Synthesis and Reactivity of the Labile Dihydrogen Complex [{MeC(CH₂PPh₂)₃}Ir(H₂)(H)₂]BPh₄

Claudio Bianchini,* Simonetta Moneti, Maurizio Peruzzini, and Francesco Vizza

Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, CNR, Via J. Nardi 39, I-50132 Firenze, Italy

Received May 9, 1997[®]

The novel Ir(III) nonclassical tetrahydrido complex [(triphos)Ir(H₂)(H)₂]BPh₄ (4BPh₄) has been prepared by hydrogenation of the ethene dihydride complex [(triphos)Ir(C₂H₄)(H)₂]BPh₄ in either the solid state ($P_{H_2} \ge 1$ atm) or CH₂Cl₂ solution ($P_{H_2} \ge 3$ atm) [triphos = MeC(CH₂PPh₂)₃]. Complex 4BPh₄ is very labile in solution and can be isolated in the solid state exclusively from solid–gas reactions. Characterization of 4BPh₄ in solution can be achieved by high-pressure NMR and IR spectroscopies, however. Various deuterated isotopomers of [(triphos)Ir(H₂)(H)₂]⁺ have been obtained in CD₂Cl₂ solution at low temperature by treatment of the trihydride [(triphos)IrH₃] with DOSO₂CF₃. On the basis of a variety of NMR experiments, the complex cation [(triphos)-Ir(H₂)(H)₂]⁺ is assigned an octahedral structure where two terminal hydride ligands and a dihydrogen molecule are *trans* to the phosphorus atoms of a facial triphos ligand. Complex 4BPh₄ dissolves in THF at room temperature yielding [(triphos)IrH₃], BPh₃, and benzene; a similar reaction occurs in acetone, whereas in CH₂Cl₂ the complex loses H₂ converting to the dimers *cis*- and *trans*-[(triphos)IrH(μ -H)₂HIr(triphos)](BPh₄)₂.

Introduction

In a number of homogeneous hydrogenation reactions assisted by monocationic metal complexes, we have observed the degradation of the tetraphenylborate counteranion to BPh₃ and benzene with concomitant formation of a neutral complex with a new M–H bond.^{1,2} In the example considered in this work, the ethene dihydride complex [(triphos)Ir(C₂H₄)(H)₂]BPh₄ (1) reacts with H₂ (>5 atm) in THF producing, already at room temperature, the trihydride [(triphos)IrH₃] (2), ethane, BPh₃ and benzene (Scheme 1).²

The reaction shown in Scheme 1 is not surprising *per se* as one considers that hydrido metal complexes may act as Brønsted acids³ and that the BPh₄⁻ anion is susceptible to attack by acids.⁴ Since the protonolysis of BPh₄⁻ requires the action of strong acids, we soon started hypothesizing the formation of transient nonclassical H₂ complexes in the course of the hydrogenolysis reactions of BPh₄⁻. Indeed, unlike classical polyhydride complexes, η^2 -H₂ coordination compounds may be very acidic with pK_a values below 0.^{5,6}

After many efforts, we have now been able to unambiguously show that the nonclassical dihydrogen dihydride cation [(triphos)- $Ir(H_2)(H)_2$]⁺ (4⁺) is indeed formed when 1 is reacted with H₂ in either the solid state or solution. Nonconventional experiments such as high-pressure NMR spectroscopy and solid–gas organometallic reactions have been of crucial importance in solving the chemical puzzle that is described here.

- (a) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Frediani, P., Herrera, V.; Sánchez-Delgado, R. A. J. Am. Chem. Soc. 1993, 115, 7505. (b) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Herrera, V.; Sánchez-Delgado, R. A. J. Am. Chem. Soc. 1993, 115, 7505.
- Bianchini, C.; Farnetti, E.; Graziani, M.; Kaspar, J.; Vizza, F. J. Am. Chem. Soc. 1993, 115, 1753.
- (3) (a) Kristjiándóttir, S. S.; Norton, J. R. in *Transition Metal Hydrides*; Dedieu, A., Ed.; VCH: New York, 1992; Chapter 9; (b) Hlatky, G.; Crabtree, R. H. *Coord. Chem. Rev.* **1985**, 65, 1.
- (4) (a) Cooper, J. N.; Powell, R. E. J. Am. Chem. Soc. 1963, 85, 1590;
 (b) Nishida, H.; Takada, W.; Yoshimura, N. M. Bull. Chem. Soc. Jpn. 1984, 57, 2600.
- (5) Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992, 121, 155.
- (6) Chinn, M. S.; Heinekey, D. M.; Payne, N. G.; Sofield, C. D. Organometallics 1989, 8, 1824.

Scheme 1. Hydrogenation of $[(triphos)Ir(C_2H_4)(H)_2]BPh_4$ in THF

Experimental Section

General Procedures. The ligand 1,1,1-tris[(diphenylphosphino)methyl]ethane (triphos)⁷ and the complexes [(triphos)IrH₂(C₂H₄)]BPh₄ $(1)^8$ and [(triphos)IrH₃] $(2)^9$ were prepared as described in the literature. CFCl₃ was purchased from Aldrich and used as received. Deuterated solvents for NMR measurements (Merck) were dried over activated molecular sieves (4 Å) and freeze-pump-thaw degassed three times each before dissolving solid samples. ¹H NMR spectra were recorded on Bruker Avance DRX 500, Varian VXR 300, or Bruker AC200 spectrometers operating at 500.13, 299.94, or 200.13 MHz, respectively. Peak positions are relative to tetramethylsilane and were calibrated against the residual solvent resonance ($\delta_{CD_2Cl_2}$ 5.32, δ_{THF-d_8} 3.70 and 1.80, $\delta_{acetone-d_6}$ 2.20, δ_{DMF-d_7} 2.92). ³¹P{¹H} NMR spectra were recorded on the same instruments operating at 202.46, 121.42, and 81.01 MHz, respectively. Chemical shifts were measured relative to external 85% H₃PO₄ with downfield values taken as positive. The spin-lattice relaxation time (T_1) measurements were carried out in CD₂Cl₂/CFCl₃ at 300 MHz by the inversion-recovery method using standard 180°- τ -90° pulse sequences with calibration of the 90° pulse at all reported temperatures. ¹H{³¹P} NMR spectra were recorded on the Avance DRX 500 instrument using the wide-band phosphorus decoupling sequence GARP.10 The high-pressure NMR (HPNMR) experiments were carried in 10-mm sapphire tubes (Saphikon Inc., NH) assembled with an inhouse-built Ti-alloy pressure head. The HPNMR spectra were recorded by using a standard 10-mm probe tuned to ³¹P and ¹H on the Bruker AC200 spectrometer. The ³¹P{¹H} HPNMR measurements were acquired with composite pulse proton decoupling (WALTZ16).10

- (8) Barbaro, P.; Bianchini, C.; Meli, A.; Peruzzini, M.; Vacca, A.; Vizza, F. Organometallics 1991, 10, 2227.
- (9) Janser, P.; Venanzi, L. M.; Bachechi, F. J. Organomet. Chem. 1985, 296, 229.
- (10) Mann, B. E. Adv. Organomet. Chem. 1988, 28, 397.

[®] Abstract published in Advance ACS Abstracts, November 1, 1997.

⁽⁷⁾ Hewertson, W.; Watson, R. J. Chem. Soc. 1962, 1490.

