Ion-Pairing Interactions between $Co(en)_3^{3+}$ and the ²³Na NMR Frequency Shift Reagent **TmDOTP5**- **†**

Jimin Ren,‡ Charles S. Springer, Jr.,§ and A. Dean Sherry*,‡,[|]

Department of Chemistry, The University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688, The Mary Nell and Ralph B. Rogers Magnetic Resonance Center, Department of Radiology, University of Texas Southwestern Medical Center, 5801 Forest Park Road, Dallas, Texas 75235-9085, Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, and Department of Chemistry, State Universities of New York, Stony Brook, New York 11794-3400

Received February 6, 1997^{\otimes}

Three new formulations of $TmDOTP^{5-} (DOTP^{8-} = 1,4,7,10$ -tetraazacyclododecane-1,4,7,11-tetrakis(methylenephosphonate)) have been prepared in an effort to develop a low-osmolality form of the 23 Na frequency shift reagent (SR). Equally concentrated (0.32 M) solutions of (MegH)₄HTmDOTP (Meg = N-methylglucamine or meglumine), Na₄HTmDOTP, and $[Co(en)_3]_{4/3}$ HTmDOTP have solution osmolalities of 1245, 1040, and 707 mOsm/ kg, respectively, comparable to the ionic and non-ionic gadolinium-based MRI contrast agent preparations in clinical use. An analysis of ²³Na and ⁵⁹Co frequency shifts induced by $TmDOTP^{5-}$ indicated that $Co(en)_3^{3+}$ can form both 1:1 and 2:1 adducts with TmDOTP⁵⁻ with (log) binding constants of 3.1 \pm 0.4 and 2.5 \pm 0.4, respectively. These values were comparable with those obtained by analysis of the 1H frequency shifts observed for Co(en)₃³⁺ upon binding to HoDOTP⁵⁻. The ¹H shifts of Co(en)₃³⁺ signals induced by YbDOTP⁵⁻ at pH 7.4 were fitted best by a 1:1 binding model with a conditional binding constant of 3.1 \pm 0.2. The ⁵⁹Co and ¹H limiting frequency shifts of $Co(en)_3^{3+}$ could be fitted with a dipolar shift model in which the Co atom of the Co(en)₃³⁺ cation is located 5.0 \pm 0.3 Å from the Ln atom of the LnDOTP⁵⁻ chelate, and with an angle of 40 \pm 0.2° between the Co-Ln vector and the 4-fold symmetry axis of the LnDOTP⁵⁻ complex. Ion pairing of Co(en)₃³⁺ and TmDOTP5- was significant enough in both saline and human blood plasma to reduce the effectiveness of the 23 Na frequency SR. Comparisons between all formulations suggested that Na₄HTmDOTP represents the best compromise of lower osmolality with minimal reduction of SR shift potency.

Introduction

The maintenance of a cytolemmal $Na⁺$ gradient is a primary function of the ubiquitous enzyme $Na^+ - K^+$ -ATPase. As pump dysfunction has been implicated in numerous diseases including hypertension and sepsis, $¹$ there is considerable interest in</sup> developing methods to monitor intra- and extracellular Na⁺ concentrations in intact tissue.²⁻⁶ In comparison to other techniques for quantitating $[Na^+]$ in intact tissues, ²³Na NMR in combination with a paramagnetic shift reagent (SR) is one of the more promising methods because it can be minimally invasive and it offers measurement of intracellular sodium with optimal temporal resolution. Paramagnetic SRs used for this purpose are typically highly charged, anionic species that ion-

- § Brookhaven National Laboratory and State Universities of New York. || University of Texas Southwestern Medical Center.
- ^X Abstract published in *Ad*V*ance ACS Abstracts,* July 1, 1997.
- (1) Garcia, N. M.; Horton, J. W. *Shock* **1994**, *1*, 354-358.
- (2) Springer, C. S., Jr. *Annu. Re*V*. Biophys. Biophys. Chem.* **1987**, *16*, 375-399.
- (3) Sherry, A. D.; Geraldes, C. F. G. C. In *Lanthanide Probes in Life, Chemical and Earth Sciences: Theory and Practice*; Bünzli, J.-C. G., Choppin, G. R., Eds.; Elsevier: Amsterdam, 1989; pp 93-126.
- (4) Balschi, J. A.; Bittl, J. A.; Springer, C. S., Jr.; Ingwall, J. S. *NMR Biomed.* **1990**, *3*, 47-58.
- (5) Hutchison, R. B.; Shapiro, J. I. *Concepts Magn. Reson.* **1991**, *3*, 215- 236.
- (6) Bansal, N.; Germann, M. J.; Seshan, V.; Shires, G. T., III; Malloy, C. R.; Sherry, A. D. *Biochemistry* **1993**, *32*, 5638-5643.

pair with extracellular sodium, $[Na^+e]$, in a labile equilibrium, and thereby induce a frequency shift that separates its signal from the intracellular Na^+ resonance.⁷⁻⁹ Any candidate SR for *in vivo* use must produce a large hyperfine frequency shift at relatively low dose (preferably ≤ 0.1 mmol/kg), have low chemical toxicity, and be eliminated without loss of chemical integrity. Compared with other SRs reported so far, TmDOTP5 requires the lowest dosage to achieve resolution of intra- and excellular 23 Na signals.^{6,10-12} Recent successful applications of this SR *in vivo* with small animals have demonstrated its effectiveness, but a complete toxicity profile of the SR has not been reported.

