A New Sulfur-Rich Rhenium(III) Complex, $Re(S_2CC_6H_5)(S_3CC_6H_5)_2$, and Seven-Coordinate Complexes Formed by Reversible Sulfur Abstraction Reactions, $Re(S_2CC_6H_5)_3(PPh_3)$ and $[Re(S_2CC_6H_5)_3(CN)]^-$

C. A. McConnachie and E. I. Stiefel*

Corporate Research, Exxon Research and Engineering Company, Route 22 East, Annandale, New Jersey 08801

Received June 4, 1997

Induced internal electron transfer involving tetrathiometalate anions of V, Mo, W, and Re has been established.¹ Reactions of VS₄³⁻, MoS₄²⁻, and ReS₄⁻ with oxidants yield products with the metal in a lower oxidation state than in the starting tetrathiometalate. Most work dealing with internal redox reactions has involved tetraalkylthiuram disulfide, (R₂NCS₂)₂, as the oxidant.¹ To gain a better understanding of ligand influences, we have studied the reaction of dithiobenzoate disulfide, (C₆H₅CS₂)₂, with MoS₄²⁻ and ReS₄⁻. The ligand/ oxidant has a major effect on the final product leading, in the case of Re, to an unprecedented four-electron reduction of a single metal center.

Reaction of $(C_6H_5CS_2)_2$ with $[Et_4N]_2MoS_4$ in acetonitrile produces the known compound $[Mo^{IV}(S_2CC_6H_5)_4]$.² However, reaction of a 1:2 ratio of red-violet $[Et_4N]ReS_4$ to red $(C_6H_5CS_2)_2$, stirred at room temperature for 2 days in dry CH₃CN under an argon atmosphere, forms the new green, neutral, "sulfur-rich" mononuclear rhenium(III) complex $[Re(S_2CC_6H_5)(S_3CC_6H_5)_2]$, **1**, in 93% yield.³ This reaction is a striking example of an internal redox reaction in which Re(VII) is reduced by four electrons to Re(III):

$$[\text{Re}^{\text{VII}}\text{S}_4]^- + 2(\text{C}_6\text{H}_5\text{C}\text{S}_2)_2 \rightarrow \\ [\text{Re}^{\text{III}}(\text{S}_2\text{C}\text{C}_6\text{H}_5)(\text{S}_3\text{C}\text{C}_6\text{H}_5)_2] + 2\text{``S''} + (\text{C}_6\text{H}_5\text{C}\text{S}_2)^-$$

In this reaction 2 equiv of $(C_6H_5CS_2)_2$ are also reduced by four electrons to form $C_6H_5CS_2^-$ (one free). The eight electrons required to balance the reaction come from the oxidation of all of the sulfides (S^{2-}) in ReS_4^- to S^0 . This S^0 includes free sulfur (identified as a reaction byproduct) and one sulfur atom in the perthio bond of each $(S_3CC_6H_5)^-$ ligand. The four-electron reduction of the single rhenium metal center is an unprecedented step in induced internal electron transfer reactions.

Single crystals of **1** were obtained by layering a CH₂Cl₂ solution with hexane. X-ray diffraction analysis established the six-coordinate structure shown in Figure 1.⁴ The Re(III) center has distorted octahedral coordination, with one chelating dithiobenzoate and two chelating perthiobenzoate ligands. The distortion is largely attributable to the small bite of the $(S_2CC_6H_5)^-$ ligand.⁵ All bond angles and lengths are unexceptional.^{1e,6–10} The phenyl ligands are twisted out of the S–Re–S–C or S–Re–S–C planes (20.2° [C₂–C₁₂], 26.1° [C₁–C₁₁], and 12.5° [C₃–C₁₃], respectively).

- (a) Harmer, M. A.; Halbert, T. R.; Pan, W.-H.; Coyle, C. L.; Cohen, S. A.; Stiefel, E. I. *Polyhedron* **1986**, *5*, 341–347. (b) Pan, W.-H.; Harmer, M. A.; Halbert, T. R.; Stiefel, E. I. J. Am. Chem. Soc. **1984**, *106*, 459–460. (c) Halbert, T. R.; Hutchings, L. L.; Rhodes, R.; Stiefel, E. I. J. Am. Chem. Soc. **1986**, *108*, 6437–6438. (d) Pan, W.-H.; Halbert, T. R.; Hutchings, L. L.; Stiefel, E. I. J. Chem. Soc., Chem. Commun. **1985**, 927–929. (e) Murray, H. H.; Wei, L.; Sherman, S. E.; Greaney, M. A.; Eriksen, K. A.; Cartensen, B.; Halbert, T. R.; Stiefel, E. I. *Inorg. Chem.* **1995**, *34*, 841–853.
- (2) (a) Bonamico, M.; Dessy, G.; Fares, V.; Scaramuzza, L. J. Chem. Soc., Dalton Trans. 1975, 2079–2082. (b) Roberie, T.; Hoberman, A. E.; Selbin, J. J. Coord. Chem. 1979, 9, 79–87. (c) Tatsumisago, M.; Matsubayashi, G.-e.; Tanaka, T.; Nishigaki, S.; Nakatsu, K. J. Chem. Soc., Dalton Trans. 1982, 121–127.
- (3) Anal. Found (calcd): C, 35.89 (35.52); H, 1.95 (2.13); S, 36.00 (36.12).