Synthesis of [{MeC(CH₂PPh₂)₃}Ir(H₂)(H)₂]BPh₄

Infrared spectra were generally recorded as Nujol mulls on a Perkin-Elmer 1600 series FT-IR spectrometer between KBr plates. Variablepressure solution spectra were recorded on a Perkin-Elmer 1760 FT-IR spectrometer using a NaCl cell capable of withstanding high pressures (up to 200 atm). The IR solution experiments were made in a stainless-steel vessel (125 mL) having a pressure gauge and two stopcocks. Air was evacuated from the vessel by a vacuum pump, and then a CH2Cl2 solution of the complex under examination was introduced by suction. The required pressure of H2 was obtained using a high-pressure cylinder. Reactions under controlled pressure were performed with a Parr 4565 reactor equipped with a Parr 4842 temperature and pressure controller. GC analyses were performed on a Shimadzu GC-8A gas chromatograph equipped with a thermal conductivity detector and with a 4.5-m 60/80 Carboxen-1000 stainlesssteel column (3.2-mm o.d./2.1-mm i.d.; Supelco Inc.). Elemental analyses were performed using a Carlo Erba model 1106 elemental analyzer. CAUTION: All manipulations involving high pressures are potentially hazardous. Safety precautions must be taken at all stages of NMR studies involving high-pressure NMR tubes.11

Synthesis of the Complex [(triphos)IrD₃] (2-*d*₃). The trideuteride complex [(triphos)IrD₃] (2-*d*₃) was prepared from the protiated complex 2 by H/D exchange at room temperature with CH₃OD in CH₂Cl₂. The isotopic purity (>90%) of the isolated product was determined by ¹H NMR integration of the residual proton resonances in the hydride region against the resonances of the phosphine protons. IR (KBr): ν (Ir–D) 1450 cm⁻¹ (br, m).

Synthesis of [(triphos)Ir(H₂)(H)₂]BPh₄ (4BPh₄). (A) Solid-Gas Reaction. A solid sample of 1 (0.200 g, 0.17 mmol) was placed in a Teflon vessel inside the Parr reactor, which, after three vacuumnitrogen cycles, was pressurized with 5-10 atm of dihydrogen. The reactor was heated to 60 °C for 3 h. After this time, the reactor was cooled to room temperature and slowly depressurized. The volatile contents of the reactor were analyzed by GC (which showed the presence of ethane) while the pale yellow solid in the Teflon vial was transferred into a Schlenk flask which was filled with nitrogen and stored in the refrigerator at -5 °C. ³¹P{¹H} and ¹H NMR spectra of the crude product dissolved in cold (-50 °C) CD₂Cl₂ (0.7 mL) in a 5-mm NMR tube showed the almost quantitative formation of 4BPh₄ (>97%). C₆₅H₆₃BIrP₃ (1140.2): calcd C 68.47, H 5.57; found C 68.45, H 5.51. IR: v(Ir-H) 2068 (m) and 2013 cm⁻¹ (w), v(B-C) 610 cm⁻¹ (m). ³¹P{¹H} NMR (CD₂Cl₂/CFCl₃, 1:1 v/v, 121.42 MHz): at -20 °C, δ –11.15 (br s); at –80 °C, δ –9.15 (br s, 1P), δ –12.63 (br s, 2P). ¹H NMR (CD₂Cl₂/CFCl₃, 200.13 MHz): at -10 °C, δ_{Ir-H} -9.01(br, $\omega_{1/2} \approx 176$ Hz, 4H); at -90 °C, δ_{Ir-H} -8.40 (br q, ${}^{2}J$ (H,P) ≈ 22 Hz, 2H), -10.70 (br d, ${}^{2}J(H,P_{trans}) \approx 113$ Hz, 2H).

(B) HPNMR Experiment. A 10-mm sapphire HPNMR tube was charged with a CD₂Cl₂ (2.2 mL) solution of 1 (0.050 g, 4.29×10^{-2} mmol) prepared under nitrogen and then was sequentially pressurized with hydrogen to 3, 10, and 20 atm at room temperature. ¹H and ³¹P-{¹H} NMR spectra recorded at room temperature revealed the quantitative formation of 4BPh₄ already at the *P*_{H₂} of 3 atm. The proton NMR spectrum confirmed also the stoichiometric formation of ethane (singlet at 0.81 ppm).

Synthesis of the Complex [(triphos)Ir(D₂)(D)₂]BPh₄ (4BPh₄- d_4). The perdeuterated isotopomer 4BPh₄- d_4 was prepared in quantitative yield by replacing H₂ with D₂ in the procedures A and B described above. Alternatively, the perdeuterated isotopomer can be prepared *in situ* with isotopic purity higher than 90% (¹H NMR) by treating 2- d_3 with DOSO₂CF₃ in CD₂Cl₂ under D₂ (1 atm).

Synthesis of [(triphos)Ir(H₂)(H)₂]BF₄ (4BF₄). (A) Solid–Gas Reaction. Substitution of [(triphos)IrH₂(C₂H₄)]BF₄ for 1 in the solid– gas preparation of 4BPh₄ gives 4BF₄ as a pale yellow powder. C₄₁H₄₃-BF₄IrP₃ (907.7): calcd C 54.20, H 4.77; found C 54.06, H 4.63. IR: ν (Ir–H) 2070 (m) and 2016 cm⁻¹ (w), ν (B–F) 1054 cm⁻¹ (br, s).

(B) Reaction of [(triphos)IrH₃] (2) with HBF₄·OMe₂ at Low-Temperature. A 5-mm NMR tube was placed in a dry ice/acetone bath and charged with 30 mg of 2 (3.66×10^{-2} mmol) and with a solution of HBF₄·OMe₂ (5.0μ L, 4.11×10^{-2} mmol) in 0.7 mL of CD₂Cl₂ cooled to -78 °C. The tube was cautiously shaken until complete dissolution of 2 occurred to give a colorless solution. The tube was inserted into the NMR probehead precooled to -40 °C; ¹H and ³¹P{¹H} NMR spectra, immediately recorded, showed the quantitative transformation of **2** into **4**⁺.

Reaction of 4BPh₄ (or 4BF₄) with NEt₃. A Schlenk tube was charged under nitrogen with a magnetic bar, 0.7 mL of CD₂Cl₂, and NEt₃ (8.0 μ L, 5.73 mmol) and cooled to -78 °C with a dry ice/acetone bath. Solid **4**BPh₄ (50 mg, 4.39 × 10⁻² mmol) was then added with stirring. The pale yellow solution turned immediately colorless and was transferred via syringe into a 5-mm NMR tube. ³¹P{¹H} and ¹H NMR analysis of the solution revealed the quantitative formation of the trihydride **2** and (NEt₃H)⁺. In a similar way, the addition of NEt₃ to a cold solution of **4**BF₄ in CD₂Cl₂ gave **2**.

Behavior of 4BPh₄ in CD₂Cl₂ under Nitrogen. A 5-mm NMR tube containing a solution of 4BPh₄ (0.025 g, 2.20×10^{-2} mmol) in CD₂Cl₂ (0.7 mL) was saturated with nitrogen at room temperature and then inserted into the NMR probe. ³¹P{¹H} and ¹H NMR analysis of the solution showed the quantitative transformation of 4BPh₄ into the tetrahydrido dimer *cis*-[(triphos)IrH(μ -H)₂HIr(triphos)](BPh₄)₂ (*cis*-3).⁸ On standing at room temperature, the solution slowly became orange in color, while orange crystals of the stereoisomer *trans*-[(triphos)IrH-(μ -H)₂HIr(triphos)](BPh₄)₂ (*trans*-3) began to separate. After 1 week at room temperature, *ca.* 85% of the initial dihydrogen dihydride complex had converted to the orange isomer, which is practically unsoluble in CH₂Cl₂ and in most common organic solvents. Dimeth-ylformamide (DMF) is the only solvent in which *trans*-3 is sufficiently soluble for NMR characterization.