A recent 23Na NMR shift and relaxation rate enhancement study¹³ showed that two types of $Na⁺$ binding sites exist on the $TmDOTP⁵⁻$ chelate. The first type has a unique position near the 4-fold symmetry axis of the complex with a limiting shift of about 420 ppm to higher frequency. Three or four sites of a second type lie further away from the symmetry axis, and

- (7) Balschi, J. A.; Cirillo, V. P.; Springer, C. S., Jr. *Biophys. J.* **1982**, *38*, 323-326.
- (8) Gupta, R. K.; Gupta, P. *J. Magn. Reson.* **1982**, *47*, 344-350.
- (9) Buster, D. C.; Castro, M. M. C. A.; Geraldes, C. F. G. C.; Malloy, C. R.; Sherry, A. D.; Siemers T. C. *Magn. Reson. Med.* **1990**, *15*, 25- 32.
- (10) Bansal, N.; Germann, M. J.; Lazar, I.; Malloy, C. R.; Sherry, A. D*. J. Magn. Reson. Imag.* **1992**, *2*, 385-391.
- (11) Xia, Z.-F.; Horton, J. W.; Zhao, P.-Y.; Bansal, N.; Babcock, E. E.; Sherry, A. D.; Malloy, C. R. *J. Appl. Physiol.* **1994**, *76*, 1507-1511.
- (12) Seshan, V.; Germann, M. J.; Preisig, P.; Malloy, C. R.; Sherry, A. D.; Bansal, N. *Magn. Reson. Med.* **1995**, *34*, 25-31.
- (13) Sherry, A. D.; Ren, J.; Huskens, J.; Brucher, E.; Toth, E.; Geraldes, C. F. G. C.; Castro, M. M. C. A.; Cacheris, W. P. *Inorg. Chem.* **1996**, *35*, 4604-4612.

^{*} Author to whom correspondence should be sent at either address. Telephone: 972-883-2907 or 214-648-5877. Fax: 972-883-2925 or 214- 648-5881. E-mail: sherry@utdallas.edu.

[†] A portion of this work was presented at the 221st National Meeting of the American Chemical Society, New Orleans, March 1996.

[‡] The University of Texas at Dallas.

consequently this type has a smaller limiting shift of about 162 ppm, also to higher frequency. The binding constants for $Na⁺$ with TmDOTP^{5-} (log $K_n = 1.6-2.5$; *K* in M⁻¹) were found to be about 10-fold larger than those reported¹⁴ for $Na⁺$ binding to DyTTH A^{3-} , another SR.

The approximate chemical composition of the TmDOTP5- SR preparation used for all *in vivo* ²³Na NMR studies to date has been Na4HTmDOTP'3NaOAc. An 80 mM stock solution of SR with this formulation has a measured osmolality of 640 mOsm/kg at physiological pH, with contributions from Na⁺ (52%) , OAc⁻ (38%), and Na₃H_nTmDOTP^{-(2-*n*)} (*n* = 1 and 2) (10%) .¹³ It is undesirable for an infusion or injection solution to have an osmolality much greater than that of blood plasma, \sim 310 mOsm/kg.¹⁵ Obviously, the osmolality of this solution could be lowered either by removal of the excess sodium salt remaining from the synthesis (the 3 equiv of NaOAc), by employing a polyvalent countercation, or perhaps even better, by using a combination of these. Two different approaches have been taken in the present work to achieve a low-osmolality SR preparation. The first was to prepare a salt-free SR stock solution by precipitating the fully protonated $H_5TmDOTP$ complex from an (excess) salt-containing SR synthesis solution. The isolated $H_5TmDOTP$ was then neutralized with the appropriate base to yield the salt-free formulations corresponding to Na₄HTmDOTP, (MegH)₄HTmDOTP (Meg $=$ *N*-methylglucamine or meglumine), and $[Co(en)_3]_{4/3}$ HTmDOTP. The second approach was a direct synthesis of the salt-free form of the complex by mixing either thulium carbonate $(Tm_2(CO_3)₃)$ or freshly prepared thulium hydroxide $(Tm(OH)₃)$ with a suspension of H_8 DOTP, followed by neutralization with the bases of the first approach. All three salt-free formulations resulted in SR solutions with considerably lower osmolality. The interaction between $Co(en)_3^{3+}$ - and the SR anion was further examined by ²³Na, ⁵⁹Co, and ¹H NMR. These NMR data allowed us to characterize the binding constant and geometry of the $Co(en)_3^{3+}$ -LnDOTP⁵⁻ adduct.

Experimental Section

Chemicals. The macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis (methylenephosphonic acid) (H₈DOTP) was prepared as reported previously.¹⁶ Na₄HLnDOTP·3NaX (X = Cl⁻ or OAc⁻) complexes were prepared from H₈DOTP and the corresponding LnX₃ salts using procedures also described previously.¹⁷ Thulium hydroxide, $Tm(OH)_{3}$, was freshly prepared by hydrolysis of a $TmCl_{3}$ solution with NaOH, followed by filtration and washing. Thulium carbonate, $Tm₂(CO₃)₃$, was prepared in a similar way using NaHCO₃ as base in place of NaOH. The $(+)$ - and $(-)$ -Co (en) ₃I₃·H₂O complexes were prepared using literature methods18 and converted to the hydroxide forms by anion exchange chromatography. The chirality of each Co(en)3 ³⁺ stereoisomer was checked by circular dichroism spectroscopy. The purity of each LnDOTP⁵⁻ complex was established by ³¹P NMR spectroscopy. The pH values of the LnDOTP⁵⁻ solutions for NMR titrations were adjusted with tetraethylammonium or sodium hydroxide as indicated in the text. All other chemicals were obtained from either Aldrich or Sigma and used without purification.

