energy difference between the grouno|specific situations we can have ferromagnetic interactions of
electron configuration and the electron-transfer configuration the order of magnitude, but reversed sign, of eq 2!

where one electron has been removed from the one center an
restored on the other. The term in eq 2 is always antiferro-

magnetic.

For the situation of a half-filled orbital on A interacting with
an empty orbital on B the contribution thaccording to ref 20
is given by

2 hij2 |

nyng U U

(4)

The quantity I takes account of the intraatomic exchange

interactions within the charge-transfer electron configuration.

For the interaction of a half-filled orbital on A with a full
orbital on B the contribution according to ref 20 is also given

by

2 hij2 1

_nAnB uu

®)

Both contributions 4 and 5 are ferromagnetic. They are smaller

than the antiferromagnetic contribution 2 by the factotJ.

%. Theory

We consider in the following a dimer AB built up of the two
monomeric constituents A and B. In our analysis of the
exchange interactions we will use the Hamiltonian

H=H,+Hg+ Aug (6)
where

N A N 1

Hy =Ty, +V,+ ) — (7

and a similar term can be written féts. In eq 7Ta is the
kinetic energy operator for all electrons on A, avd is the
one-electron potential energy operator. The third term is the
interelectronic repulsion operator for the electrons centered on
A.

Hag is composed of the following two terms:

N N 1
Hpg = Vag T zzr_ 8)
T T T

The last possible type of interaction is that between an empty .

orbital and a full orbital. Its contribution tdhas been reported
as ferromagnetié? but no algebraic expression is available.
Expressions 25 represent a quantitative formulation of the

Vg is a collection of all the one-electron terms which must be
added to the Hamiltonian as a result of bringing A and B
together. Similarly, the second term of eq 8 represents all the

Goodenough.Kanamori rules. An ana'ys|s of these expressions additional electron-electron I’epu|8i0n terms which are not

has led to the surprising conclusion that they cannot all be included inHa + Ha. Throughout this paper we neglect spin
correct. One of the aims of the present paper, therefore, is theOrbit coupling effectsi.e., all spin quantum numbers which will
presentation of this analysis and the correction of the formulas. b€ used later on are good quantum numbers.

The missing formulas for the interaction of a filled with an
empty orbital will be supplemented.

Let us now specify the characteristics of our AB dimer more
precisely. A and B have the electron configuration${@nd

There is a more important point, however. On the basis of (0)"e, respectively. a and b symbolize a collection of nonde-
the fact that contributions 4 and 5 are smaller than contribution 9enerate orbitals centered on A and B, respectively. The orbitals

2 by the factorl /U and assuming thak /U will not exceed a

a and b together form an orthonormal set. These orbitals are

value ofY/s, Anderson concluded that kinetic exchange is always not pure metal orbitals, but they contain contributions from

antiferromagnetic,i.e,, contribution 2 is dominating. This

terminal as well as bridging ligands alsdla andNg represent

conclusion has not been seriously questioned until very re- the total number of electrons on A and B, respectively. The
cently?2 and it has been become a paradigm among magne_number of unpglred electrons on A and B are designated
tochemists. When ferromagnetic interactions were found in @ndns, respectively. The effect dfia andHg (eq 7) can be
magnetic clusters, they were usually ascribed to potential summarized as follows. The degeneracy of the single-ion terms

exchangé32* The orthogonality principle was invoked, imply-

arising from the (&} electron configuration is partially lifted

ing that strong ferromagnetic interactions can only occur when PY Ha. These are the normal splittings seen in, for instance, a

the magnetic orbitals are mutually orthogoffalln the concept

of spin-polarization, which is used to account for ferromagnetic

Tanabe-Sugano diagram. Similarly for center B.
Our main interest is in the lowest energy single-ion term

electron exchange operator plays an important 5&#. This

asSal'a, whereSy = na/2 is the spin quantum number afg

is not the subject of the present paper; we are dealing with iS the relevant orbital representation. A similar designation is

kinetic exchange onlyi,e., a pure one-electron interaction.
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made for center B. We are interested in the energy differences
between the possible dimer functiocBSMy obtained from the
direct product of single-ion ground terms

IGR S'My D= ((@)"SaT'a) ® ((b)*S;Te),
S=S+ S IS — Sl (9)

All the functions of eq 9 are degenerate in the absence of the
interactionHag (8). The second term of eq 8g., the two-
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electron operator, always lowers the energies of the highestrelevant ¢ -symbols and for the two fractional parentage
dimer spin multiplets relative to the energies of the lowest spin coefficientsfa andfg are given below. We distinguish four
multiplets. The term potential exchange was used for this cases depending on the occupancy of the relevant interacting
interaction® Even though this operator acts diagonally on the orbitalsa; andb; prior to the electron transfer from A to B:
manifold of terms of eq 9, its effect is small, since two-center

two-electron exchange integrals are small. Valuesbtnr?, 1. ais half-filled andb, is half-filled ([1/2]A — [1/2)3)

