The First Molecule Incorporating $[\eta^5-NC_4H_4]^$ and an Organic C-NC₄H₄ Group. Synthesis of $[Co(7-C_4H_4N(CH_2)_3-8-R-7,8-C_2B_9H_9)(\eta^5-NC_4H_4)]$ $(R = CH_3, C_6H_5)$

S. Gómez, C. Viñas, M. Lamrani, and F. Teixidor*

Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain

R. Kivekäs

Department of Chemistry, University of Helsinki, FIN-00014 Helsinki, Finland

R. Sillanpää

Department of Chemistry, University of Turku, FIN-20014 Turku, Finland

Received January 22, 1997

Introduction

While metallacarboranes incorporating $[C_2R_2B_9H_9]^{2-}$ and $[C_5R_5]^-$ have been long known,¹ no work dealing with the electronically and geometrically similar $[NC_4R_2R'_2]^-$ was reported until recently.² Pioneering work in the metallacarborane area had been done with small carboranes and substituted pyrrolyl groups. Examples are the double-decker [$(\eta^5-NC_4 Me_2R_2$)Co(Et₂C₂B₄H₄)], and [(η^5 -NC₄Me₂R₂)Co(Et₂C₂B₃H₅)] and the triple-decker $[(\eta^5-NC_4Me_2R_2)Co(Et_2C_2B_3H_3)Co(Cp)],$ $[(\eta^5-NC_4Me_2R_2)Co(Et_2C_2B_3H_3)Ru(\eta^6-1, 4-MeC_6H_4CHMe_2)],$ and $[(\eta^5-NC_4Me_4)_2Co_2(Et_2C_2B_3H_3)]^3$ Although the number of organometallic compounds incorporating $[\eta^5-NC_4R_2R'_2]^-$ is meager, since the recent discovery of $[Mn(\eta^5-NC_4Me_2H_2)(CO)_3]^4$ the number has increased steadily. 5^{-10} Also, the number of ions complexed has grown, e.g. Li,¹¹ Na,¹² Mn,^{2,4} Fe,⁵ Co,⁶ Sn,⁷ Pb,⁸ Ni,⁹ Ru.¹⁰ $[NC_4R_2R'_2]^-$ is encountered in these molecules coordinating as M- η^5 and/or M- σ -N motifs, usually protected at the α or α and β positions. Protection was sought to stabilize the complex.5 On the other hand, conductive pyrrole-based polymers are attracting great interest, and much effort is being

- (3) Chase, K. J.; Bryan, R. F.; Woode, M. K.; Grimes, R. N. Organometallics 1991, 10, 2631. Butcher, R. J.; Darby, W. L.; Sinn, E. Inorg. Chim. Acta 1993, 203, 51.
- (4) Kershner, D. L.; Rheingold, A. L.; Basolo, F. Organometallics 1987, 6, 196.
- (5) Kuhn, N.; Horn, E. M.; Boese, R.; Augart, N. Angew. Chem., Int. Ed. Engl. 1988, 27, 1368.
- (6) Kuhn, N.; Kockerling, M.; Stubenrauch, S.; Blaser, D.; Boese, R. J. Chem. Soc., Chem. Commun. 1991, 1368.
- (7) Kuhn, N.; Henkel, G.; Stubenrauch, S. J. Chem. Soc., Chem. Commun. 1992, 760.
- (8) Kuhn, N.; Henkel, G.; Stubenrauch, S. Angew. Chem., Int. Ed. Engl. 1992, 778, 31.
- (9) Kuhn, N.; Henkel, G.; Krentzberg, J.; Stubenrauch, S.; Janiak, C. J. Organomet. Chem. 1993, 456, 97.
- (10) Kvietok, F.; Allured, V.; Carperos, V.; DuBois, M. R. Organometallics 1994, 13, 60.
- (11) (a) Solari, E.; Musso, F.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. J. Chem. Soc., Dalton Trans. **1994**, 2015. (b) Jubb, J.; Gambarotta, S. Inorg. Chem. **1994**, 33, 2503.
- (12) Jacoby, D.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. J. Am. Chem. Soc. 1993, 115, 3595.