Preparation of Low-Osmolality SR Formulations. Upon dropwise addition of 4 equivalents of dilute HCl (0.5 M) to a solution of Na4HTmDOTP'3NaCl, a white precipitate formed (when the solution

- (15) Morris, T. W.; Fischer, H. W. *Annu. Re*V*. Pharmacol. Toxicol.* **1986**, *26*, 143-160.
- (16) Lazar, I.; Hrncir, D. C.; Kim, W. -D.; Kiefer, G. E.; Sherry, A. D. *Inorg. Chem.* **1992**, *31*, 4422-4424.
- (17) Geraldes, C. F. G. C.; Sherry, A. D.; Kiefer, G. E. *J. Magn. Reson.* **1992**, *97*, 290-304.
- (18) Angelici, R. J. In *Synthesis and Technique in Inorganic Chemistry*; W. B. Saunders Co.: Philadelphia, 1977; p 76.

pH was between 3 and $5)^{19}$ that could be isolated by centrifugation. Excess NaCl was removed by repeated washings and centrifugation of the precipitate (after $2-3$ washings, Cl^- could no longer be detected in the filtrate, upon addition of AgNO₃). The precipitate was then washed with EtOH and dried at 55 °C for 24 h. Elemental analysis indicated a composition of H5TmDOTP'3H2O [this sample also contained a 5% excess of unchelated H₈DOTP that was present in the original SR preparation) [FW: 795.6. Found (calcd): C, 19.12 (19.00); H, 4.93 (4.97); N, 7.47 (7.39)], and the yield was 80%. The fully protonated H5TmDOTP was converted to various salt-free forms at physiological pH by neutralization with either NaOH, *N*-methyl glucamine (meglumine), or $Co(en)_3(OH)_3$. The amount of base required to neutralize an 80 mM H5TmDOTP solution was approximately 4 equiv for NaOH and meglumine and 1.3 equiv for $Co(en)_3(OH)_3$.

Na4HTmDOTP was also prepared directly using two other thulium salts.

$$
Tm(OH)3 + H8DOTP + 4NaOH \rightarrow Na4HTmDOTP
$$
 (1)

$$
^{1}/_{2}Tm_{2}(CO_{3})_{3} + H_{8}DOTP + 4NaOH \rightarrow Na_{4}HTmDOTP + CO_{2}^{\dagger}
$$
\n(2)

In each case, a suspension of thulium hydroxide or carbonate was added to a solution of H₈DOTP in small portions so that the solution would turn clear after each addition (in only a few seconds). Freshly-prepared suspensions of thulium hydroxide or carbonate were much more reactive for this complexation process than the corresponding dried solids. The complexation reactions could be further accelerated by raising the temperature to 70 °C. The pH of the resulting solutions containing equal amounts of Tm^{3+} and ligand was adjusted to 7.4 by slow addition of 0.2 M NaOH. This procedure gave essentially quantitative yields of Na4HTmDOTP.

Osmometric Measurements. Solution osmolalities were measured on a WESCOR 5500 vapor pressure osmometer at room temperature. Each measurement was repeated $3-5$ times and the average value reported. The instrument was calibrated with WESCOR 290 and 1000 mmol/kg standards before each sample measurement.

NMR Spectroscopy. ¹ H (500 MHz), 31P (202.4 MHz), 23Na (132.33 MHz), and ⁵⁹Co (118.9 MHz) NMR spectra were recorded at 25 °C on a General Electric GN-500 NMR spectrometer using either a 5 mm (for ¹H and ⁵⁹Co) or a 10 mm (for ³¹P and ²³Na) probe, both equipped for temperature control. ¹H T_1 measurements were performed using an inversion-recovery pulse sequence. DSS was used as internal reference for ¹H chemical shifts. H_3PO_4 (85%) was used as an external chemical shift reference for ${}^{31}P$ resonance. A 50 mM Co(en)_{3I3} solution in D_2O and 140 mM NaCl solution in D_2O were used as external references for 59Co and 23Na, respectively. BMS effects on 59Co and 23 Na frequency shifts were corrected by using the internal D_2O lock signals. It has been shown by ¹⁷O NMR that DyDOTP⁵⁻ has no innersphere coordinated water, so that any ${}^{2}H$ frequency shift due to hyperfine interactions is negligible. The frequency shifting abilities of [Co(en)3]4/3HTmDOTP, Na4HTmDOTP'3NaCl, Na4HTmDOTP, and (Et4N)4TmDOTP were also compared in plasma, isolated by centrifugation of whole blood donated by one of the authors (A.D.S.). 23Na NMR spectra of plasma samples were recorded at 37 °C using a 5 mm probe. D2O (10%) (v/v) was added for locking purposes. Small volumes of 80 mM SR stock solutions were added to an initial 0.5 mL of plasma to minimize dilution of the plasma during each SR titration.

Calculations. All NMR data were fitted with various binding models by using the Solver feature of Microsoft Excel as described previously.13

Results and Discussion

1. Osmolalities of Salt-Free SRs. As anticipated, all saltfree preparations of SR, (MegH)4HTmDOTP, Na4HTmDOTP, and $[Co(en)_3]_{4/3}$ HTmDOTP had significantly lower osmolalities than the currently used SR formulation, Na₄HTmDOTP·3NaX

⁽¹⁴⁾ Chu, S. C.-K.; Qiu, H. Z.-H.; Springer, C. S., Jr.; Wishnia, A. *J. Magn. Reson.* **1990**, *87*, 287-303.

⁽¹⁹⁾ Pike, M. M.; Luo, C. S.; Clark, M. D.; Kirk, K. A.; Kitakaze, M.; Madden, M. C.; Cragoe, E. J., Jr.; Pohost, G. M. *Am. J. Physiol.* **1993**, *265*, H2017-H2026.