1 cnmrl, 10 cnrl, and 5 cmi! have been estimated for the

dinuclear complexes G(CH3CO;)s2H,0, [LsCrOCrLg], L4 2. ais half-filled andb, is empty ({11, — [01p)

Ni(u-O)NiL 4, and TpClg®~, respectivelyt314.27.28 These com-

plexes represent a good variety of bridging geometries and 5 a is full andb is half-filled ([1], — [1/2] )

intermetallic distances, and we can safely conclude that ferro- ! A B
magneticJ values of the order of a few hundred wavenumbers ,
cannot be due to potential exchange. In the present paper we

are interested in large effects, and potential exchange will be grom this we see that the possible valuesSpfandSs are Sa
neglected. Of course this is no longer justified when dealing — g, 4+ 1/, andS; = S5 + Y5, respectively. The only fourj6

a is full andb;, is empty ([1}, — [0];)

with exchange splittings of only a few wavenumbers. -symbols which need to be evaluated are #us
We are left with the effect of the one-electron operatgs,
the kinetic exchange in Andersons terfn§Ve use second-order S S S -gS+1)+3E+1) [¥?
perturbation theory withVag as a perturbation operator to 1 uy (~
calculate the energies of the ground-state dimer functions, eq S S = e 2525 + 1)25(25 1)
9. Functions arising from the charge-transfer (CT) electron (13)
configuration (a)2(b)Ne, with Na = Na & 1 andNg = Ng F 1,
can interact with the functions arising from theNegp)™s ground S S S
electron configuration under the action\@fs. This CT electron S+Y S —Y 1, =
configuration is obtained by removing an electron from an 2 2 "
orbital a on A and restoring it on B in orbita. In analogy SS+1)-A(A-1) (14)
with eq 9 we write the similar expression for the CT dimer 25,(2S, + 1)(25; + 1)(2S; + 2)
functions|CT,ST'M'y'Uas follows:
ICT.SI'M'y' = ((a)* 'S, I,) ® ((b)"e 'S, I) > N Sl
' ATA B S—Y2 S\t e
S=S5+%..1S — S (10) SS+1)— AA+ 1) 12 (15)
, , , (25, + 1)(2S, + 2)25;(25; + 1)
The key matrix element in the perturbation treatment thus
becomes S S S
EGSR,SI“My|VAB|CT,SF'M'y'EIE C(SS,S)hy;  (11) [Sa +Y, Sa+ Y, 1lz] B
-SS+1)+(E+1)E+2 2
wherehj is the transfer integral, eq?,and C(SSh,Ss) is, as ’ X )+ ( )& ) (16)
indicated, a spin dependent factor. We note in passing that the (25 + 1)(25 + 2)(28 + 1)(25 + 2)

two-electron operator eq 8 also has matrix elements between ' . .
the functions|GRSI,M,y0and |CT.S,["M',)’0) Like most " e 1i16 e definedA = S, 5 5 agdz. _tﬁ‘\ ;r”S?’ .
authors we neglect this contribution in the following. This is n the Appendix (see egs A-6\.8) we derive the following

again justified as long as we are dealing with large effécts, expressions for th_e factofg andfs. When we add an ?Iectron
energy splittings of a few hundred wavenumbers. We also note INto a@n empty orbital on B3 can take the valueSs + /2. In
that, although ligand orbitals do not explicitly occur in our both caseds takes the value

formalism, they are involved through their admixture with the

metal orbitals. Physically our formal metal-to-metal electron fo= ./ L @an
transfer process can thus acquire considerable ligand-to-metal Ng +1

or metal-to-ligand charge-transfer character.

When the electron is added into an orbital®which is already

In refs 9 and 22 matrix elements of the type in eq 11 were occupied by one electron, we need only to consger S, —
obtained for a specific electron configuration. Here we are ;| P y ’ y
/5. fg then takes the value

interested in a general expression, and for this we make use of

Wigner—Racah algebra as discussed in ref 29. This is
: . . Lo ng+1
developed in the Appendix, and we obtain the following simple f= [—° — (18)
S B
expression: ng(Ng + 1)
C(SS,.S) = /N, (N + 1)\/2S, + 1./2S: + 1 x When we take an electron from a half-filled orbital on f,
(SSS) = YNa(Ng + 1)y/25, + 1,25, twhen we take
>3 5 12)
S S Y, f= 1 (19)
The curly bracket is aj6symbol. Closed expressions for the A Na
(27) Hansen, A. E.; Ballhausen, C.Ttans. Faraday SocL965 61, 631. And, finally, when the electron is removed from a filled orbital
(28) Ceulemans, A.; Heylen, G. A,; Chibotaru, L. F.; Maes, T. L.; Pierloot,
K.; Ribbing, C.; Vanquickenborne, L. @horg. Chim. Actal996 251, (30) Rotenberg, M.; Bivins, R.; Metropolis, N.; Wooten, J. K., JrTie
15. 3-j and 6-j SymbolsMIT Press: Cambridge, 1959. (Equations 2-13