dedicated to modulating their properties by doping.¹³ Considering the growing number of $[NC_4R_2R'_2]^-$ complexes, the extraordinary stabilizing capacity of $[C_2B_9H_{11}]^{2-}$ derivatives,¹⁴ and that coordinated metal ions can modulate the properties of polypyrrole,¹⁵ the lack of data concerning $[C_2R_2B_9H_9]^{2-1}$ $[NC_4R_2R'_2]^-$ mixed metallacarboranes is surprising. Recently we proved that species of the type $[Co(C_2R_2B_9H_9)(\eta^5-NC_4H_4)]$ may be produced.^{2,4,16} Interestingly, there was no need to use protected pyrrolyl ligands, which opened the possibility of performing pyrrole polymerization. Their stability is considerable, as shown by the fact that some of them such as [Co(7- $(CH_2)_2CH-8-CH_3-7, 8-C_2B_9H_9)(\eta^5-NC_4H_4)$] have been generated from [7-C₄H₄N-(CH₂)₃-8-CH₃-7,8-C₂B₉H₉]⁻ following an electron-transfer and rearrangement process.¹⁶ This strong tendency toward $[\eta^5-NC_4H_4]^-$ capping seemed to hinder the synthesis of mixed $[C_2R_2B_9H_9]^{2-}/[\eta^5-NC_4H_4]^-$ metallacarboranes, which in addition to these groups, would incorporate pyrrole as an arm substituent. In fact, there is no structural report of any kind of compound whose molecular structure does contain both the $[NC_4R_2R'_2]^-$ moiety and a free organic C-NC₄H₄ group. The existence of a nonprotected second pyrrolyl function, in addition to $[\eta^5-NC_4H_4]^-$, is of interest for extra polymerization. Here, we present the synthesis and structural determination of [Co- $(7-C_4H_4N(CH_2)_3-8-CH_3-7,8-C_2B_9H_9)(\eta^5-NC_4H_4)]$, the first structurally characterized molecule incorporating $[\eta^5-NC_4H_4]^-$ and an organic C-NC₄H₄ group.

Results and Discussion

The reaction of [N(CH₃)₄][7-C₄H₄N(CH₂)₃-8-CH₃-7,8-C₂B₉H₁₀] with anhydrous CoCl₂, and K'BuO in a 1:5:5 ratio had led to a mixture of compounds including [Co(7-CH₃(CH₂)₃-8-CH₃-7,8- $C_2B_9H_9(\eta^5-NC_4H_4)$ and $[Co(7-(CH_2)_2CH-8-CH_3-7,8-C_2B_9H_9) (\eta^5-NC_4H_4)$]. Although several bands obtained in preparative TLC remain to be studied (see later), the fact that none of the isolated compounds contained the [7-C₄H₄N-(CH₂)₃-8-CH₃-7,8- $C_2B_9H_{10}$ moiety suggested that an alternative route had to be investigated. Former results of our research group suggested that K[NC₄H₄] on 1-Cl(CH₂)₃-2-R-1,2-C₂B₁₀H₁₀ could function in several roles: (i) as a nucleophile producing the $C-NC_4H_4$ bond; (ii) as a nucleophile to remove B(3) in the initial *closo*- $1-Cl(CH_2)_3-2-R-1,2-C_2B_{10}H_{10}$ compound; (iii) as a base to remove the bridging hydrogen atom on the open C₂B₃ face; and (iv) as an η^5 -coordinating ligand. Thus, the reaction of *closo*- $1-Cl(CH_2)_3-2-R-1,2-C_2B_{10}H_{10}$, (R = CH₃, C₆H₅) with a suspension of K[NC₄H₄] in dimethoxyethane and anhydrous CoCl₂ led to the $[Co(7-C_4H_4N-(CH_2)_3-8-R-7,8-C_2B_9H_9)(\eta^5-NC_4H_4)]$

(16) Lamrani, M.; Gómez, S.; Teixidor, F.; Viñas, C.; Sillanpää, R.; Kivekäs, R. *Organometallics*, in press.

^{*} Corresponding author. Telefax: 34 (3) 5805729. E-mail: teixidor@ icmab.es. Phone: 34 (3) 5801853.

For a survey of literature, see: Saxena, A. K.; Hosmane, N. S. Chem. Rev. 1993, 93, 1081.

⁽²⁾ Lamrani, M.; Gómez, S.; Viñas, C.; Teixidor, F.; Sillanpää, R.; Kivekäs, R. New. J. Chem. **1996**, 20, 909.