cis-3. ³¹P{¹H} NMR (CD₂Cl₂/CFCl₃, 1:1 v/v, 121.42 MHz): at 20 °C, δ -20.04 (s), the A₃ pattern is temperature invariant down to -120 °C. ¹H NMR (CD₂Cl₂, 81.01 MHz, 20 °C): δ -13.31 (sept, *J*(H,P) = 17.0 Hz, 4H). IR (Nujol): ν (Ir-H) 2127 (s), 2104 cm⁻¹ (shoulder); ν (Ir-H–Ir) not observed.⁸

trans-3. ³¹P{¹H} NMR (DMF- d_7 , 81.01 MHz): at 24 °C, $\delta \approx -1.2$ (br s, $\omega_{1/2} \approx 173$ Hz); at -55 °C, δ 15.69 (br s, J(P,P) not resolved, 1P, in the proton-coupled spectrum transforms into a broad doublet with J(H,P_{trans}) ≈ 160 Hz), $\delta -8.57$ (br s, 2P); ¹H NMR (DMF- d_7 , 200.13 MHz): at 24 °C, $\delta -7.74$ (br s, $\omega_{1/2} \approx 170$ Hz); at -55 °C, $\delta -2.99$ (br d, J(H,P_{trans}) = 163 Hz, 2H), $\delta -12.39$ (br quintet, J(H,P) = 36.2 Hz, 2H). IR (Nujol): ν (Ir–H) 2105 (ms) and 2057 (ms) cm⁻¹; ν (Ir–H–Ir) not observed.

Behavior of 4BPh₄ in THF-d₈. A 5-mm NMR tube containing a solution of 4BPh₄ (0.025 g, 2.20×10^{-2} mmol) in THF-d₈ (0.7 mL) was saturated with nitrogen at -20 °C and then inserted into the NMR probe precooled at the same temperature. Appreciable transformation of 4 into 2 occurred already at 10 °C. After 15 min at 20 °C, ³¹P{¹H} and ¹H NMR analysis of the solution showed the complete disappearence of 4^+ with formation of a mixture of 2 (\geq 90%) and of the THF adduct [(triphos)Ir(H)₂(THF)]^{+.12} Occasionally, some cis-3 is also formed. When 4BPh₄ was dissolved in THF saturated with H₂, 2 was selectively produced. GC-MS analysis showed the concomitant formation of ca. 1 equiv of benzene. In a reaction carried out in a Schlenk tube with 500 mg of 4BPh4, after the solvent was removed in vacuo at room temperature, a white crystalline product sublimed from the residue at 70 °C (at 0.5 Torr). This air-sensitive product was identified as triphenylboron from its elemental analysis and IR spectrum.¹³ When a sample of 4BPh₄-d₄ was dissolved in THF-d₈, GC-MS analysis revealed the formation of benzene- d_1 .

Behavior of 4BPh₄ in Acetone-*d*₆. Under similar conditions but in acetone-*d*₆, NMR spectroscopy showed the disappearence of 4BPh₄ with formation of a *ca.* 1:1 mixture of **2** and of the solvento complex [(triphos)Ir(H)₂(OCMe₂)]⁺. Benzene and BPh₃ were also formed. NMR data for [(triphos)Ir(H)₂(OCMe₂)]⁺: ³¹P{¹H} NMR (acetone-*d*₆, 121.42 MHz, 20 °C) δ -0.69 (t, *J*(P,P) = 13.5 Hz), δ -8.74 (d); ¹H NMR (acetone-*d*₆, 200.13 MHz, 20 °C) δ -10.43 (AA'XX'Y spin system, *J*(H,P_{trans}) \approx 99 Hz, 2H).^{8,12}

Behavior of 4BF₄ in **THF**-*d*₈. The dissolution of **4**BF₄ in THF-*d*₈ (NMR experiment) at room temperature under nitrogen gave mixtures of the THF adduct [(triphos)Ir(H)₂(THF)]BF₄ (>90%) and *cis*-**3**.

^{(12) (}a) Bianchini, C.; Caulton, K. G.; Folting, K.; Meli, A.; Peruzzini, M.; Polo, A.; Vizza, F. J. Am. Chem. Soc. 1992, 114, 7290. (b) Bianchini, C.; Caulton, K. G.; Johnson, T. J.; Meli, A.; Peruzzini, M.; Vizza, F. Organometallics 1995, 14, 933.

⁽¹³⁾ Sharp, O. W.; Sheppard, N. J. Chem. Soc. 1957, 674.

⁽¹¹⁾ Elsevier C. J. J. Mol. Catal. 1994, 92, 285.

Scheme 2. Hydrogenation of $[(triphos)Ir(C_2H_4)(H)_2]BPh_4$ in Dichloromethane

3-*cis*

Reaction of 4BPh4 with Ethene in CD2Cl2. A 5-mm NMR tube containing a solution of 4BPh4 (0.025 g, 2.20 \times 10 $^{-2}$ mmol) in CD2- Cl_2 (0.7 mL) was saturated with ethene at -20 °C and then inserted into the NMR probe. ³¹P{¹H} NMR analysis of the solution showed the quantitative transformation of 4BPh₄ into 1.

Reaction of 4BPh₄ with Carbon Monoxide in CD₂Cl₂. A 5-mm NMR tube containing a solution of 4 (0.025 g, 2.20×10^{-2} mmol) in CD₂Cl₂ (1.0 mL) was saturated with CO at -20 °C and then inserted into the NMR probe. ³¹P{¹H} NMR analysis of the solution revealed the quantitative transformation of 4BPh₄ into the known carbonyl dihydride complex [(triphos)IrH₂(CO)]BPh_{4.9}

Synthesis of [(triphos)IrH₃D]BF₄ (4BF₄-d₁) and [(triphos)IrH₂D₂]-**BF**₄ (**4BF**₄- d_2). The trihydride complex **2** (0.030 g, 3.66 × 10⁻² mmol) was suspended in 0.7 mL of CD₂Cl₂ saturated with N₂. After the suspension was transferred into a 5-mm screw cap NMR tube cooled at -78 °C, 2.0 equiv (6.5 μ L, 7.32 $\times 10^{-2}$ mmol) of DBF₄•OMe₂ was added via syringe. The tube was cautiously shaken until complete dissolution of 2 occurred to give a colorless solution. ¹H NMR analysis of this solution showed the quantitative disappearance of 2 and the formation of a mixture of different isotopomers of 4BF4 [(triphos)-IrH_{4-n}D_n]BF₄. A careful integration of the ${}^{1}H{}^{31}P{}$ hydride resonances gave the following isotopomeric composition: $4BF_4$ (41%); $4BF_4$ - d_1 (43%); 4BF₄-d₂ (16%). ¹H NMR (CD₂Cl₂, 500.13 MHz, -30 °C): δ -8.220 (q, J(H,P) = 22.1 Hz, $4BF_4$), $\delta -8.147$ (q of 1:1:1 triplets, $J(H,P) = 22.1 \text{ Hz}, J(H,D) = 4.6 \text{ Hz}, 4BF_4-d_1), \delta - 8.115 \text{ (m, transforms)}$ in the ¹H{³¹P} NMR spectrum into a 1:2:3:2:1 quintet, J(H,D) = 4.8Hz, $4BF_4-d_2$).

Synthesis of the Isotopomers [(triphos)IrH_{4-n}D_n]BPh₄. A 10mm sapphire HPNMR tube was charged with a CD₂Cl₂ (2.2 mL) solution of 1 (0.050 g, 4.29×10^{-2} mmol) pressurized with a 1:1 H₂/ D₂ mixture to *ca*. 30 atm at room temperature. ¹H NMR spectroscopy of the solution showed the formation of various isotopomers $[(triphos)IrH_{4-n}D_n]^+$. ¹H NMR (CD₂Cl₂, 200.13 MHz, 20 °C): $\delta(4^+-d_0-4^+-d_4)$: complex multiplet between -8.3 and -8.0 ppm.