Ion Pairing between $Co(en)_3^{3+}$ and TmDOTP⁵⁻

Figure 1. Osmolalities of salt-free SR preparations: Na4HTmDOTP (\diamondsuit) , (MegH)₄HTmDOTP (\square), and [Co(en)₃]_{4/3}HTmDOTP (\triangle). The horizontal line represents the osmolality of human blood plasma.

 $(X = Cl^- \text{ or } OAc^-)$. Preparations of equally concentrated (80) mM) solutions of the SR anion had osmolalities of 254, 245, and 174 mOsm/kg, respectively, compared with 640 mOsm/kg for the analogous SR solution containing excess salt. Interestingly, there were even larger differences in the osmolalities of the three salt-free forms at higher concentrations (Figure 1). A comparison of the two monovalent cation formulations shows that $Na⁺$ binds more strongly to the SR anion than does MegH⁺. At higher SR concentrations, this binding difference was magnified, resulting in significantly lower osmolalities for Na₄HTmDOTP than for $(MegH)_4$ HTmDOTP. $[Co(en)_3]_{4/3}$ -HTmDOTP had the lowest osmolality at all SR concentrations, as expected for a formulation with fewer countercations. Like the other preparations, however, the osmolality of [Co- $(en)_3]_{4/3}$ HTmDOTP was even lower than would be anticipated for an ideal solution, based solely upon the number of ions present. This indicates that the trivalent $Co(en)_{3}^{3+}$ cation interacts strongly with TmDOTP⁵⁻, even at the lowest concentrations examined here. From curves such as those shown in Figure 1, one can estimate that the concentration of SR anion achievable before exceeding an isotonic solution (310 mOsm/ kg) (solid horizontal line in Figure 1) would be ∼95 mM for Meg4HTmDOTP, ∼105 mM for Na4HTmDOTP, and ∼162 mM for $[Co(en)_3]_{4/3}$ HTmDOTP. One can also compare the osmolalities of these three excess-salt-free preparations with those of commercial gadolinium-based MRI contrast reagents (CRs). The osmolalities of *Magne*V*ist* ((MegH)2GdDTPA), *Prohance* (GdHP-DO3A), and *Ominiscan* (GdDTPA-BMA) at 0.5 M are 1960, 630, and 650 mOsm/kg, 20 respectively, while the extrapolated osmolalities of our three excess-salt-free SRs, Meg₄HTmDOTP, Na₄HTmDOTP, and [Co(en)₃]_{4/3}HTmDOTP, at an identical concentration would be 2000, 1700, and 1200 mOsm/kg, respectively. Thus, one would predict that Meg₄-HTmDOTP at 0.5 M would have a solution osmolality comparable to the commercial CR, Magnevist, while Na4HTmDOTP at this same concentration is expected to have a somewhat lower osmolality than this CR. This is encouraging because it is not realistic to consider the discovery of a nonionic SR. The negative charge of the SR species appears to be quite important for its potency.^{2,13,14}

2. Estimation of Binding Constants for the $Co(en)_3^{3+}$ **SR Adducts.** The low osmolality of solutions containing $[Co(en)_3]_{4/3}$ HTmDOTP prompted us to further explore the interaction between $Co(en)_3^{3+}$ and the TmDOTP⁵⁻ chelate. A decrease of the TmDOTP⁵⁻-induced ²³Na frequency shift was seen upon addition of $(+)$ -Co(en)₃³⁺ (Figure 2, top). This experiment was conducted by titrating a solution of $(Et₄N⁺)₅ TmDOTP⁵⁻$ (15 mM) containing a small amount of Na^+ (Na⁺/TmDOTP⁵⁻ = 0.4) with (+)-Co(en)₃³⁺ (as the I⁻ salt) at pH 10.7 (where the fully deprotonated complex

Figure 2. (Top panel: Dependence of TmDOTP-induced ²³Na frequency shifts on the Co(en)₃³⁺:TmDOTP⁵⁻ molar ratio at pH 10.7 and at a Na⁺:TmDOTP5- molar ratio of 0.4. The initial sample contained 15 mM H₅TmDOTP, 80 mM Et₄NOH, and 6 mM NaCl. Increasing amounts of $Co(en)_3I_3$ were added sequentially. The dotted line represents the fit to a 1:1 binding model while the solid curve represents the fit to a model that includes both a 1:1 and a 2:1 species. Center panel: Dependence of TmDOTP-induced ⁵⁹Co frequency shifts on the $[TmDOTP^{5–}]:[Co(en)₃³⁺]$ ratio at pH 10. Increasing amounts of Co(en)3I3 were added sequentially (from right to left). The solid curve represents the fit to a model that includes both a 1:1 and a 2:1 species. Bottom panel: Shifts of $Co(en)_3^{3+}$ protons induced by 15 mM HoDOTP⁵⁻ at pH 10 (\diamond) and 10 mM YbDOTP⁵⁻ at pH 7.4 (\triangle) as a function of $LnDOTP⁵$: $Co(en)³⁺$ molar ratio. Increasing amounts of $Co(en)_3I_3$ were added sequentially (from right to left).