⁽¹³⁾ For a survey of recent literature, see: (a) Naoi, K.; Oura, Y.; Maeda, M.; Nakamura, S. J. Electrochem. Soc. 1995, 142, 417. (b) Michalska, A.; Hulanicki, A.; Lewenstam, A. Analyst 1994, 119, 2417. (c) Hutchins, R. S.; Bachas, L. G. Anal. Chem. 1995, 67, 1654. (d) Neoh, K. G.; Lau, K. K. S.; Wong, V. V. T.; Kang, K. L. Chem. Mater. 1996, 8, 167. (e) Migdalski, J.; Blaz, T.; Lewenstam, A. Anal. Chim. Acta 1996, 322, 141.

^{(14) (}a) Hawthorne, M. F.; Young, D. C.; Wegner, P. A. J. Am. Chem. Soc. 1965, 87, 1818. (b) Hawthorne, M. F.; Young, D. C.; Andrews, T. D.; Howe, D. V.; Pilling, R. L.; Pitts, A. D.; Reintjes, M.; Warren, L. F., Jr.; Wegner, P. A. J. Am. Chem. Soc. 1968, 90, 879. (c) Wilson, R. J.; Warren, L. F.; Hawthorne, M. F. J. Am. Chem. Soc. 1969, 91, 758. (d) Ruhle, H. W.; Hawthorne, M. F. J. Am. Chem. 1968, 7, 2279. (e) Warren, L. F.; Hawthorne, M. F. J. Am. Chem. Soc. 1968, 90, 4823. (f) Zalkin, A.; Hopkins, T. E.; Templeton, D. H. Inorg. Chem. 1967, 6, 1911. (g) Long, J. A.; Marder, T. B.; Behnken, P. E.; Hawthorne, M. F. Chem. 1980, 25, 724. (h) Borodinsky, L.; Sinn, E.; Grimes, R. N. Inorg. Chem. 1982, 21, 1686.

⁽¹⁵⁾ For a recent survey, see: Deronzier, A.; Moutet, J. C. Coord. Chem. Rev. 1996, 147, 339.

Figure 1. Schematic synthesis of $[Co(7-C_4H_4N(CH_2)_3-8-CH_3-7,8-C_2B_9H_9)(\eta^5-NC_4H_4)]$. The curved arrows on 1 point toward sites susceptible to polymerization.

Figure 2. ORTEP diagram of 1.

complexes 1, $R = CH_3$, and 2, $R = C_6H_5$ (yields 48% and 46%, respectively). See Figure 1 for $R = CH_3$. Both compounds display similar NMR characteristics. The ${}^{11}B{}^{1}H$ -NMR of 1 produces eight resonances with relative intensities 1:1:1:2:1:1: 1:1 in the range -14 to +5 ppm, very similar to the ${}^{11}B{}^{1}H{}$ -NMR of $[Co(C_2B_9H_{11})(\eta^5-NC_4H_4)]$ ² The ¹H-NMR of **1** is very informative regarding the aromatic region. It shows five sets of resonances at 6.07 (2H), 6.40 (2H), 6.61 (1H), 6.81 (2H), and 6.94 (1H) ppm. Upon comparison with the ¹H-NMR of $[Co(C_2B_9H_{11})(\eta^5-NC_4H_4)]$, which displays² only two sets at 6.85 (2H) and 7.01 (2H) ppm, and that of [7-C₄H₄N-(CH₂)₃-8-CH₃-7,8-C₂B₉H₁₀]⁻, which displays¹⁶ resonances at 6.66 (2H) and 5.98 (2H) ppm, it is concluded that compound 1 contains two types of pyrrolyl fragments in the molecule, one as a η^5 ligand (resonances at 6.40 (2H) and 6.81 (2H) ppm) and the second one as an N-substituted pyrrolyl fragment (resonances at 6.07 (2H), 6.61 (1H), and 6.94 (1H) ppm). The NMR of compound 2 can be interpreted in the same way.