Results and Discussion

Preparation and Properties of [(triphos)Ir(H₂)(H)₂]BPh₄. As illustrated in Scheme 1, the hydrogenation of a THF solution of the ethene dihydride complex 1 in an autoclave pressurized with H_2 (>5 atm) at room temperature transforms the starting ethene complex into the trihydride 2 and produces stoichiometric amounts of ethane, BPh₃, and benzene.² Between 3 and 5 atm of H₂ the reaction is less selective as variable amounts of the tetrahydrido dimer *cis*-[(triphos)IrH(µ-H)₂HIr(triphos)](BPh₄)₂ (cis-3) are also formed. Decreasing the H_2 pressure favors the formation of the dimer, which becomes the only product when the hydrogenation of 1 is carried out with 2 atm of H_2 at 60 °C.

Monitoring the reaction between 1 and H_2 at room temperature by high-pressure NMR spectroscopy in THF-d₈ shows no intermediate species along the transformation of 1 into 2 in the pressure range from 3 to 30 atm.

The substitution of CH₂Cl₂ for THF in the hydrogenation of 1 affects significantly the nature of both the organic and metal products. Ethane is still formed, while neither 2, nor BPh₃, nor benzene is produced. After the autoclave is depressurized and the solvent is removed, all iridium is recovered as a mixture of cis-3² and its geometric isomer trans-[(triphos)IrH(μ -H)₂HIr-(triphos)](BPh₄)₂ (trans-3) (Scheme 2). However, monitoring the reaction between 1 and H_2 (1-30 atm) at room temperature by HPNMR spectroscopy in CD₂Cl₂ shows that 1 converts quantitatively to the dihydrogen dihydride complex [(triphos)- $Ir(H_2)(H_2)BPh_4$ (4BPh₄) already at 3 atm of H₂. Only below this pressure, the latter complex starts decomposing irreversibly to the tetrahydrido dimers, which are the only isolable metal products.

The dihydrogen dihydride complex **4**BPh₄ can be isolated in the solid state exclusively by the solid-gas reaction of 1 with H₂ at 60 °C (Scheme 3). In a typical reaction, microcrystals of 1 are introduced into an autoclave pressurized with 5 atm of H₂. Heating at 60 °C for \geq 3 h usually converts 200 mg of 1 to 4BPh₄, which is collected as a creamy-white powder. Higher H₂ pressures shorten the reaction time, while higher temperatures result in the irreversible formation of the tetrahydrido dimer *cis*-**3**.² Alternatively, a constant flow of H_2 at ambient pressure is passed through a layer of solid 1 over a fibrous glass frit positioned into a tubular glass reactor heated at 60 °C.^{2,14} As compared to the autoclave reaction, this procedure requires much longer times for the complete transformation of comparable amounts of the starting dihvdride.

Like the homogeneous reaction, the heterogenous hydrogenation of 1 produces ethane.² As previously proposed, the formation of ethane in both the solid state and solution proceeds by insertion of the ethene ligand into one Ir-H bond of 1 to give the unsaturated Ir(III) ethyl hydride species [(triphos)- $Ir(H)(C_2H_5)]^+$. σ -Donor molecules, even with weak coordinating capability, shift the equilibrium between ethene dihydride and ethyl hydride to the right through either the formation of stable octahedral ethyl hydride adducts (MeCN, DMF)⁸ or the

^{(14) (}a) Bianchini, C.; Peruzzini, M; Zanobini, F. Organometallics 1991, 10, 3416. (b) Aime, S.; Bianchini, C.; Gobetto, R.; Psaro, R.; Sordelli, L.; Zanobini, F. Organometallics 1993, 12, 4757.

Synthesis of [{MeC(CH₂PPh₂)₃}Ir(H₂)(H)₂]BPh₄

reductive elimination of ethane (CO).^{8,15} The fact that the reaction of **1** in CD_2Cl_2 with 30 atm of D_2 does not produce deuterated ethane (HPNMR experiment) suggests that the reductive coupling of the ethyl and terminal hydride ligands is faster than the oxidative addition of H₂.

Compound 4BPh₄ can be manipulated for a short time in the air and is indefinitely stable in the solid state under inert atmospheres (N₂ or Ar) below 5 °C. No appreciable decomposition is observed at room temperature within 5 days, whereas above 60 °C solid 4BPh₄ starts converting to the tetrahydrido dimer *cis*-3 (a 100-mg sample of 4BPh₄ completely transforms into *cis*-3 within 3 h at 90 °C).

The IR spectrum of **4**BPh₄ (Nujol mull) shows a mediumintensity ν (Ir–H) band at 2068 cm⁻¹ and a less intense absorption at 2013 cm⁻¹. The latter band is most likely due to solid-state effects as it disappears in the spectrum recorded in CH₂Cl₂ solution under 20 atm of H₂. Similar solid-state IR absorptions in the ν (Ir–H) region have been observed for several cationic dihydride complexes of the formula [(triphos)IrH₂-(L)]Y,^{1b,8,12} *i.e.*, the parent complex **1** exhibits two Ir–H stretching absorptions at 2124 and 2062 cm^{-1.8} No vibration ascribable to the H–H stretch of the H₂ ligand is observed in the spectrum; these bands are generally very weak and may also be obscured by ν (C–H) absorptions.¹⁶

Compound **4**BPh₄ starts losing H₂ in CH₂Cl₂ already at -15 °C to give *cis*- and *trans*-**3**. In contrast, a solution of **4**BPh₄ prepared under nitrogen at low temperature (-78 °C) and stored at ≤ -20 °C does not decompose within 1 week. In keeping with the presence of a weakly bound H₂ ligand, **4**BPh₄ quickly and selectively transforms into either **1** or the carbonyl complex [(triphos)IrH₂(CO)]⁺ when it is dissolved in CH₂Cl₂ saturated with C₂H₄ or CO, respectively (Scheme 4).⁹

Replacing CH₂Cl₂ with THF has a dramatic effect on the stability of 4BPh₄ in solution. At room temperature under nitrogen, 4BPh₄ decomposes in THF within a few minutes to give the trihydride **2** as the largely predominant product (90–95%). The major side product is the THF adduct [(triphos)-Ir(H)₂(THF)]BPh₄ (**6**),¹² but some *cis*-**3** may occasionally form (³¹P NMR experiment in THF-*d*₈) (Scheme 4). The trihydride **2** is exclusively formed when 4BPh₄ is dissolved in THF saturated with H₂.

NMR spectroscopy shows that the dissolution of **4**BPh₄ in THF-*d*₈ does not evolve H₂, whereas benzene is formed (confirmed by GC–MS). The formation of benzene at the expense of the BPh₄⁻ counteranion has been proved by various experiments: (i) The production of benzene-*d*₁ occurs when the perdeuterated isotopomer **4**BPh₄-*d*₄ is dissolved in THF-*d*₈. (ii) Analytically pure BPh₃ was obtained from a preparative-scale reaction after the solvent was removed and the residue sublimed (70 °C, 0.5 Torr).¹³ (iii) The dissolution of the BF₄⁻ derivative [(triphos)Ir(H₂)(H)₂]BF₄ (**4**BF₄) (see below) in THF-*d*₈ produces neither the triphos ligand). In contrast, the THF adduct [(triphos)Ir(H)₂(THF)]BF₄ is obtained together with some *cis*-**3** (<10%).

Another solvent in which $4BPh_4$, though partially, decomposes to 2, BPh₃, and benzene is acetone. Indeed, dissolving $4BPh_4$ in acetone- d_6 results in the formation of a *ca*. 1:1 mixture

Scheme 4. Reactions of 4BPh₄

of the trihydride **2** and the known solvento adduct [(triphos)-Ir(H)₂(OCMe₂)]BPh₄ (Scheme 4).