(29) Damhus, TMol. Phys.1983 50, 497. 2.16.
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on A, we must consider two cases:

f. = nA—+2 (20)
8 (s + 1N,

for S\ = Sy + Y5, and

N

BTN o, “

for Sa = Sa — Y.

The relevantC-factors of eq 11, for each type of electron

transfer will now be derived separately.

2.1. [Y5)a — [Y2]e. This type of electron transfer naturally

leads to a CT configuration witBy = Sy — Y, andS =S —
1/,. Using egs 12, 13, 18, and 19 we obtain

C(SS.S) = [_S(S"‘ 1) + 3= + 1)]¥2 o2

NANg

2.2. [Y5]a — [O]s. This electron transfer leads 8§ = Sy
— 1Y, & =% + Y, and we get

Lo [Ss+1) - AN - D)2
CSS. S+ = [T ] (23)
C(SS.S, 1/2) _ =SS+ 1)+ Z(= + 1)|1? (24)

ny(ng + 1)

2.3. [1]a — [Y2]s. This electron transfer leads 8 = Sy
+1Y,andS$ = § — Y5, and we get

1 _[S(s+1)— A(A +1)]2
CSSH L) == T (25)
1 _|-SS+ 1)+ EE+1)|V?
CSSS) = [ g (26)
2.4. [1]o —[0]g. This last case is slightly more complicated

and leads to four different sets of matrix elements, sigce=
S+ YandS$ =S £+ Y. We get

—S(S+ 1) + X(= + 1)]¥2

o _1 1y —
S LS = |~ e+ 1) (27)
1 1,y _ |SS+1)—-A(A+1) 12
C(SS\+1,,5%—1) = [ (Mt Dy + 1) (28)
1 1,y _ |S(S+1)—A(A—1) 12
C(SS St = [ DD | @
s 1 1,y _|~SS+HN+E+1DNE+2) 12
C(SsSA+ /2’33+ /2) - (nA + 1)(”3 + 1)
(30)
3. J Values

The C-factors obtained in section 2 will now be used to

compute the energies of tt&F-terms of eq 9 under th¥g

Inorganic Chemistry, Vol. 36, No. 17, 1998635

perturbation. This will here be done to second order. The
procedure is as follows: we compute the second-order correc-
tions to the energies and equate these with the eigenvalues of
the HDvV spin Hamiltonian eq 1. The second-order corrections
Ex(SI) to the energies of th&[ terms are

S SN
S = Esm - B@ Gy

Eo(SI") and Eo(ST”) are zeroth order energies of the GR and
CT functions, respectively. The correcti@(S) leads to an
Sdependent lowering of the dimer ground-state levels. $he
dependency of thejGymbols eqgs 1316 directly leads to a
Lande type energy splitting. The eigenvalues of eq 1 also
correspond to a spin dependent Laneleergy pattern, and
equating the corresponding terms we get

E(S) = %S(S+ 1) + constant (32)

where the constant can be neglected in our discussion of energy
splittings. Eqgs 31 and 32 will now be used to derive expressions
for J in terms of the model parameteng, ng, hj, andU =
Eo(ST") — Eo(SI). As in section 2, the contributions fofrom
each type of interaction will be presented separately.

3.1. [Y2]a — [Y2]s. In the absence of the interactibing
the |Sh, S5, SICT functions are all degenerate at an enedjy
above theS,S5;SIGR functions, which are also degenerate.
Using egs 22 and 31 we get

2 h|j2

WAaT1ede) = 1 (33)

For this type of interaction the opposite electron transfer is
always possible, and we get

h,?
A1) = 1 g (34)

For a homonuclear homovalent dimee., A = B, and A and
B in identical environments we naturally hatt = U" =

and the total contribution to thivalue is thus antiferromagnetic
and given by

4 h

U (35)

1T de) =

3.2. [Y5]a — [O]s. Because of the possibilitied = S +
1/, this type of interaction has two contributions to thealue,
one ferromagnetic and one antiferromagnetic. In the absence
of the interaction the CT functions witl8(, S) = (Sa — >,
S + Y,) are all degenerate at an energy above the GR
functions. Similarily, the the CT functions witls(, Ss) = (Sa
— 1, & — 1,) are degenerate at an enellgy above the GR
functions. Combining eqgs 23 and 31 we get