Figure 1. Neutral, octahedral [Re($S_2CC_6H_5$)($S_3CC_6H_5$)₂]. Bond lengths (Å) and angles (deg): Re-S₁ = 2.222(2), Re-S₃ = 2.344(2), Re-S₇ = 2.502(2), S₁-S₂ = 2.125(3), C₁-S₂ = 1.713(7), C₁-S₃ = 1.660(7), C₃-S₇ = 1.677(7), C₁-C₁₁ = 1.462(10), S₃-Re-S₆ 175.83(7), S₁-Re-S₇ 155.59(8), S₁-Re-S₄ 111.01(8), S₁-Re-S₃ 89.31(7), S₇-Re-S₈ 67.8(7), Re-S₁-S₂ 109.63(11), S₁-S₂-C₁ 104.27(26), S₂-C₁-S₃ 122.87(44), Re-S₃-C₁ 112.19(27), Re-S₈-C₃ 91.01(26), S₇-C₃-S₈ 110.57(42).

This octahedral, d⁴, rhenium(III) complex is diamagnetic, as no paramagnetic shifts are observed in the ¹H or ¹³C NMR spectra.¹¹ Cyclic voltammetry of **1** in CH₂Cl₂ reveals two reversible, one-electron oxidations at 950 mV and 1.36 V ($E_{1/2}$ vs SCE). These are assigned to the formation of Re(IV) and Re(V) complexes, respectively, accessing the 5d³ and 5d² systems.

Complex 1 displays reversible chemical reactivity with respect to sulfur-abstracting agents. Upon addition of a 3:1 ratio of either PPh₃ or [Et₄N]CN to a CH₂Cl₂ solution of 1, the S–S stretch at 544 cm⁻¹ disappears, indicative of sulfur atom abstraction. Single crystals were grown by layering CH₂Cl₂ solutions with hexane. X-ray diffraction analysis revealed two

- (4) Crystal data for Re(S₂CC₆H₅)(S₃CC₆H₅)₂: monoclinic $P2_1/c$, Z = 4, a = 20.041(4) Å, b = 10.580(2) Å, c = 12.022(2) Å, $\beta = 105.54-(3)^\circ$, V = 2455.9(8) Å³ at 293 K. $R_w(F^2) = 0.125$ for 271 variables and 5216 independent reflections; $R_1 = 0.044$ for 3958 reflections having $F_0^2 > 2\sigma(F_0^2)$.
- (5) (a) Kepert, D. L. Prog. Inorg. Chem. 1977, 23, 1–65. (b) Stiefel, E. I.; Brown, G. F. Inorg. Chem. 1972, 11, 434–436.
- (6) Coucouvanis, D.; Lippard, S. J. J. Am. Chem. Soc. 1969, 91, 307-311.
- (7) (a) Fletcher, S. R.; Skapski, A. C. J. Chem. Soc., Dalton Trans. 1974, 486–489.
 (b) Thiele, G.; Liehr, G. Chem. Ber. 1971, 104, 1877–1879.
- (8) Fackler, J. P.; P. Niera, R. D.; Campana, C.; Trzcinska-Bancroft, B. J. Am. Chem. Soc. 1984, 106, 7883–7886.
- (9) Bonamico, M.; Dessy, G.; Fares, V.; Scaramuzza, L. J. Chem. Soc. A 1971, 3191–3195.
- (10) (a) Bonamico, M.; Dessy, G.; Fares, V.; Scaramuzza, L. J. Chem. Soc., Dalton Trans. 1974, 1258–1263. (b) Bonamico, M.; Dessy, G.; Fares, V.; Scaramuzza, L. J. Chem. Soc., Dalton Trans. 1975, 2250–2255.
- (11) ¹³C NMR (CD₂Cl₂, 299.1 K): δ 125.18 (s, 1C), 128.17 (s, 1C), 128.91 (s, 1C), 132.36 (s, 1C), 133.82 (s, 1C), 134.05 (s, 1C), 135.50 (s, 1C), 143.38 (s, 1C), 234.80 (s, 1C), 239.42 (s, 1C). ¹H NMR (CD₂Cl₂, 303 K): δ 7.40, 7.55, 7.70, 8.04 (m, 6). IR (KBr pellet): 997 [ν (C=S)], 544 [ν (S-S)], 399 cm⁻¹ [ν (Re-S)]. UV-vis/NIR (CH₂Cl₂, nm): 907 (ϵ = 355 M⁻¹ cm⁻¹), 617 (ϵ = 7411 M⁻¹ cm⁻¹), 466 (ϵ = 16 340 M⁻¹ cm⁻¹), 391 (ϵ = 14 713 M⁻¹ cm⁻¹), 315 (ϵ = 31 629 M⁻¹ cm⁻¹), 277 (shoulder, ϵ = 24 648 M⁻¹ cm⁻¹).