The only way to convert 4BPh₄ in CH₂Cl₂ to the trihydride 2 is the deprotonation of the H_2 ligand with bases.⁵ For example, the addition of a slight excess of NEt₃ to a CH₂Cl₂ solution of 4BPh₄ results in the clean and selective formation of 2 and [NEt₃H]BPh₄. Consistently, the protonation of 2 with $HBF_4 \cdot OMe_2$ in CD_2Cl_2 at low temperature gives 4^+ . The tetrafluoroborate salt 4BF4 can be isolated only through a solidgas reaction, however. Although a detailed account of the chemistry, interconversion, and structure of the cis and trans stereoisomers of $[(triphos)IrH(\mu-H)_2HIr(triphos)]^{2+}$ will be given elsewhere,¹⁷ it may be useful to report here that the orange *trans* isomer is formed exclusively in CH2Cl2 solution by the dissolution of 4BPh₄, the protonation of 2, or the treatment of cis-3 with a catalytic amount of a protic acid. The structure of the *trans* isomer has been determined by a single-crystal X-ray analysis (monoclinic, space group $P2_1$, a = 12.555(2) Å, b =26.232(3) Å, c = 13.191(3) Å, $\beta = 109.94(2)^{\circ}$, R = 0.057, $d_{\text{Ir}-\text{Ir}}$ = 2.785 Å) while the structural assignment for the *cis* isomer is only suggested on the basis of its lower thermodynamic stability.^{8,18} Both isomers are, in fact, highly fluxional on the NMR time scale, thus preventing reliable NOE experiments.

⁽¹⁵⁾ Siegl, W. O.; Lapporte, S. J.; Collmann, J. P. Inorg. Chem. 1973, 12, 674.

^{(16) (}a) Heinekey, D. M.; Oldham, W. J., Jr. Chem. Rev. 1993, 93, 913.
(b) Crabtree, R. H. Acc. Chem. Res. 1990, 23, 95. (c) Kubas, G. J. Acc. Chem. Res. 1988, 21, 120. (d) Eckert, J.; Kubas, G. J.; Hall, J. H.; Hay, P. J.; Boyle, C. M. J. Am. Chem. Soc. 1990, 112, 2324. (e) Kubas, G. J.; Unkefer, C. J.; Swanson, B. I.; Fukushima, E. J. Am. Chem. Soc. 1986, 108, 7000.

⁽¹⁷⁾ To be published.

Figure 1. Variable-temperature ${}^{31}P{}^{1}H$ NMR spectra of 4BPh₄ in a 1:1 mixture of CD₂Cl₂/CFCl₃ (121.42 MHz, 85% H₃PO₄ reference).

NMR Spectroscopic Characterization of [(triphos)Ir(H₂)-(H)₂]⁺ (4⁺). The complex cation 4⁺ is stereochemically nonrigid in solution on the NMR time scale. A sequence of variable-temperature ${}^{31}P{}^{1}H$ NMR spectra of an isolated sample of 4BPh₄ dissolved in a 1:1 CD₂Cl₂/CFCl₃ mixture saturated with H₂ is shown in Figure 1.

Above +10 °C, the loss of H_2 from the complex is quite fast and results in its extensive conversion to the tetrahydrido complexes *trans*- and *cis*-**3**. For this reason, the variabletemperature NMR study has been carried out on solutions of **4**BPh₄ prepared at low temperature.

In the fast-exchange regime (≥ -20 °C), a single resonance at -11.2 ppm ($\omega_{1/2} = 71$ Hz at -10 °C) is observed, which is consistent with the magnetic equivalence of the three phosphorus atoms of triphos (A₃ pattern). As the temperature is decreased, the signal steadily broadens until it coalesces at *ca*. -40 °C. Complete decoalescence of the resonance occurs at -80 °C to give two distinct resonances at -9.3 and -12.6 ppm in a 1:2 ratio (AM₂ pattern), respectively. For a further decrease of the temperature, narrowing of both signals occurs but no *J*(P,P) coupling becomes observable even at the lowest accessible temperature (-120 °C). Assuming the occurrence of an A₃ \leftrightarrow AM₂ *spectroscopic* exchange and applying the simplified equation $k = \pi(\Delta \nu)/\sqrt{2}$,¹⁹ a $\Delta G^{\dagger}_{233K}$ value of 10.3 kcal mol⁻¹ may roughly be estimated at the coalescence temperature, introducing the experimental value of 472 Hz for $\Delta \nu$.

Figure 2 shows the variable-temperature ¹H NMR spectra in the hydride region of 4BPh₄ dissolved in a 1:1 mixture of CD₂-Cl₂/CFCl₃ saturated with H₂. At -10 °C, the spectrum contains a broad signal centered at -9.0 ppm ($\omega_{1/2} \approx 176$ Hz) with no resolvable coupling to the P nuclei. As the temperature is decreased, the hydride resonance broadens and at ca. -40 °C merges with the base line. Complete decoalescence of the resonance occurs at -60 °C to give two well-separated signals, which at -95 °C fall at $\delta - 8.40$ and -10.70, respectively. The higher field signal appears as a broad doublet and is assigned to two nonexchanging terminal hydrides. The ${}^{2}J(H,P)$ value of 110 Hz is typical of hydride ligands trans to a phosphorus atom in octahedral Ir(III) complexes of the general formula $[(triphos)Ir(H)_2(L)]^+$ (L = CO, C₂H₄, THF)). As an example, the octahedral complex $[(triphos)IrH(C_2H_5)(CO)]^+$ shows an almost identical ²J(H,P_{trans}) of 110.2 Hz.⁸ The signal at lower field, assigned to the H₂ ligand, sharpens on going from the coalescence temperature ($\omega_{1/2} = 135$ Hz at -50 °C) to -90°C. For a further decrease of the temperature, the H₂ resonance seems to resolve into a broad quartet with an average J(H,P)value of *ca*. 20 Hz, and then it broadens until a $\omega_{1/2}$ value of

⁽¹⁹⁾ Friebolin, H. Basic One- and Two-Dimensional NMR Spectroscopy, 2nd ed.; VCH: Weinheim, Germany, 1993; Chapter 11.

Figure 2. Hydride region of the variable-temperature ¹H NMR spectra of **4**BPh₄ recorded in a 1:1 mixture of CD₂Cl₂/CFCl₃ (300 MHz, TMS reference, temperatures are reported in °C).

Table 1. Variable-Temperature T_1 NMR Data for $[(triphos)Ir(H_2)(H)_2]^{+a}$

	T_1 , ms ^b		
temp, K	А	В	С
273	145		
253	115		
248	110		
228	74		
213		57	с
204		48	с
199		45	42
184		31	37
173		22	38
163		13	48

^{*a*} All T_1 measurements were carried out at 300 MHz in a 1:1 CD₂Cl₂/ CFCl₃ mixture. ^{*b*} The letter A denotes the T_1 values of the four hydride atoms in the fast-exchange motion. The letters B and C refer to the nonclassical and classical hydrides in the slow exchange motion, respectively. ^{*c*} Not measured due to incomplete decoalescence of the hydride resonance.

ca. 130 Hz is observed at -120 °C. The *J*(H,P) value of *ca.* 20 Hz is the result of averaging of a large *trans J*(H,P) and small *cis J*(H,P). Below this temperature, freezing out of the solvent does not allow one to acquire spectra that might have provided information on the inherent fluxionality of the H₂ ligand. Magnetic coupling of H₂ ligands to *trans* phosphorus nuclei, although uncommon, has already been observed in some metal complexes;⁵ the *J*(H,P) value measured for 4⁺ lies at the upper limit of the range reported for the known molecular hydrogen complexes ($\leq 3-19$ Hz).^{5,20}

The free energy of activation for the exchange process can be estimated with some accuracy using the NMR coalescence technique.¹⁹ Introducing a $\Delta \nu$ value of 651 Hz, a $\Delta G^{\dagger}_{223K}$ value of 10.2 kcal mol⁻¹ may be calculated at the coalescence temperature. This value is in excellent agreement with the free activation energy determined from the NMR coalescence analysis of the ³¹P NMR spectra.