A brown prismatic crystal of 1, suitable for X-ray analysis, was grown from a mixture of CH3CN/C6H14. Its analysis confirms the two types of pyrrolyl fragments indicated previously; see Figure 2. The metal ion is sandwiched between the [NC₄H₄]⁻ ion and the carborane's C₂B₃ open face, leaving the carborane [7-C₄H₄N-(CH₂)₃-8-CH₃-7,8-C₂B₉H₉]⁻ ligand as such with its pyrrolyl group uncoordinated. The $[C_2B_9H_{11}]^{2-1}$ [NC₄H₄]^{-/}Co³⁺ metallacarborane fragment closely resembles those already published for $[Co(C_2B_9H_{11})(\eta^5-NC_4H_4)]$, [Co(7- $(CH_2)_2CH-8-CH_3-7, 8-C_2B_9H_9)(\eta^5-NC_4H_4)$], and $[Co(7-CH_3-7)_2CH-8-CH_3-7, 8-C_2B_9H_9)(\eta^5-NC_4H_4)]$, $(CH_2)_3$ -8-CH₃-7,8-C₂B₉H₉)(η^5 -NC₄H₄)].^{2,4,16} In all of these structures, the nitrogen atom of the $[\eta^5-NC_4H_4]^-$ ligand adopts a position bisecting the two carborane cluster carbon atoms, suggesting that this is the most stable conformation of all possible rotamers. Atomic coordinates and equivalent displacement parameters are given in Table 1, selected bond lengths and angles are shown in Table 2, and crystallographic data are presented in Table 3.

A reinvestigation of the reaction of $[7-C_4H_4N-(CH_2)_3-8-CH_3-7,8-C_2B_9H_{10}]^-$ with anhydrous CoCl₂ described at the beginning of the paper showed that, under the same TLC conditions, one band at R_f (prep) 0.35 was found. This suggested that **1** was also formed under these conditions, a fact that was confirmed