2

A0l =S+ =~ — 21 (3)
aa B 2 ny(ng + 1) U’
Similarily, by combining egs 24 and 31, we find
WA 10e =) = — 2 y (37)
a0l ny(ng + 1) U”
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The competition between egs 36 and 37 is governed by the
energy ordering of thess + Y,) and & — /,) terms arising
from the (b)s™! electron configuration. Due to Hund's rule,
U' < U", and we define

U =uU=1,, (38)

In eq 381 ,+1 is the so-called intraatomic exchange integfal,
which is discussed more thoroughly in section 4.2. Since the
magnitude ofl is roughly a linear function of the number of
unpaired electrons of the actual configuration, we indicate this
dependence with the subscrigf + 1, see also section 4.2. By

Weihe and Gdel

strongest interactions are both antiferromagnetic, while the two
intermediate ones are both ferromagnetic. We define

U =u (45)

U'=u + InA+1 (46)
Ur=u+1,,, (47)
U =U 4 0y, (48)

With the assumption that all thevalues are much smaller than

combining eqs 36, 37, and 38, and assuming that the CT energieghe U values and setting’ ~ U" ~ U™ ~ U"" = U, the total

U' andU" are much larger thald,,11, we get the following
total ferromagnetic contribution to thkvalue:

2 hIJ2 InB+1
n(ng +1) U U

J([Y1—0]g) = — (39)

where we have sdi’ ~ U= U.
3.3. [1]a — [¥]g. This case can be treated as discussed in

section 3.2, and we find a resulting ferromagnetic contribution

to theJ value:

h 2

2 T

(ny+Ing U U

InAJrl

I a—Te) = — (40)

3.4. [1]ao — [O]g. This type of interaction has four contribu-
tions to theJ value, since there are four different sets of terms
from the CT configuration which have matrix elements to the
ground state, see eqs230. In the absence of the interaction
the CT functions with §, S) = (Sa + Y2, S + Yy) are all
degenerate at enerdy, the functions with &, ) = (Sa —

Y5, S + 1/,) are degenerate at enertl, the functions with
(S, ) = (S2 + Yo, & — 1) are degenerate at enerty’,
and the functions withS, ) = (S — Yo, § — 1) are
degenerate at enerdgyy’”’. Using eqs 2730 and 31 we obtain
two antiferromagnetic and the two ferromagnetic contributions
as follows:

I, 0168 =S 1 S=S%—1) =

2

DT DU
A —10leS=S+ %= —"1,) = 2
J([1],~0]5: 8 =Sy, S=Ss+1,) = 2
- mU—J (43)
WU —101a S=SiH o Si=S 1) =
2 hy (44)

(ny + g + 1) U

With the same arguments as outlined in section 3.2 we have
U'< (U"U") < U"". This means that the weakest and the

contribution to theJ value then becomes:

hiJ'Z (I nat+1 - InB+1)
U

2
(g + (g +1) U

J([11,—[0ls) = (49)

The sign of this contribution to thé value is determined by
the difference of the two intraatomic exchange integilajs 1
and InB+1'

4. Discussion

Since there is quite an elaborate formalism involved in
obtaining the perturbation matrix elements (11) via@Gafactors
of section 2 egs 2230, we have made an independent check
of these formulas. This was done by first generating explicit
expressions for the relevant functions of egs 9 and 10, and then
evaluating eq 11. The same results were obtained in every case,
and we are thus confident that the formulas for the matrix
elements are correct. However, the second-order treatments in
section 3 were all based on the assumptionstthat |h;| and
U> 1,. We will therefore in the following two sections discuss
the quantitiedJ, h;, and 1, and examine the validity of these
assumptions.

4.1. The QuantitiesU and h;. All the contributions to the
total J value contain the ratity?/U. A brief review-like note
on the two parametetly; andU is therefore in order.

The charge-transfer enerdy is a critical parameter of the
model. Itis formally defined as a difference between one-center
and two-center repulsion integr&fsand it corresponds to the
energy difference between the ground electron configuration
and a CT configuration.

For an estimate df) values we can start by using ionization
potentials of the free iorfs. For trivalent and divalent homo-
nuclear dimeric complexes of the first-row transition metal ions
we would thus expect an energy range of-28 and 14-18
eV, respectivel\31 In a complex or crystal these values can
be significantly reducedland we assume a typical energy range
for U between 5 and 1@V (40000-80000 cn1?). Roughly
the same numbers are valid for heteronuclear dimeric complexes
in which the monomeric constituents are in the same oxidation
state3!