The longitudinal relaxation times for the hydride ligands in 4^+ have been measured with the standard inversion-recovery sequence at 300 MHz in CD₂Cl₂/CFCl₃ in the temperature range from 273 to 163 K (Table 1). A plot of T_1 (ms) vs inverse temperature (1000/T, K⁻¹) is presented in Figure 3.

At 273 K, in the fast-motion regime, the single resonance due to the four H ligands in the complex exhibits a relatively

(20) Cotton, F. A.; Luck, R. L. Inorg. Chem. 1991, 30, 767.

Figure 3. Plot of T_1 vs 1000/*T* for [(triphos)Ir(H₂)(H)₂]BPh₄ in a 1:1 mixture of CD₂Cl₂/CFCl₃ (300 MHz, TMS reference). A denotes the T_1 values of the four hydride atoms in the fast-exchange motion. B and C refer to the nonclassical and classical hydrides in the slow-exchange motion, respectively.

long T_1 value of 145 ms that decreases steadily on lowering the temperature to the coalescence. Below the coalescence temperature, different T_1 values characterize the two signals emerging from the base line. The T_1 value of the doublet resonance at higher field decreases with the temperature and goes through a broad minimum of 36 ms at 181 K; then it rises up smoothly (trace A). In the meanwhile, the T_1 of the other resonance decreases significantly without showing a minimum value even at the lowest temperature investigated (-110 °C) (trace B). Despite the possibility that the T_1 criterion to assess the nature of polyhydride complexes may lead to erroneous conclusions,^{16a-c,21,22} one can safely conclude that the very short T_1 value at -110 °C (13 ms) points to the presence of an intact H₂ ligand in which an efficient dipole-dipole relaxation mechanism is at work.^{23,24}

Overall, the temperature dependence of T_1 exhibited by 4⁺ is quite similar to that of [ReH₂(H₂)(CO)(PMe₂Ph)₃]BF₄ for which the slowed exchange process between the H and H₂ ligands reduces the contribution of the nonclassical protons and allows T_1 of the terminal hydride to lengthen quickly.²⁵

Unambiguous evidence for the presence of a molecular hydrogen ligand in 4^+ has been obtained by NMR studies of partially deuterated products. Deuterated isotopomers of 4^+ can be prepared by different methods, which include the reactions of 1 with high pressures of H_2/D_2 mixtures in either the solid state or CD₂Cl₂ solution. Interestingly, the HPNMR reaction of **1** with a 1:1 mixture of H_2/D_2 (total gas pressure 30 atm) produces free HD (1:1:1 triplet at δ 4.57, ¹J(H,D) = 42.6 Hz) together with various deuterated isotopomers of $4^{+,26}$ The simplest method to generate partially deuterated 4^+ , however, is the treatment of the trihydride 2 in CD_2Cl_2 with a slight excess of a deuterated protic acid or, vice versa, the protonation of 2-d₃. The reactions in situ have also the advantage that 4^+ generated like this is much more fluxional than 4^+ from isolated **4**BPh₄ (*vide infra*); accordingly the T_1 analysis of the various deuterated isotopomers is not complicated by the slowing down

- (22) Gusev, D. G.; Vymenits, A. B.; Bakhmutov, V. I. Inorg. Chem. 1991, 30, 3116.
- (23) Hamilton, D. G.; Crabtree, R. H. J. Am. Chem. Soc. 1988, 110, 4126.
- (24) Amman, C.; Isaia, F.; Pregosin, P. S. Magn. Reson. Chem. 1988, 26, 236.
- (25) Luo, X.-L.; Crabtree, R. H. J. Am. Chem. Soc. 1990, 112, 6912.
- (26) Chan, W.-C.; Lau, C.-P.; Chen, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G. Organometallics 1997, 16, 34 and references cited therein.

Figure 4. High-field region of the ¹H (A) and ¹H{ 31 P} (B) NMR spectra (CD₂Cl₂, 500 MHz, -30 °C) of a partially deuterated sample of [(triphos)Ir(H₂)(H)₂]BPh₄ (**4**BPh₄).

of the dynamic process that occurs at the low temperature required to avoid the decomposition of the complex. Indeed, when 4^+ is generated in solution by protonation of 2 at low temperature, the ³¹P{¹H} NMR spectra consist of a sharp singlet over the whole range of temperatures investigated (+10/-100 °C), while the ¹H NMR spectra show a narrow binomial quartet (*J*(H,P) = 22.1 Hz) for the four exchanging hydrides that does not coalesce within the temperature window of CD₂Cl₂.

The addition of 2.0 equiv of DBF₄•OMe₂ to a CD₂Cl₂ solution of **2** generates a mixture of isotopomers whose ¹H NMR spectrum in CD₂Cl₂ at -30 °C shows a complex multiplet in the hydride region (trace A in Figure 4). This signal is greatly simplified by broad-band phosphorus decoupling experiments that remove the relatively large coupling to the phosphorus nuclei. As a result, the complicated multiplet in the ¹H{³¹P} NMR spectrum in the fast-exchange regime is transformed into three well-separated signals (trace B in Figure 4): a singlet due to **4**⁺ (δ -8.220, 41%), a nonbinomial (1:1:1) triplet due to **4**⁺-*d*₁ (δ -8.147, 43%), and a nonbinomial (1:2:3:2:1) quintet due to **4**⁺-*d*₂ (δ -8.115, 16%). Surprisingly, no signal ascribable to the proton of the possible isotopomer **4**⁺-*d*₃ is visible in the spectrum. The isotopomeric distribution does not change over 1 week of storage of the NMR tube at -20 °C.

The partially deuterated isotopomers show J(H,D) values of 4.6 Hz (4⁺-d₁) and 4.8 Hz (4⁺-d₂), respectively. From these average values, one can estimate the ¹*J*(H,D) value corresponding to the intact H₂ ligand with the assumption that the H/D exchange is faster than the NMR time scale and thus a statistical distribution of deuterium in a given isotopomer may be anticipated. Assuming the presence of one dihydrogen ligand and introducing a ²*J*(H,D) value <2–3 Hz for classical hydride–deuteride species, a ¹*J*(H,D) ranging from 29 to 26 Hz (²*J*(H,D) \approx 0 Hz) may be calculated for 4⁺.^{5,27} Such a value is consistent with the formulation of 4⁺ as a (dihydride)(η^2 -dihydrogen) metal complex and also points to a rather short H–H distance.^{16a–c,28}

An interesting feature of the ¹H NMR spectra of **4**, **4**⁺-*d*₁, and **4**⁺-*d*₂ in the fast-exchange regime is the large, downfield isotopic shift of the hydride resonances: $\Delta \delta_1 = \delta_{4^+-d_1} - \delta_{4^+-d_0}$ = 73 ppb and $\Delta \delta_2 = \delta_{4^+-d_2} - \delta_{4^+-d_1} = 32$ ppb. These values

^{(27) (}a) Moreno, B.; Sabo-Etienne, S.; Chaudret, B.; Rodriguez, A.; Jalon, F.; Trofimenko, S. J. Am. Chem. Soc. 1994, 116, 2635. (b) Earl, K. A.; Jia, G.; Maltby, P. A.; Morris R. H. J. Am. Chem. Soc. 1991, 113, 3027.