 Table 1. Selected Atomic Coordinates and Equivalent

 Displacement Parameters for 1

x/a	y/b	z/c	$U_{ m eq}$, Å 2
0.7939(3)	0.7627(5)	0.4623(3)	0.050(2)
0.6985(4)	0.8537(5)	0.4933(3)	0.052(2)
0.71940(5)) 0.91776(7) 0.38295(4)	0.0496(2)
0.7471(4)	0.6984(6)	0.3630(3)	0.052(2)
0.5861(5)	0.8561(7)	0.4161(4)	0.058(2)
0.6119(4)	0.7542(6)	0.3320(3)	0.056(2)
0.8161(5)	1.1034(5)	0.3992(3)	0.087(2)
0.8287(6)	1.0200(7)	0.3341(4)	0.083(3)
0.7335(7)	1.0062(7)	0.2744(4)	0.089(3)
0.6594(6)	1.0856(8)	0.3017(4)	0.093(3)
0.7129(8)	1.1439(6)	0.3770(5)	0.093(3)
Selected Bo	nd Lengths (Å) and Angles (deg) f	or 1
belietted Bo	na Eenguis (7	i) and ringles (deg) I	
o(3)	2.010(4)	C(1) - C(18)	1.522(7)
o(3)	2.034(5)	N(13) - C(14)	1.376(9)
B(4)	2.053(5)	N(13) - C(17)	1.37(1)
B(7)	2.052(7)	C(14) - C(15)	1.403(9)
B(8)	2.074(6)	C(15) - C(16)	1.38(1)
N(13)	2.079(5)	C(16) - C(17)	1.39(1)
C(14)	2.053(8)	N(22) - C(23)	1.358(6)
C(15)	2.049(7)	N(22) - C(26)	1.354(6)
C(16	2.059(7)	C(23) - C(24)	1.36(1)
C(1)	2.040(5)	C(24) - C(25)	1.37(1)
(19)	1.551(7)	C(25)-C(26)	1.340(9)
(3) - C(2)	49.5(2) E	B(8)-Co(3)-C(15)	96.5(2)
(3) - N(13)	106.9(2) E	B(8) - Co(3) - C(16)	97.9(2)
(3) - C(14)	107.7(2)	C(14) - N(13) - C(17)	104.0(5)
(3) - N(13)	109.2(2)	C(23) - N(22) - C(26)	107.9(4)
(3) - C(17)	108.3(3)		
	$\begin{array}{r} x/a \\ \hline x/a \\ 0.7939(3) \\ 0.6985(4) \\ 0.71940(5) \\ 0.7471(4) \\ 0.5861(5) \\ 0.6119(4) \\ 0.8161(5) \\ 0.8287(6) \\ 0.7335(7) \\ 0.6594(6) \\ 0.7129(8) \\ \hline Selected Bo \\ o(3) \\ o(3) \\ o(3) \\ B(4) \\ B(7) \\ B(8) \\ N(13) \\ C(14) \\ C(15) \\ C(16) \\ C(14) \\ C(15) \\ C(16) \\ C(1) \\ (19) \\ (3)-C(2) \\ (3)-N(13) \\ (3)-C(17) \\ \hline \end{array}$	x/a y/b 0.7939(3) 0.7627(5) 0.6985(4) 0.8537(5) 0.71940(5) 0.91776(') 0.71940(5) 0.91776(') 0.7471(4) 0.6984(6) 0.5861(5) 0.8561(7) 0.6119(4) 0.7542(6) 0.8161(5) 1.1034(5) 0.8287(6) 1.0200(7) 0.7335(7) 1.0062(7) 0.6594(6) 1.0856(8) 0.7129(8) 1.1439(6) Selected Bond Lengths (Å $\alpha(3)$ 2.010(4) $\alpha(3)$ 2.034(5) B(4) 2.053(5) B(7) 2.052(7) B(8) 2.074(6) N(13) 2.079(5) C(14) 2.053(8) C(15) 2.049(7) C(16 2.059(7) C(1) 2.040(5) (19) 1.551(7) (3)-C(2) 49.5(2) (3)-C(14) 107.7(2) (3)-C(14) 109.2(2) (3)-N(13) 109.2(2) <tr< td=""><td>x/a y/b z/c 0.7939(3) 0.7627(5) 0.4623(3) 0.6985(4) 0.8537(5) 0.4933(3) 0.71940(5) 0.91776(7) 0.38295(4) 0.7471(4) 0.6984(6) 0.3630(3) 0.5861(5) 0.8561(7) 0.4161(4) 0.619(4) 0.7542(6) 0.3320(3) 0.8161(5) 1.1034(5) 0.3992(3) 0.8287(6) 1.0200(7) 0.3341(4) 0.7335(7) 1.0062(7) 0.2744(4) 0.6594(6) 1.0856(8) 0.3017(4) 0.7129(8) 1.1439(6) 0.3770(5) Selected Bond Lengths (Å) and Angles (deg) f o(3) 2.010(4) C(1)-C(18) o(3) 2.034(5) N(13)-C(17) B(4) 2.053(5) N(13)-C(17) B(7) 2.052(7) C(14)-C(15) B(8) 2.074(6) C(15)-C(26) N(13) 2.079(5) C(16)-C(17) C(14) 2.053(8) N(22)-C(26) C(14) 2.053(8) N(22)-C(26)</td></tr<>	x/a y/b z/c 0.7939(3) 0.7627(5) 0.4623(3) 0.6985(4) 0.8537(5) 0.4933(3) 0.71940(5) 0.91776(7) 0.38295(4) 0.7471(4) 0.6984(6) 0.3630(3) 0.5861(5) 0.8561(7) 0.4161(4) 0.619(4) 0.7542(6) 0.3320(3) 0.8161(5) 1.1034(5) 0.3992(3) 0.8287(6) 1.0200(7) 0.3341(4) 0.7335(7) 1.0062(7) 0.2744(4) 0.6594(6) 1.0856(8) 0.3017(4) 0.7129(8) 1.1439(6) 0.3770(5) Selected Bond Lengths (Å) and Angles (deg) f o(3) 2.010(4) C(1)-C(18) o(3) 2.034(5) N(13)-C(17) B(4) 2.053(5) N(13)-C(17) B(7) 2.052(7) C(14)-C(15) B(8) 2.074(6) C(15)-C(26) N(13) 2.079(5) C(16)-C(17) C(14) 2.053(8) N(22)-C(26) C(14) 2.053(8) N(22)-C(26)

Table 3. Crystallographic Data for 1

chem formula	$C_{14}H_{26}B_9CoN_2$	β , deg	104.69(1)
fw	378.58	V, A^3	1939.7(5)
T, °C	21	Ζ	4
λ, Å	0.710 69	$d_{\rm calcd}$, g cm ⁻³	1.296
cryst syst	monoclinic	μ , cm ⁻¹	8.8
space group	$P2_1/c$ (No. 14)	transm coeff	0.889 - 1.000
<i>a</i> , Å	13.192(3)	F(000)	784
b, Å	9.006(1)	R^a	0.050
<i>c</i> , Å	16.878(2)	$R_{\mathrm{w}}{}^{b}$	0.047

$${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum w|F_{o}|^{2}]^{1/2}.$$