We note in passing that a rather different situation arises in
mixed-valence complexes, when the two metals A and B in the
dimer have different oxidation states. For simplicity we consider
here only dimers in which the valencies are localized. To such
a dimer we must associate two differéhvalues, one which is
associated with an electron transfer from A to B, g, and
one which is associated with the opposite trantfgrg. By
using the ionization potential arguments we find tbiat.g >

(31) Handbook of Chemistry and Physid®9th ed.; CRC Press: Boca
Raton, FL, 19881989 (table with ionization potentials).

(32) Kahn, O.Struct. Bondindl987, 68, 89. Kahn refers to many relevant
papers concerning magnetic properties of heterodinuclear heterovalent
transition metal dimers.
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Ua-—s, if the oxidation state of A is higher than that of B. For crude. From Griffitd® we find for d-orbitals that the 10 possible

such dimersUa—g will usually be small and can even be exchange integrals all lie in the interval < I < C + 4B,

negative’® SmallU values below 20000 cm have also been  with a mean value of

reported for Mo, W, Tc, and Re dimers with direct strong

meta-metal bonds$® However, mixed-valence systems and .= C + §B (54)

complexes with strong metametal bonds are not the subject ! 2

of this paper, and we will use the above mentioned energy range

of 40000-80000 cm! as a reasonable estimate Wfvalues.
Molecular orbital techniqué%'®can be used for an estimate

of the order of magnitude of the transfer integrajs The

quantityh; can be correlated with the energy difference between

the symmetric and the antisymmetric linear combinations of the

atomic orbitalsa; and bj. Typical |h;| values obtained by

extended Hokel and angular overlap approximations on a

variety of dinuclear 3d complexes are in the range6000

cm 191034 OQur approximation/h;| < U is thus valid. In

B andC are the Racah interelectronic repulsion parameters. By
using the experimentally verified relati$4B < C < 5B we
find that eq 53 is at most a factor of 1.5 wrong.

A very gratifying experimental verification of eq 53 is
obtained by a comparison of the first spin-flip excitation energies
of analogous transition metal complexes. In first order this
corresponds to the energy difference betw&¢is and 15,

i.e, In

Similar octahedral complexes of the trivalent met&s (d?),

L L Cue* (d8), Cr* (d®), and Fé&" (d®, high-spin) have their first
addition, both quantitiet; and U are transferable from one spin-flip transitions in the energy intervals 96600000, 9600,

it o S o Jo 2 e il stucus e 23006 15000, an 240062500, especely Tse
hj?/U can be considered as transferable between structurallyhave the approximate ratios 2:2:3:5, exactly as predicted by eq

similar dimers (see section 4.4) 53. This gives| ~ 4500-5000 cntl, which is also in
4.2. The Quantity 1. The so-called intraatomic exchange accordance with eq 54. Typic8 and C values for trivalent

. 0 ! . : transition metal complexes are about 700 and 3000'cm
integraf® I appears in the formalism of section 3 when we add respectively?
an electron into an empty orbital on B or/and when we remove SF.’ i ; hedral | f the dival % T2
an electron from a full orbital on A. We will in the following Imilar octahedral complexes of the divalent meta @),
investigate the effect and meanin .of the single-ion propkrt V2 (d), Cr* (d, high-spin), and M#F (&®, high-spin) have
for thegﬁrst chse. The Second Cai_e S 6 uiv%lent PTOPETYY  their first spin-flip transitions at about 7500, 115608000,

' : IS equ ) 15000-19000, and 2300824000 cn?l, respectivel\?s-38

We start on center B with a configuration {bYs, corre-

sponding to a total oNg electronsns of which are unpaired. Again, these energies correspond nicely to the ratio 2:3:4:5

The lowest energy term from this electron configuratioSsE expected on the basis of eq 53. We et 4000-4500 cm
5. o . :
This is the ground term of B witBs = ng/2. Adding an electron again in agreement with eq 54. The repulsion paramdiers

into an empty orbital on B leads to the electron configuration andC are usually similar in magnitude for divalent and trivalent
o : : .
(bye*17%+1. We are interested in those two terms from this metals3® These two series of experimenthi values nicely

new configuration which arise from the spin- and space-coupling support the validity of eq 53,

. Anderson estimated /U to lie in the rangé/10—/5,8 and he
of SI's and the extra electron. We designate themShls . ; .
and SsTE, whereSs = S + Y, and S = Ss — Y, 1 is their took I < U to be a good approximation. We used this

first-order energy difference: approximation in deriving eqgs 39, 40, and 49. But we now see

that the effective paramet&fU, but not1,/U, is transferable
1 between 3d dimers. The quality of the approximatlor< U
= E#rg > SBT'B'D Eﬁer's
=l

ZE‘SBFE D (50) clearly decreases with increasing For a typical valud/U =
r Y1pandn = 5, e.g, high-spin Mr#* or F&*, the ratiol /U can
get as large a¥..