are in good agreement with those reported by Poveda *et al.* for $Tp*IrH_4 [Tp* = HB(3,5-Me_2Pz_3)]^{29}$ and by Albinati *et al.* for $IrH(H_2)X_2(PR_3)_2$ (X = Cl, Br, I; PR₃ = PPrⁱ₃, PBu^t₂Ph).³⁰

Transition metal polyhydrido complexes generally exhibit upfield isotopic shifts in the range 0-50 ppb.^{5,16a-c,31} The less common downfield shifts have been explained by taking into account either a nonstatistical intramolecular distribution of deuterium in the classical and nonclassical hydride sites or an isotopic perturbation of the resonance (IPR). As an example, through a quantitative analysis of the isotopic perturbation of the chemical shifts in the d_0-d_2 isotopomers of [TpIr(PMe₃)- H_3]BF₄ (Tp = tris(pyrazolyl)borate), Heinekey and Oldham have rationalized the downfield isotopic shift in terms of a statistically preferred incorporation of deuterium in the terminal site.³² In our opinion, the low-field shift exhibited by 4^+ upon deuteration is better accounted for by the preferred incorporation of deuterium in either site than by an IPR effect that would involve a very fast chemical equilibrium between classical [Ir(H)₄] and nonclassical [Ir(H)₂(η^2 -H₂)] tautomers of 4.^{5,16a-c,25,33} The occurrence of the latter mechanism in solution can safely be ruled out on the basis of the variable-temperature NMR studies.

The higher fluxionality on the NMR time scale of 4^+ prepared *in situ* as compared to 4^+ from 4BPh₄ is ascribed to the presence of free acid that apparently lowers the energy barrier to the H/H₂ exchange.³⁴ In keeping with this hypothesis, the addition of a catalytic amount of tetrafluoroboric acid dimethyl ether adduct to a CD₂Cl₂ solution of 4BPh₄ causes an instantaneous sharpening of the ³¹P NMR resonance. Also, the immediate decoalescence of both the ³¹P and ¹H_{hydride} signals occurs when a catalytic amount of a protic acid is syringed into an NMR tube containing a solution of 4BPh₄ maintained at the coalescence temperature.

Besides protic acids, the energy barrier to the H/H₂ exchange process in 4^+ in CH₂Cl₂ is remarkably lowered by water and alcohols such as MeOH or EtOH that, in catalytic amounts, allow this complex cation to maintain the fast-exchange regime down to -100 °C.

The exchange of protons between a dihydrogen ligand and water or alcohols is a common process for dihydrogen metal complexes and is largely used for the synthesis of HD complexes.⁵ It is analogously well-known that protons can be exchanged between hydride ligands and protic acids.^{5,35} No report has appeared so far on the interaction of nonclassical polyhydride complexes with acids, however.

- (28) An empirical linear relationship between $d_{\rm H-H}$ and J(H,D) has recently been proposed: Maltby, P. A.; Schlaf, M.; Steinbeck, M.; Lough, A. J.; Morris, R. H.; Klooster, W. T.; Koetzle, T. F.; Srivastava, R. C. J. *Am. Chem. Soc.* **1996**, *118*, 5396. Using the equation $d_{\rm H-H} =$ $(-0.0167J(\rm H,D) + 1.42)$ Å, an approximate distance $d_{\rm H-H}$ in the range 0.94-0.99Å can be calculated for **4**BPh₄ from the J(H,D) coupling constant.
- (29) Paneque, M.; Poveda, M. L.; Taboada, S. J. Am. Chem. Soc. 1994, 116, 4519.
- (30) Albinati, A.; Bakhmutov, V. I.; Caulton, K. G.; Clot, E.; Eckert, J.; Eisenstein, O.; Gusev, D. G.; Grishin, V. V.; Hauger, B. E.; Klooster, W. T.; Koetzle, T. F.; McMullan, V.; O'laughlin, T.; Pélissier, M.; Ricci, J. S.; Sigalas, M. P.; Vymenits, A. B. J. Am. Chem. Soc. 1993, 115, 7300.
- (31) (a) Bianchini, C.; Perez, P. J.; Peruzzini, M.; Zanobini, F.; Vacca, A. *Inorg. Chem.* **1991**, *30*, 279. (b) Bautista, M. T.; Cappellani, E. P.; Drouin, S. D.; Morris, R. H.; Schweitzer, C. T.; Sella, A.; Zubkowski, J. *J. Am. Chem. Soc.* **1991**, *113*, 4876. (c) Heinekey, D. M.; Millar, J. M.; Koetzle, T. F.; Payne, N. G.; Zilm, K. W. J. Am. Chem. Soc. **1990**, *112*, 909. (d) Bianchini, C.; Marchi, A.; Marvelli, L.; Peruzzini, M.; Romerosa, A.; Rossi, R.; Vacca, A. Organometallics **1995**, *14*, 3203 and references cited in these articles.
- (32) Heinekey, D. M.; Oldham, J., Jr. J. Am. Chem. Soc. 1994, 116, 3137.
 (33) (a) Saunders, M.; Jaffe, M. H.; Vogel, P. J. Am. Chem. Soc. 1971, 93,
- (33) (a) Saunders, M., Jane, M. H.; Vogel, F. J. Am. Chem. Soc. 1971, 93, 2558. (b) Heinekey, D. M.; van Roon, M. J. Am. Chem. Soc. 1996, 118, 12134 and references cited therein.
- (34) Henderson, R. A.; Ibrahim, S. K.; Oglieve, K. E.; Pickett, C. J. J. Chem. Soc., Chem. Commun. 1995, 1571.

Since the H₂ ligand in 4^+ (like in the vast majority of η^2 -H₂ metal complexes) exhibits acidic character,⁵ the added acid should preferentially interact with one of the terminal hydrides that generally possess residual nucleophilic properties.³⁶ In principle, an acid-base interaction of this type would lead to the generation of a dihydrogen molecule and thus to the conversion of 4^+ to transient [triphos)IrH(H₂)₂]²⁺ that may regenerate 4^+ by the deprotonation of either H₂ molecule. A process of this type would involve the stronger acidity of HBF₄ than 4^+ . The hypothesis that a fast intermolecular proton exchange may be responsible for accelerating the intramolecular scrambling of the four hydrogen ligands in 4^+ raises the question about the nature and mechanism of the fluxionality of this complex cation. In other words, one may argue that, even in the absence of added acid, the high fluxionality of the Brønsted acid 4^+ might have a substantial intermolecular contribution in CH₂Cl₂. This seems highly improbable in light of variabletemperature NMR experiments on solutions of 4BPh₄ with increasing concentrations (from 20 to 60 mg in 0.8 mL of CD2-Cl₂) that showed no significant variation of ΔG^{\ddagger} at the coalescence temperature. Accordingly, the stereochemical nonrigidity of 4^+ seems to be intrinsically intramolecular, though an intermolecular contribution cannot definitely be ruled out in light of the dependence of the dynamic process on traces of water.