 $TmDOTP⁵⁻$ is the only species). The hyperbolic binding curve was similar in shape to that reported previously for Mg^{2+} binding to $TmDOTP^{5-}$.²¹ The first additions of $Co(en)_3^{3+}$ result in very small changes in the observed 23Na shift while further additions of $Co(en)_3^{3+}$ resulted in more dramatic changes as more bound $Na⁺$ ions were displaced from their sites by the more highly charged $Co(en)_3^{3+}$. These data were fitted with a binding model involving formation of 1:1 and 2:1 $Co(en)_{3}^{3+}$ TmDOTP⁵⁻ adducts:

$$
M + L \rightleftharpoons ML
$$
 (3)

$$
M + ML \rightleftharpoons M_2L \tag{4}
$$

$$
Na + L \rightleftharpoons Na^{A}L
$$
 (5)

$$
Na + L \rightleftharpoons NaBL
$$
 (6)

where M is $Co(en)_3^{3+}$, L is TmDOTP⁵⁻, and Na^AL and Na^BL are species with the Na^+ ion bound to $TmDOTP^{5-}$ at site A (limiting shift, 420 ppm) and at site B (limiting shift, 162 ppm), respectively.¹³ Previous work has shown that, at low Na⁺/ $TmDOTP⁵⁻ molar ratios, the 1:1 Na⁺-TmDOTP⁵⁻ adduct$ (Na^AL) is the main species contributing to the observed ²³Na shift. (20) Tweedle, M. *In*V*est. Radiol.* **1992**, *27*, S2-S6. ¹³ An analysis of the data of Figure 2, top panel, using

eqs $3-6$ yielded stepwise binding constants (log K_1 and log K_2) of 2.9 \pm 0.5 and 2.5 \pm 0.4 for the 1:1 Co(en)₃-TmDOTP²⁻ and 2:1 $[Co(en)_3]_2$ -TmDOTP⁺ adducts, respectively. These values should be regarded only as apparent constants, however, since the ionic strength of the solution was not controlled or corrected for during the titration. The ionic strength was more than doubled throughout the $Co(en)_{3}I_{3}$ titration (from 231 to 501 mM). Although this effect may also contribute to the observed decrease in 23Na frequency shift from left to right in Figure 2, top, such a contribution would be very small (we have shown previously¹³ that Et₄NCl and Me₄NCl have only a small effect on the observed 23 Na frequency shift induced by $TmDOTP⁵$. The solid curve of Figure 2, top, shows the calculated fitting to the experimental data using these binding constants. This fitting was not nearly as good as that of similar data for Ca²⁺ or Mg²⁺ binding to TmDOTP⁵⁻,²¹ suggesting that our binding model (which admits no nonideality) may indeed be oversimplfied. The binding constants for trivalent $Co(en)_3^{3+}$ derived from the above model were smaller than those determined for divalent Ca²⁺ (log $K_1 = 5.7$) and Mg²⁺ (log $K_1 =$ 3.9, log $K_2 = 2.2$) and only slightly larger than those determined for alkali metal ions (Li^+ , Na⁺ and Cs⁺, logK_n = 1.3-2.6, n = 1, 2, and 3).13,21 This result is not unexpected because the larger size and subsequent poorer fit of $Co(en)_3^{3+}$ on the TmDOTP^{5–} surface may tend to offset any increase in binding interaction due to the greater charge of $Co(en)_3^{3+}$. In fact, this was an important reason for choosing $Co(en)_3^{3+}$, along with its kinetic inertness toward dissociation.

Given that, in the *in vivo* situation, the SR anion and its countercation will be significantly more diluted in the blood plasma and interstitial spaces, and the concentration of $Na⁺$ will be ∼25 times greater, the results from Figures 1 and 2 (top) could be considered encouraging for the use of $Co(en)_3^{3+}$ as a countercation. It significantly lowers the osmolality of the injection solution (Figure 1), without ion pairing with $TmDOTP^{5-}$ to the extent of Ca^{2+} and Mg^{2+} (compare data of Figure 2, top, with Figure 3 of ref 21). Thus, we titrated $[Co(en)]_{4/3}$ HTmDOTP into a sample of human blood plasma and measured the resulting 23Na frequency shifts. Those results are compared with titrations into saline in Figure 3 (upper). Here, we also depict curves for the titration of Na4HTmDOTP into saline solution, human blood plasma, and whole rat blood (Na₅TmDOTP, data from ref 22). These results demonstrate that ion pairing of $Co(en)_3^{3+}$ with $TmDOTP⁵⁻$ is apparently significant enough to noticeably reduce its shift potency. The curve for the $Co(en)_3^{3+}$ countercation was always below the analogous one for the $Na⁺$ countercation in Figure 3 (upper).

It is also important to note that, for a given SR preparation, the plasma curve was always below the saline curve, and the blood curve was always below the plasma curve in Figure 3 (upper). Plasma contains Mg^{2+} and Ca^{2+} ions, not present in saline solution, which can compete with $Na⁺$ for TmDOTP⁵⁻. In addition, blood also contains erythrocytes, and their polyanionic external surface may compete with $TmDOTP⁵$ for Na⁺. (In blood, the appropriate value for [SR] is the extracellular concentration.22)

Figure 3 (bottom) shows the 23 Na frequency shift titration curves for the other two low-osmolality preparations in human plasma and compares them with that for Na4HTmDOTP'3NaCl. It is clear that while Et_4N^+ (like MegH⁺ in Figure 1) and the excess 3 equiv of NaCl (*vide supra*) worsen the osmolality (3NaCl, significantly), they do not seriously reduce the shift

Figure 3. (Upper) ²³Na frequency shift induced by Na₄HTmDOTP (\square , saline; \bigcirc , plasma; \triangle , whole blood) and $[Co(en)]_{4/3}$ HTmDOTP (\square , saline; \bullet , plasma; \blacktriangle , whole blood) at 37 °C. The data given by (\triangle) were taken from ref 22. Lower: Plasma ²³Na frequency shifts induced by $(Et_4N)_4HTmDOTP$ (\square), Na₄HTmDOTP (\triangle), and Na₄HTmDOTP 3NaCl (\diamond) at 37 °C.

potency of $TmDOTP^{5-}$. Thus, the Na₄HTmDOTP preparation is the best compromise for shift potency and low osmolality.