1<)

I is positive as a result of Hund's ruld is in factnot one 4.3. Comparison with the Goodenough-Kanamori Rules.
intraatomic exchange integral, but it can be expressed as alable 1 shows a comparison of the corresponding formulas in
weighted sunof true exchange integralg of the type ref 20 and section 3 of the present paper for the four types of

interactions. The formulas from ref 20 represent the quantitative
1 part of the GoodenoughKanamori rules.
lj = Bi(l)bj(z)‘r_‘bi(z)bj(l)u (51) First we note that there is no dispute about the sign, ferro- or
12 antiferromagnetic, of the first three contributions to the tdtal
value. For the ¥,]a — [Y2]s type interaction our results are
. L identical to those in refs 8 and 20. The presence of this type of
Making the approximation that all the relevags are equal, interaction in an AB system will usually lead to an antiferro-

€. I'.J |, we find thatl is proportional to the nu.mber of magnetic overall interaction. This term is dominant because it
unpaired electrons of the actual electron configuration. In our . : . -

o - - is independent of the ratib/U, while the remaining three types
specific case witing + 1 unpaired electrons we have

of interactions all depend on it.
There are discrepancies between our results and the earlier

where the indices andj run over the half-filled orbitals.

Ina+1 = (g + 1)l (52) ones for the other three types of interactions. The major one
concerns the factor with they and ng dependence. For the
or in general withn unpaired electrons [Y2]a — [0]g interaction we find a factor of 244(ng + 1)) rather
than the earlier reported factor 84fi). For smallng values
I,=nl (53) this is a significant difference. Using theedependence of,

Equation 53 thus establishes thdependence of the parameter (35) Griffith, J. S. The Theory of Transition Metal lonsCambridge

N C . ! University Press: Cambridge, 1971. (Appendix 2, Table A26.)
I, The assumptiofy = | for alli, j seems at first sight rather (36) Lever, A. B. PInorganic Electronic Spectroscop#nd ed.; Elsevier

Science Publishers B. V.. Amsterdam, 1984; Chapter 6.

(33) Hopkins, M. D.; Gray, H. B.; Miskowski, V. MPolyhedron1987, 6, (37) Herren, M.; Jacobsen, S. M.;"@el, H. U.Inorg. Chem.1991, 30,
705. 1656.

(34) Atanasov, M.; Angelov, SChem. Phys1991, 150, 383. (38) Riesen, H.; Gdel, H. U.Inorg. Chem.1984 23, 1881
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Table 1. Comparison of Earlier Results with the Results Obtained in This Paper

interaction type

earlier results our results I,=nl
2 2 2
2 hij 2 hi] 2 hij
1 N —_ —_ —
1 [Yla — [Yale +nAnB U naNg U nng U
1 2 huz | 2 hij2 Ins+1 2 hi]2 |
2 ["2]a —[0]s == - i 20 1
nyng U U na(ng +1) U U n, Uuu
3 [1]a — [¥2] Lh'_le — 2 h'_JZ Foya _gh'_lzl
A LTER nang U U (+1ng U U ng U U
2 (1 -1, ) 2(n, — h.2
. 2 hu ( mtl ng+ (nA nB) i |
4 1]a— [0 ferromagnetic — —_—
(=[Ol g (M + D + 1) U U (M + D+ 1) U U

2 The first two columns identify the interaction type as introduced in section 2. The third column gives the contributions to thé tHhwy
as reported by ref 20. The fourth and fifth columns collect our results. The fifth column was obtained with the approximation eq 53.

as found in section 4.2, eq 53, we can approximate

I, —I0],) = 2 Nl o
e T TRVARTI S
L2t DRT bt

(g +1) U U M U U

This type of interaction is thus effectively proportional to2/
An exactly analogous difference appears for the [2][%2]s
interaction, where we find a factor of 2#( + 1)ng) compared

to 2/(nang) in ref 20. And with the approximation eq 53 we

get an effective 213 dependence (see Table 1).
A discussion of the fourth type of interaction, j1} [O]s,
is slightly more involved. Andersdfilisted this interaction as

ferromagnetic, but without a formula for a quantitative estimate.