by the NMR data. In this case, the yield was lower $(21\%)^{17}$ but still reasonable. In the reaction vessel there was no additional free [NC₄H₄]⁻, which means that the latter was generated by a Co(II) electron transfer to [7-C₄H₄N(CH₂)₃-8- CH_3 -7,8- $C_2B_9H_{10}$]⁻, breaking the C-NC₄H₄ bond. This again supports the high stability of these $[Co(C_2RR'B_9H_9)(\eta^5-NC_4H_4)]$ metallacarboranes, resembling that of $[M(C_2RR'B_9H_9)(\eta^5 C_5H_5$].¹⁴ The synthesis of compounds **1** and **2**, containing [η^5 -NC₄H₄]⁻ and C-NC₄H₄, both unprotected moieties, opens the possibilities of electrosynthesized polypyrrole films of intricate structure and of $[\eta^5-NC_4H_4]^-$ polymerization. The stabilizing capacity of [C2B9H11]2- derivatives may afford the right conditions to achieve these possibilities. In Figure 1, the sites susceptible to polymerization are indicated with curved arrows. Ensuing research is being performed in our group to synthesize similar species with longer metallacarborane-pyrrole spacers, (CH₂)₅ or (CH₂)₆, that can facilitate the electropolymerization.

Experimental Section

All experimental manipulations were carried out using standard highvacuum or inert-atmosphere techniques.

Materials. The preparation of 1-Cl(CH₂)₃-2-R-1,2-C₂B₁₀H₁₀, (R = CH₃, C₆H₅) was described in a preceding paper.¹⁶ Degassed 1,2-

⁽¹⁷⁾ To make both yields comparable those have been referred to the starting 1-Cl(CH₂)₃-2-CH₃-1,2-C₂B₁₀H₁₀.

dimethoxyethane (dme) was stored over sodium-benzophenone before use. Dichloromethane was dried over CaCl₂, transferred onto activated 4-Å molecular sieves, and stored under vacuum before use. Hexane was dried over CaCl₂ and distilled. All organic and inorganic salts were of analytical reagent grade and were used as received.

Physical Measurements. ¹¹B-NMR (96.29 MHz), ¹³C{¹H}-NMR (75.47 MHz), and ¹H{¹¹B}-NMR spectra (300.13 MHz) were recorded on a Bruker ARX-300 spectrometer equipped with the appropriate decoupling accessories. All NMR spectroscopic data were acquired in acetone- d_6 at 22 °C. Chemical shift values for ¹¹B-NMR spectra were referenced to external BF₃•O(C₂H₃)₂, and those for ¹¹H{¹¹B}- and ¹³C{¹H}-NMR spectra were referenced to Si(CH₃)₄. MS data were recorded on a Hewlet-Packard 5989X mass spectrometer, elemental analyses were carried out on a Perkin-Elmer 240B analyzer, and analytical thin-layer chromatography was performed on 0.25 mm (20 × 20 cm²) silica gel F-254 plates (Tracer).

Synthesis of 1 and 2. In a two-necked flask, *closo*-1-Cl(CH₂)₃-2-R-1,2-C₂B₁₀H₁₀ (4.26 mmol), $R = CH_3$ or C₆H₅, was dissolved in a suspension of K[NC₄H₄] in 70 mL of dimethoxyethane and anhydrous CoCl₂ (molar ratio 1:12:5). After being stirred and refluxed for 48 h, the mixture was cooled and the solvent was evaporated in vacuum. A yellow solid was extracted with hexane, and its purification by preparative TLC, using CH₂Cl₂-C₆H₁₄ (8:2) as the mobile phase [*R_f*-(prep) 0.35 (1), 0.27 (2)] led to the isolation of complex 1, $R = CH_3$, or 2, $R = C_6H_5$ (yield 48% (0.77 g, 2.03 mmol) or 46% (0.87 g, 1.95 mmol), respectively).