3. Multinuclear NMR Studies of the Co(en)3 ³⁺**:TmDOTP5**- **Ion Pair.** Another reason for choosing Co(en)_3^{3+} was the strength of the natural abundance $59Co$ resonance, 23 the frequency of which is extremely sensitive to many factors, such as temperature²⁴ and isotope effects.²³ Indeed, the strong $59⁵⁹$ Co NMR signal of $Co(en)_3^{\mathfrak{Z}+}$ enabled a direct study of the interaction between $Co(en)_3^{3+}$ and the SR anion by monitoring the ⁵⁹Co frequency shifts induced by TmDOTP⁵⁻. The interaction between $Co(en)_{3}^{3+}$ and TmDOTP⁵⁻ was fast on the ⁵⁹Co NMR time scale since only a single, concentration-dependent, 59Co resonance was observed. Figure 2 (center panel) shows the 59 Co frequency shift as a function of the [TmDOTP⁵⁻]/ $[Co(en)_3^{3+}]$ molar ratio for a 10 mM TmDOTP⁵⁻ solution (0.5) mL, pH 10, tetraethylammonium as countercation) titrated with a 100 mM $Co(en)_3^{3+}$ (I⁻ as the counteranion) solution. The 59Co resonance was shifted to higher frequency by TmDOTP5-, similar to what is observed for 23 Na. This indicates that the binding loci of $Co(en)_3^{3+}$ and Na⁺ are similar.^{13,21} With increasing $[TmDOTP⁵-(Co(en)₃³⁺]$ ratio, the magnitude of the $59⁵⁹$ Co shift increased significantly at low ratios (\leq 0.5) and then gradually approached a maximum value of 130 ppm in the range $0.5 <$ [TmDOTP⁵⁻]:[Co(en)₃³⁺] < 1.0. Such a saturation titration curve is also consistent with formation of both 1:1 and 2:1 adducts between $Co(en)_3^{3+}$ and $TmDOTP^{5-}$.

The 59Co shifts were evaluated using a simple (but not too realistic) model that assumed that the limiting frequency shifts of the 1:1 and 2:1 species were identical

$$
\Delta_{\rm obs} = \{ [ML] + 2[M_2L] \} \Delta/[M]_{\rm tot} \tag{7}
$$

where L is $TmDOTP^{5-}$, $[M]_{tot}$ is the total concentration of $Co(en)_{3}^{3+}$ including both free and bound species, and Δ is the limiting shift of the bound $Co(en)_3^{3+}$ cation (135 ppm, for both

⁽²¹⁾ Ren, J.; Sherry, A. D. *Inorg. Chim. Acta* **1996**, *246*, 331-341.

⁽²²⁾ Albert, M. S.; Huang, W.; Lee, J.-H.; Balschi, J. A.; Springer, C. S., Jr. *NMR Biomed.* **1993**, *6*, 7-20.

⁽²³⁾ Laszlo, P. In *NMR of Newly Accessible Nuclei*; Academic Press: New York, 1983; pp 254-274.

⁽²⁴⁾ Granger, P. *Encycl. NMR* **1996**, *6*, 3889-3900.

Figure 4. ¹H NMR spectra of various Co(en)₃³⁺/YbDOTP⁵⁻ mixtures at pH 7.4 and 10 mM YbDOTP⁵⁻. The resonances labeled H_2 and H_3 correspond to YbDOTP⁵⁻ resonances while those labeled with an asterisk (*) correspond to $Co(en)_3^{3+}$ resonances.

the 1:1 and 2:1 species). This yielded stepwise binding constants of log $K_1 = 3.4 \pm 0.4$ for the 1:1 adduct and log K_2 $= 2.5 \pm 0.4$ for the 2:1 adduct. The solid curve in Figure 2 (center panel) represents the actual fitting to the experimental data points.

In addition to the large shift, TmDOTP⁵⁻ also induced severe line broadening in the 59Co resonance. The line width at [TmDOTP⁵⁻]: $[Co(en)_3^{3+}]$ ratios > 1 was too large to allow an accurate determination of the 59Co apparent transverse relaxation time. At a $[TmDOTP⁵]: [Co(en)₃³⁺]$ molar ratio of 0.2 (where the 2:1 adduct is the predominant species), the 59° Co line width was 5700 Hz ($T_2 \approx 56 \,\mu s$), as compared with 170 Hz in SRfree solution, and its T_1 was 200 \pm 60 μ s (as estimated by nullpoint measurements after a 180° pulse). Clearly, the quadrupolar²⁵ and dipolar mechanisms²⁶ enabled in the adduct are quite efficient, and the apparent differences between T_1 and T_2 suggest that the ⁵⁹Co resonance of Co(en)₃³⁺ may have an exchange contribution in the presence of TmDOTP5-.