The intramolecular hydrogen atom exchange for nonclassical polyhydride complexes of the type $L_n M(H_2) H_x$ ($x \ge 2$) has recently been reviewed by Berke and Gusev³⁷ and by Morris and Jessop.⁵ In the particular case of the tetrahydride complexes $L_n M(H_2)H_2$, a common feature is the observation of a fast exchange between the four hydrogen ligands which may not be slowed significantly within the range of temperatures that are usually investigated in variable-temperature NMR experiments. Typical examples of such polyhydrides exhibiting a fast dihydrogen/hydride fluxionality that cannot be frozen out at low temperature are, *inter alia*, the Rh(III) complex [{HB(3.5-Me₂- $Pz_{3}Rh(H_{2})H_{2}^{38}$ [3,5-Me₂Pz = tris(3,5-dimethylpyrazolyl)borate], the Fe(II) complex mer-(PEtPh₂)₃Fe(H₂)H₂,³⁹ and the Ir(III) complexes $[IrCl(H_2)H_2(PR_3)_2]$ (PR₃ = PCy₃, P-*i*-Pr₃).⁴⁰ A factor that contributes to determining the high mobility of the hydrogen atoms in these complexes is suggested to be the cis arrangement of the dihydrogen and hydride ligands (incipient $H \cdot \cdot \cdot H_2$ bonding interaction).⁴¹ In the case at hand, the triphos

- (35) See, for example: (a) Field, L. D.; George, A. V.; Hambley, T. W.; Malouf, E. Y.; Young, D. J. J. Chem. Soc., Chem. Commun. 1990, 931. (b) Crabtree, R. H.; Lavin, M.; Bonneviot, L. J. Am. Chem. Soc. 1986, 108, 4032.
- (36) Labinger, J. A. In *Transition Metal Hydrides*; Dedieu, A., Ed; VCH: New York, 1992; Chapter 10.
- (37) Gusev, D. G.; Berke, H. H. Chem. Ber. 1996, 129, 1143.
- (38) Bucher, U. E.; Lengweiler, T.; Nanz, D.; von Philipsborn, W.; Venanzi, L. M. Angew. Chem., Int. Ed. Engl. 1990, 29, 548.
- (39) van der Sluys, L. S.; Eckert, J.; Eisenstein, O.; Hall, J. H.; Huffman, J. C.; Jackson, S. A.; Koetzle, T. F.; Kubas, G. J.; Vergamini, P. J.; Caulton, K. G. J. Am. Chem. Soc. **1990**, *112*, 4831.
- (40) (a) Mediati, M.; Tachibana, G. N.; Jensen, C. M. Inorg. Chem. 1990, 29, 3. (b) Gusev, D. G.; Bakhmutov, V. I.; Grishin, V. V.; Vol'pin, M. E. Inorg. Chim. Acta 1990, 177, 115. (c) Le-Husebo, T.; Jensen, C. M. Inorg. Chem. 1993, 32, 3797. (d) Hauger, B. E.; Gusev, D. G.; Caulton, K. G. J. Am. Chem. Soc. 1994, 116, 208. (e) Eckert, J.; Jensen, C. M.; Koetzle, T. F.; Le-Husebo, T.; Nicol, J.; Wu, P. J. Am. Chem. Soc. 1995, 117, 7271. (f) Bakhmutov, V. I.; Vorontsov, E. V.; Vymenits, A. B. Inorg. Chem. 1995, 34, 214.
- (41) (a) Bianchini, C.; Masi, D.; Peruzzini, M.; Casarin, M.; Maccato, C.; Rizzi, G. A. Inorg. Chem. 1997, 36, 1061. (b) Jackson, S. A.; Eisenstein, O. Inorg. Chem. 1990, 29, 3910. (c) Riehl, J.-F.; Pélissier, M.; Eisenstein, O. Inorg. Chem. 1992, 31, 3344. (d) Riehl, J.-F.; Jackson, S. A.; Pélissier, M.; Eisenstein, O. Bull. Soc. Chim. Fr. 1992, 129, 221. (e) Maseras, F.; Duran, M.; Lledós, A.; Bertran, J. J. Am. Chem. Soc. 1992, 114, 2922. (f) Maseras, F.; Duran, M.; Lledós, A.; Bertran, J. J. Am. Chem. Soc. 1991, 113, 2879.

Synthesis of [{MeC(CH₂PPh₂)₃}Ir(H₂)(H)₂]BPh₄

ligand, which invariably adopts a facial coordination mode,⁴² seems to be properly tailored for enhancing the hydride fluxionality in complexes like 4^+ .

As for the mechanism of exchange between the H₂ and H ligands in 4^+ , the situation is extremely complicated. A perusal of the relevant literature shows that the H atom exchange may proceed through several pathways, including associative, dissociative, and even concerted mechanisms.⁵ In the particular case of [IrCl₂(H₂)H₂(P-*i*-Pr₃)₂], Zilm and co-workers showed by proton solid-state NMR spectroscopy that the mechanism of interconversion of H₂ and H ligands cannot involve an interaction between the dihydrogen and a *cis* hydride.⁴³ Even small changes in the electronic and steric properties of the ancillary ligands may result in totally different exchange mechanisms. Illustrative examples are provided by the cationic complexes $[(PMe_2Ph)_3(CO)Re(H_2)H_2]^+$ and $[(PMe_3)_3(CO)-$ Re(H₂)H₂]⁺ reported by Luo and Crabtree²⁵ and Berke and coworkers,^{37,44} respectively. These two complexes display almost identical low-temperature ¹H NMR spectra and should adopt the same pentagonal-bipyramidal structure in the ground state. Nonetheless, the stereochemical nonrigidity exhibited by the two complexes in solution has been interpreted in terms of two different mechanisms: an intramolecular process involving H-H bond cleavage, followed by formation of a symmetric transition state with four terminal hydrides, for the PMe₃ derivative,⁴⁴ and an associative pathway of a terminal hydride ligand with the H₂ molecule to give a transient trihydrogen intermediate for the PMe₂Ph derivative.²⁵

The possibility that either mechanism may account for the fast hydride exchange in 4^+ cannot be discarded. On the other hand, any unambiguous mechanistic conclusion for the flux-

ionality of 4^+ cannot be provided at this stage, particularly in the absence of detectable intermediates along the scrambling process, the lack of a rigorous line-shape analysis of the NMR spectra over the complete dynamic range of the fast- and slowmotion regimes, and the dependence of the energy barrier to exchange on the presence of either traces of water or protic acids.

Conclusions

We have shown here that a dihydrogen metal complex may be sufficiently acidic to bring about the protonolysis of its counteranion when this is BPh_4^- . The process involves the formal heterolytic splitting of H₂ with formation of a metalhydride bond. In a sense, our discovery warns the chemist against the use of metal complexes with tetraphenylborate counteranions in homogeneous hydrogenation reactions, particularly when these are carried out in polar solvents. Indeed, the formation *in situ* of a new M–H bond, changing the structure of the catalyst precursor, may dramatically affect the mechanism of activation of both H₂ and the substrate to hydrogenate.

The isolation and characterization of the Ir(III) nonclassical polyhydride [(triphos)Ir(H₂)(H)₂]Y (Y = BPh₄⁻, BF₄⁻) has also allowed us to provide a correct interpretation of the solid–gas hydrogenation of [(triphos)Ir(C₂H₄)(H)₂]BPh₄ at 60 °C.² Indeed, the metal product of this reaction is just the η^2 -H₂ complex and not the unsaturated species [(triphos)Ir(H)₂]BPh₄ as erroneously reported. On the other hand, the authentication of this peculiar dihydrogen complex has been made much easier by the recent availability of the HPNMR techniques.

Finally, it is worth stressing that the results presented here provide further experimental evidence of the close connection between lability and acidity of η^2 -H₂ ligands.

Acknowledgment. This work is supported by a grant from the European Community (INTAS-RFBR 95-136). Thanks are due to Mr. Dante Masi and Mr. Fabrizio Zanobini for technical assistance.

IC9705599

⁽⁴²⁾ Mann, S.; Huttner, G.; Zsolnai, L.; Heinze, K. Angew. Chem., Int. Ed. Engl. 1996, 35, 2808 and references cited therein.

⁽⁴³⁾ Wisniewski; L. L.; Mediati, M.; Jensen, C. M.; Zilm, K. W. J. Am. Chem. Soc. 1993, 115, 7533.

⁽⁴⁴⁾ Gusev, D. G.; Nietlispach, D.; Eremenko, D. L.; Berke, H. Inorg. Chem. 1993, 32, 3628.