Data for Compound 1. Anal. Calcd for C₁₄B₉H₂₆N₂Co: C, 44.41; H, 6.92; N, 7.40. Found: C, 44.34; H, 6.82; N, 7.26. FTIR (KBr): v $(cm^{-1}) = 3135, 3107, 2959, 2931, 2860 (C-H), 2607, 2558 (B-H),$ 1447 (ring system). ¹¹B{¹H}-NMR: $\delta = -13.55, -12.49, -11.32,$ -5.54, -1.75, -0.70, 3.82, 5.67 with relative intensities 1:1:1:2:1:1: 1:1. ¹H{¹¹B}-NMR: $\delta = 2.15$ (1H, Cc-CH₂-), 2.16 (1H, Cc-CH₂-), 2.44 (3H, Cc-CH₃), 2.61 (1H, Cc-CH₂-CH₂-), 3.05 (1H, Cc-CH₂-CH₂-), 4.00 (2H, -CH₂-N-), 6.07 (2H, (-CH=)*), 6.40 (2H, -CH=), 6.61 (1H, (-N-CH=)*), 6.81 (2H, -N-CH=), 6.94 (1H, (-N-CH=)*). [Here and elsewhere the asterisk indicates an aliphatic chain pyrrolyl and Cc indicates one of the cluster carbon atoms.] ¹³C{¹H}-NMR: $\delta = 28.56$ (Cc-CH₃), 32.45 (Cc-CH₂-), 38.72 (Cc-CH₂-CH₂-), 48.53 (-CH₂-N-), 79.89 (Cc), 83.95 (Cc), 90.97 (-CH=), 91.23 (-CH=), 108.09 ((-CH=)*), 114.73 (-N-CH=), 115.58 (-N-CH=), 120.53 ((-N-CH=)*. MS: (m/z)max 377.20 (21%, M⁺).

Data for Compound 2. Anal. Calcd for $C_{19}B_9H_{28}N_2Co: C, 51.79$; H, 6.40; N, 6.36. Found: C, 52.22; H, 6.13; N, 6.09. FTIR (KBr): v (cm⁻¹) = 3133, 3113 (arC-H), 2956, 2925 (C-H), 2566, 2534 (B-H), 1495, 1442 (ring system). ¹¹B{¹H}-NMR: $\delta = -15.48, -13.19$, -9.69, -5.23, -3.39, -1.05, 5.33, 8.53 with relative intensities 1:1: 1:12:1:11. ¹H{¹¹B}-NMR: $\delta = 2.18$ (1H, Cc-CH₂-), 2.50 (1H, Cc-CH₂-), 3.00 (1H, Cc-CH₂-CH₂-), 3.16 (1H, Cc-CH₂-CH₂-), 4.10 (2H, -CH₂-N-), 5.85 (1H, (-CH=)*), 6.06 (2H, -CH=), 6.41 (1H, (-CH=)*), 6.49 (1H, (-N-CH=)*), 6.72 (1H, (-N-CH=)*), 6.82 (2H, -N-CH=), 7.39-7.70 (5H, -C₆H₅). ¹³C{¹H}-NMR: $\delta = 32.73$ (Cc-CH₂-), 40.87 (Cc-CH₂-CH₂-), 48.43 (-CH₂-N-), 93.27 (-CH=), 94.13 (-CH=), 107.87 ((-CH=)*), 112.17 (-N-CH=), 117.82 (-N-CH=), 120.63 ((-N-CH=)*), 127.83-142.34 (-C₆H₅). MS: (m/z)_{max} 439.30 (21%, M⁺).

X-ray study of 1. The data were corrected for Lorentz and polarization effects, dispersion, extinction, and absorption (ψ scans, transmission coefficient 0.889–1.000). The structure was solved by direct methods using MITRIL¹⁸ and refined to $R(F) = 0.050 [R_w(F) = 0.045]$ and GOF = 1.261 for 2572 independent reflections $[|F| > 4\sigma$ -(F)] using the XTAL3.2 program system.¹⁹ Heavy atoms were refined with anisotropic and hydrogen atoms with fixed isotropic displacement parameters (1.2 times that of the host atom).

Acknowledgment. This work was supported by the CIRIT through Project QFN95-4721. M.L. thanks the European Commission for a grant through Contract ERBCHBGCT930345. R.K. is grateful to the Spanish Government (Grant SAB95-0249) and the Oskar Öflund Foundation for financial support.

Supporting Information Available: Tables listing detailed crystallographic data, atomic positional and thermal displacement parameters, bond distances and angles, and least-squares planes (11 pages). Ordering information is given on any current masthead page.

IC970075C

(19) Hall, S. R.; Flack, H. D.; Stewart, J. M. *Xtal3.2 Reference Manual*. Universities of Western Australia, Geneva and Maryland, 1992.

⁽¹⁸⁾ Gilmore, C. J. J. Appl. Crystallogr. 1982, 17, 42.