To facilitate considerations for future SR preparation improvements, the interaction between $LnDOTP^{5-}$ and $Co(en)_{3}^{3+}$ was further characterized by monitoring the ¹H NMR spectrum of either HoDOTP⁵⁻ or YbDOTP⁵⁻ upon addition of $Co(en)_3^{3+}$. Figure 4 shows a stacked plot of a selected region of the ${}^{1}H$ spectrum of the YbDOTP⁵⁻ solution after the addition of increasing amounts of $(+)$ -Co(en)₃³⁺. The two resonances, labeled H_2 and H_3 , correspond to two DOTP⁸⁻ ethylenediamine ring protons, the frequencies of which are hyperfine shifted by the Yb³⁺ ion.¹⁷ With the first addition of $(+)$ -Co(en)₃³⁺, the degeneracies of these two YbDOTP⁵⁻ resonances were lifted; the lower frequency YbDOTP⁵⁻ peak in each pair corresponds to a single enantiomer of YbDOTP⁵⁻ that binds more favorably with $(+)$ -Co(en)₃³⁺ (J. Ren, unpublished results). Two new resonances also appeared at $17-17.5$ ppm (labeled with asterisks) corresponding to ethylenendiamine protons of (+)- $Co(en)_3^{3+}$, frequency shifted by the YbDOTP⁵⁻. The detection of two ethylenediamine proton resonances indicates that $(+)$ - $Co(en)$ ³⁺ binds with a slightly different geometry with the two enantiomers of YbDOTP⁵⁻. As more $(+)$ -Co(en)₃³⁺ is added, the proton signals of $(+)$ -Co(en)₃³⁺ shift to lower frequencies, toward their normal diamagnetic positions, and broaden somewhat. Figure 2 (bottom panel) summarizes the ${}^{1}H$ shifts of $Co(en)_{3}^{3+}$ induced by HoDOTP⁵⁻ at pH 10 and YbDOTP⁵⁻ at

pH 7.4 as a function of the LnDOTP⁵⁻:Co(en)₃³⁺ molar ratio (constant [LnDOTP5-]). The observed resonances showed a concentration dependent shift, reflecting rapid exchange between free and LnDOTP⁵⁻-bound Co(en)₃³⁺ cations. The HoDOTP⁵⁻ titration curve leveled off when the $HoDOTP⁵⁻:Co(en)₃³⁺ molar$ ratio reached a value of 0.5 while the YbDOTP5- titration curve leveled off when the YbDOTP⁵⁻:Co(en)₃³⁺ molar ratio was nearer 1. The log K values evaluated from the ¹H shifts of Co(en)₃³⁺ induced by HoDOTP⁵⁻ were 3.0 \pm 0.3 for the 1:1 $Co(en)_3^{3+}$ -HoDOTP⁵⁻ adduct and 1.5 \pm 0.2 for the 2:1 $[Co(en)_3^{3+}]_2$ -HoDOTP⁵⁻ adduct, using a limiting shift of -32.5 ppm. The agreement between the calculated and observed 1H shifts was excellent (solid lines through the data of Figure 2, bottom panel). The shifts induced by YbDOTP⁵⁻ were fitted best with a 1:1 binding model, yielding a conditional log *K* value of 3.1 ± 0.2 and a limiting shift of 14.5 ppm. Inclusion of 2:1 species did not improve this fitting.

4. Geometry of the Co(en)3 ³+-**LnDOTP5**- **Adduct.** The limiting shifts of the ¹H resonance frequencies of Co(en)₃³⁺ induced by $H_{0}D_{0}T_{0}T_{0}$ and $Y_{0}D_{0}T_{0}T_{0}T_{0}$ contain information about the geometry of the $Co(en)_3^{3+}-LnDOTP^{5-}$ adduct. The low- and high-frequency hyperfine shifts observed for the protons of $Co(en)_3^{3+}$ in the presence of HoDOTP⁵⁻ and YbDOTP⁵⁻, respectively, are in the same directions as those observed for the frequencies of DOTP8- ligand protons located within the cone defined by an angle (θ) of 54.7° with the 4-fold symmetry axis of the complex in the corresponding LnDOTP5 complexes.¹⁷ This indicates that the Co(en)₃³⁺ binding site must also be located within this cone. Given that $Co(en)_{3}^{3+}$ ions must be interacting with the $LnDOTP⁵⁻$ complexes *via* ion pairing, the proton shifts of $Co(en)_3^{3+}$ can be described by the dipolar equation

$$
\Delta = D_{\text{Ln}} A_2^0 \langle r^2 \rangle_{\text{Ln}} G \tag{8}
$$

where D_{Ln} is Bleaney's magnetic constant for a given Ln^{3+} ;²⁷ $A_2^0\langle r^2\rangle$ is the crystal field parameter of LnDOTP⁵⁻; and *G* is the geometric factor (=(3 cos² θ - 1)/*r*³) of the nucleus observed. Here, r is the distance between the Ln^{3+} ion and the Co(en)_{3}^{3+} proton while θ is the angle between the *r* vector and the 4-fold symmetry axis of LnDOTP5-. The crystal field parameters, A_2 ⁰ $\langle r^2 \rangle$, have been determined for HoDOTP⁵⁻ (182) \AA^3 ppm), YbDOTP⁵⁻ (146 \AA^3 ppm), and other DOTP⁸⁻ complexes of the heavy lanthanide ions.²⁸ According to eq 8, if the geometric factor *G* is independent of Ln for all LnDOTP5 complexes along the series, the observed frequency shifts for a given nucleus will be proportional to the product $D_{Ln}A_2^0\langle r^2 \rangle_{Ln}$. For the Co(en)₃³⁺ cation, the ratio ($\Delta_{\text{Yb}}:\Delta_{\text{Ho}}$) of the limiting ¹H frequency shift induced by YbDOTP⁵⁻ and HoDOTP⁵⁻ was -0.45 , in reasonable agreement with the calculated ratio (-0.41) of the $D_{Ln}A_2^0\langle r^2 \rangle_{Ln}$ values for these two complexes. This confirmed that the ¹H frequency shifts of $Co(en)_3^{3+}$ induced by YbDOTP⁵⁻ were indeed dominated by the dipolar hyperfine shift term. Thus, the the average angular geometric parameter, θ, for the Co(en)₃³⁺ protons could be estimated from the observed limiting shifts, if the average distance *r* is known or can be approximated.