Table 2. Comparison of Experimental and Calculate¥alues of
Trivalent Transition Metal Dimers with a Linear Oxo Bridge

M-0-M Jeap/cm™ | Jineory Jeat/cm ™!
Ti—0-Ti 0-16 0 0
V-0-v® < —400 | —h —480
Cr—0-Cr 450-580 | 8hi, 426
Mn(hs) — O — Mn(hs) | 240 Shiee 240
Mn(ls) — O — Mn(ls) | > 870 2he 960
Fe(hs) — O — Fe(hs) |180-230 | Ehi + hi, 210

aThe metal ions in the dimers are six coordinate. hs and Is stand
for high-spin and low-spin, respectively. The second column gives the
range of experimental values. The third column gives the theoretical
expression for thd value according to eq 3%.= dy, 0 = d2, and we
have defined = h;Z/U. hg: andhyy are the transfer integrals between

We show that not only the magnitude but also the sign of the the orbitals havingr and o symmetry with respect to the MO—M
interaction depends on the relative magnitude of the two quan- axis, respectively. The values in the last column were obtained by using

tities In,+1 and Iy 1. This is due to the factod(,+1 — Tng+1)
of eq 49. Using again the dependence of, we approximate

. _ 2 hijz InA+1 - InB+1
A0 = o T U 49)
2(ny — Ng) hij2 I (56)

TN+ U U

the parameter valuéds:?/U = 480 cnt! and hy?U = 352 cn1?, which
minimize the sum of the absolute differend@sp, — Jineon). (8): The

linear u-oxo—divanadium system is an orbitally degenerate system;
see ref 22 for details. Proper references to the representative compounds
are given in ref 39.

interactions between the orbitals havihgymmetry with respect

to the M—O—M axis. We find that the magnetic properties of
the dimers with M™ = Ti3*, V3, Cr¥*, Mn®* (hs), and Mi&*™

(Is) are essentially determined by one parameter only, namely,
hz2/U. The extra parametér?/U is needed for the high-spin

Depending on the specific situation this type of interaction can Fe*" dimers, since we have an interactiogelectron on each
thus be either ferromagnetic or antiferromagnetic, namely, metal center. The agreement between the calculated and the

ferromagnetic ifna < ng and antiferromagnetic ifia > ng. In

experimentall values is striking. It shows that the effective

the case of an AB system with A and B identical we get no parametehi: = hz:?/U is transferable from one dimer to another

contribution from the [1§ — [0]g interaction. This conclusion

is at variance with earlier discussions of this type of interacfion.

4.4. Comparison with Experiments and Conclusions.We

along this series.
The series of complexes presented in Table 2 is of particular
interest because of the large rangelofalues it covers, from

have applied our model and the formulas developed in sectionstrongly ferro- to very strongly antiferromagnetic. We can thus
3 to structurally related series of exchange-coupled dimeric 3d confidently assume that the potential exchange contributions
complexes. The results are gratifying. Experimental trends, are unimportant. The strong ferromagnetic coupling in the
including changes from ferro- to antiferromagnetic coupling, V—O—V dimers is most significant, because it is in stark

can be quantitatively reproduced by the model. The transfer- contrast to the general belief that kinetic exchange is always

ability of the model parameters is thus demonstrdfeds an

antiferromagnetic. One of the keys to the ferromagnetic sign

illustration we summarize the results obtained in a thorough of the net interaction in this case is the degeneracy ofteg2)

study of trivalent 3d metal dimers with a linear-NO—M

and#n(=zX) single-ion orbitals in th&€,, local symmetry at the

bridging geometry. A detailed account of this work is published V3" site. The dimer ground state is obviously &R 2 with

separately?
Table 2 contains the experimental and calculatadlues.

an energy difference to the next higher states of several hundred
wavenumbers. This has been elaborated and discussed more

The nature of the terminal ligands is not relevant for this thoroughly in ref 22.

discussion. The expressions f@ifeory Were derived from eq

35 by assumind4, dimer symmetry and neglecting the two

(39) Weihe, H.; Gdel, H. U. Submitted tdnorg. Chem.

The effect of the ferromagnetic terms 39 and 40 is not visible
in the series of Table 2 because of the hizga symmetry and
the fact that only homonuclear dimers are included. We have
investigated other series with nonlinear bridges and nonequal
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metal ions in the dimers, and we generally find very good agree-
ment between calculated and experimental exchange splitfings.
In conclusion, by a critical analysis of some old expressions
in the literature on kinetic exchange we have been able to
provide some corrected versions. For the interaction of a filled
with an empty orbital new expressions for their contribution to
the net exchange are presented. The r&tit) is crucial for
an evaluation of kinetic exchange contributions. From an
analysis of the quantity, which results from intraatomic
exchange interactions, we reach the conclusionkhbkreadily
exceeds the randgé o—/s estimated by Andersch.1 is found
to be roughly proportional ton, the number of unpaired
electrons. In contrast ﬂijIU andl/U, 1 /U is not an effective

parameter which is transferable within a series of complexes

with the same M-O—M bridging geometry but varying
isovalent transition metal ions.
The widely held belief that kinetic exchange is always

antiferromagnetic is demonstrated to be incorrect. Ferromag-
netic interactions due to kinetic exchange can result when the
terms 39 and 40 become dominant. In addition, ferromagnetic

contributions of the order of magnitudeh;%U (see Table 2)
can be observed in some specific situatiéhs.