The average proton $-Ln^{3+}$ distance was evaluated from the ¹H longitudinal relaxation rate constant enhancement obtained at LnDOTP⁵⁻:Co(en)₃³⁺ > 1 (where Co(en)₃³⁺ is greater than 95% bound) using the reduced Solomon-Bloembergen equation:26

⁽²⁵⁾ Laszlo, P. *Encycl. NMR* **1996**, *6*, 3858-3869.

⁽²⁶⁾ Alsaadi, B. M.; Rossotti, F. J. C.; Williams, R. J. P. *J. Chem. Soc., Dalton Trans.* **1980**, 2147-2150.

⁽²⁷⁾ Bleaney, B. *J. Magn. Reson*. **1972**, *8*, 91-100.

⁽²⁸⁾ Ren, J.; Sherry A. D. *J. Magn. Reson. Ser. B* **1996**, *111*, 178-182.

3498 *Inorganic Chemistry, Vol. 36, No. 16, 1997* Ren et al.

$$
T_I^{-1} = (4/3)(\mu_0/4\pi)^2 \mu_{\text{eff}}^2 \gamma^2 \beta^2 \tau_s / \langle r^6 \rangle \tag{9}
$$

where $\mu_0/4\pi$ is the magnetic susceptibility parameter for a vacuum, μ_{eff} is the effective magnetic moment of the Ln³⁺ ion, *γ* is the magnetogyric ratio of ¹H, β is the Bohr magneton, and τ_s is the electron-spin correlation time of LnDOTP⁵⁻. Using τ_s values of 0.54 and 0.28 ps determined previously²⁸ for HoDOTP⁵⁻ and YbDOTP⁵⁻ and measured ¹H T_1 's of 3.0 \pm 0.3 and 12.2 ± 0.7 ms for Co(en)₃³⁺, respectively ([HoDOTP⁵⁻]: $[Co(en)_3^{3+}] = 1.6$ and $[YbDOTP^{5-}]: [Co(en)_3^{3+}] = 1.4$, an average Ln-H distance of 5.0 \pm 0.3 Å can be estimated for these two ion-paired complexes. Substituting this $\langle r \rangle$ value into eq 8 gives an average angle ($\langle \theta \rangle$) of 40 \pm 2^o for the Co(en)₃³⁺ protons in the ion-paired complex. The validity of these $\langle r \rangle$ and $\langle \theta \rangle$ values can be further checked by the ⁵⁹Co frequency shift induced by TmDOTP⁵⁻. Using a $D_{Ln}A_2^{0}$ ⁰ γ ² γ _{Tm} value of 18 970 \AA ³ ppm for TmDOTP⁵⁻,²⁸ together with a Tm-Co distance of 5.0 Å and a $\langle \theta \rangle$ value of 40°, the calculated ⁵⁹Co limiting shift was 131 ppm, in good agreement with the experimental result (135 ppm). The $\langle r \rangle$ and $\langle \theta \rangle$ values found for Co(en)₃³⁺ are similar to those previously estimated for Cs^+ (ionic radius: 1.67 Å) bound to $TmDOTP^{5-}$ where the binding occurs at the outer oxygen axial oxygens of the phosphonate groups.21 The success of the assumption that the cobalt and the hydrogen nuclei of the cation are at the same averaged location may reflect rapid inter-ion pair exchange and/or rapid intra-ion pair rotation of the countercation.

Summary

Three new, excess-salt-free formulations of the 23 Na shift reagent TmDOTP5- have been prepared and characterized. The osmolalities of these depended upon the identity and charge of the countercation, with the osmolalities decreasing in the order MegH⁺ > Na⁺ > Co(en)₃³⁺. The tripositive cation Co(en)₃³⁺ forms an ion-pair complex($log K = 2.5-3.1$) with TmDOTP⁵⁻ at pH 7.4, which is somewhat stronger than that with the smaller monovalent ion, Na⁺ (log $K = 1.6 - 2.5$).¹³ Although the sugar cation meglumine H^+ reportedly binds to GdDOTP⁵⁻ with a higher affinity (log $K = 2.96$)²⁹ than Na⁺, our osmolality measurements indicate that MegH⁺ more fully dissociates from $TmDOTP⁵⁻$ than does $Na⁺$ at equivalent concentrations. Measured ⁵⁹Co and ¹H frequency shifts indicate that $Co(en)_{3}^{3+}$ forms an ion pair with TmDOTP⁵⁻ in a geometrical position similar to that of Na⁺ on the charged surface of the SR, but at a considerably longer distance from the paramagnetic center. Finally, the SR formulation Na4HTmDOTP appears to represent the best compromise of lower osmolality with minimal reduction of SR potency.

Acknowledgment. Support of this research by grants from the Robert A. Welch Foundation (AT-584) and the NIH Biotechnology Research Program (RR02584) is gratefully acknowledged. We also thank Dr. Z. Kovacs for synthesis of H8DOTP. C.S.S. acknowledges an NIH grant (R01-GM32125) and Contract DE-AC02-76CH00016 with the DOE and its office of Health and Environmental Research to BNL, as well as early discussions with Mr. Christian Labadie and Professor Albert Haim.

IC970128Q

(29) Aime, S.; Botta, M.; Terreno, E.; Anelli, P. L.; Uggeri, F. *Magn. Reson. Med*. **1993**, *30*, 583-591.