As long as we are only interested in a qualitative discussion
of the sign of the exchange interacti@e,, ferromagnetic versus

antiferromagnetic, there is not much difference between Good-

enough’s formulas and our results. But our formulas constitute

a correct basis for quantitative comparisons and predictions of

magnetic properties of structurally related compounds.
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Appendix: Derivation of Eq 12

A formula to calculate thé/g interaction matrix element,
eq 11, is derived by Damhd8. We reproduce his formula in

eq A.1. All the symbols have the same meaning as introduced

in section 2 of this paper.

[ﬂ((a)NAKASAFA) ® ((b)NBKBSBrB)]SFMVNAM
(@™ '\ SaTh) ® () ke STR)IST'M'y' =
H(SS)O(M,M')(— 1)y HsrSHte
VNA(Ng + 1)y/dim(T,)y/dim(0)/dim(Cg)/dim(T") x

In eq A.1 dif( means the

S S S
2S5, +1)J(2S, + 1 X
Jes +yes ){SB s 1,2}
'’ n H T f r” r, rr n _” n T n
{JT(FAFAF avdim(T )( " ,)[IFAVA IgyglTy"Ox
MareTe vy
BT
"
Ta ' Tg
(s TayalVaglbog Tgygdla T T'g|x
Tha I Tk

[a) (ki San)aoiy Tal} (@) *kaSyTalx
[{b)"®(kpSsTs)bos T} ()" kg SyTed (A1)

dimension of the irreducible representatibn «a is an extra
identification label needed if there are several terms from the
(a» configuration which transform &&I'a; and similarily with

KB, KA, kB, 0A, @andog. (We left these extra, often superfluous,
identification labels out in the main text } is a § -symbol,

() is a I-symbol,Ll..|...0is a coupling coefficient, and [] is a
9I'-symbol. (C'al’aAl'A) is a phase factor, arid.|Vag|...0ds the
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one-electron parameter.e. the transfer integral. The two
guantities appearing on the last two lines of eq A.1 are fractional
parentage type coefficients. The remaining symbols are defined
in section 2.

In order to simplify the use of formula A.1, we label all the
orbitals and all the terms arising from a multielectron config-
uration in a point group containing one-dimensional irreducible
representations only, and use the formula once for each transfer
integral. This reduces the triple summation to one term with
the numerical value

h, f, fs

' (A.2)

where we have defined
h; = BORT YAV agboglyg0
fo = M (kS T)aci s [} (@) i p Sy T 0
fg = [b) (ks SeTp)bap T} (0) kS T0 (A.3)
We see now that the right-hand side of eq A.1 equals
Ch, (A.4)

where the facto€ is composed of,, fz, and all the non phase
factors of eq A.1 in front of the triple sum (see also eq 12 in
the main text).

We will now discuss the only, andfg factors which are
necessary for our specific purpos is related to the addition
of an electron to the the (%) configuration. In this way the
term [ is the parent to the possib®Is terms from (b)s™1
which can be formed by this process. On the other hinid,
related to the addition of an electron to the¥a} configuration.

In this case sever&@I'a terms from (af+~1 can be parents to
the desired child, namelB.I'a from (b)Na. We can omit all
the spatial transformation properties of the involved functions
and write

f(N.;:S.8) = ™)X} )M WsD

In eq A.5 §)™:m means the initial configuration with a total of
N; electrons wheredf; of these are unpairedx)(\v™ is a similar
specification of the final electron configuration. Addition of
one electron increas@$ by 1, butn: might become equal

+ 1 orn; — 1, depending on whether the extra electron is added
into an empty or a half-filled orbital, respectively. We naturally
assume that it is possible to add the electronjty-t without
violating the Pauli principle. First, the extra electron can be
added into an empty orbital. This means th& can take the
valuesS =S + Y, andS = S — ,. For this situation it can
be shown th&?

(A.5)

_1
N, + 1

(A.6)

And second, the extra electron can be added into an orbital
already occupied by one electron. Similarily we find eqs A.7

and A.8:
1 (ni + 1)
NS=S+8) =4 [o Ty A1

n—1

n(N; + 1)

(NS, §=5+1) = (NS §=§ 1) =

f(N.N;S=S—",8) = (A.8)

1C961502+