Figure 2. The neutral capped octahedron $[\text{Re}(\text{S}_2\text{CC}_6\text{H}_5)_3(\text{PPh}_3)]$, with PPh₃ as the capping ligand. Bond lengths (Å) and angles (deg): $\text{Re}-\text{P}_1 = 2.400(3)$, mean Re-S = 2.438, mean C-S = 1.681, mean $(\text{S})\text{C}-\text{C}_{\text{Ph}} = 1.465$, mean P-C = 1.834, $\text{P}_1-\text{Re}-\text{S}_1$ 77.68(9), $\text{P}_1-\text{Re}-\text{S}_2$ 119.85(9), $\text{S}_2-\text{Re}-\text{S}_4$ 97.30(10), $\text{S}_2-\text{Re}-\text{S}_3$ 158.26(10), $\text{S}_1-\text{Re}-\text{S}_5$ 128.25(9), $\text{S}_1-\text{Re}-\text{S}_2$ 68.31(10), mean Re-S-C 90.59, mean S-C-S 109.61, $\text{S}-\text{C}-\text{C}_{\text{Ph}}$ 125.05, mean $\text{Re}-\text{P}_1-\text{C}$ = 115.92.

new complexes, purple [Re($S_2CC_6H_5$)_3(PPh_3)], **2**, and blue [Et₄N][Re($S_2CC_6H_5$)_3(CN)], **3**, both seven-coordinate rhenium-(III) compounds with all excess sulfur removed.^{12,13} As shown in Figure 2, the neutral complex **2** is a capped octahedron, with PPh₃ as the capping ligand.¹⁴ Bond angles and lengths are unexceptional.^{15,16} A technetium xanthate analog of this structure has been reported, [Tc($S_2COC_4H_9$)_3(PPh_3)], although prepared by an unrelated route from (TcOCl₄)⁻, PPh₃, and excess K($S_2COCH_2CH_3$).¹⁵ The anionic complex **3** is a distorted pentagonal bipyramid, with CN⁻ in the equatorial plane and S_2 and S_3 in the axial positions (Figure 3).¹⁷ Bond angles and lengths are unexceptional.^{18,19} The starting complex (and its perthio bonds) can be regenerated by refluxing either **2** or **3** with excess sulfur. UV—vis and IR spectra show quantitative regeneration of **1**.

Sulfur abstraction accompanied by formation and isolation of a seven-coordinate complex is unprecedented.^{8,15} Addition and removal of sulfur with Ni(II), Zn(II), Pd(II), and Pt(II) complexes does not change the coordination number of the metal center.²⁰ However, a green material was isolated by reaction of Ph₃P with [Ni(S₂CC₆H₅)(S₃CC₆H₅)],^{20d} which was possibly a Ph₃P adduct of [Ni(S₂CC₆H₅)2]. In addition, [Mo^{IV}O-(S₂CC₆H₅)2(PPh₃)] was isolated in low yield from the reaction of [Mo^{IV}O(S₂CC₆H₅)(S₃CC₆H₅)] with a large excess of Ph₃P.²¹

- (12) 1:1 and 1:2 ratios were tried but resulted in incomplete reactions. Only the 1:3 reaction went to completion.
- (13) A 1:3 reaction ratio also resulted in formation of [Re(S₂CC₆H₅)₃CN]⁻, as characterized via IR and UV–vis.
- (14) Crystal data for Re(S₂CC₆H₅)₃(PPh₃): triclinic $P\overline{1}, Z = 2, a = 10.112$ -(2) Å, b = 13.123(3) Å, c = 15.509(3) Å, $\alpha = 68.44$ (3)°, $\beta = 70.74$ -(3)°, $\gamma = 72.74$ (3)°, V = 1770.5(6) Å³ at 293 K. $R_w(F^2) = 0.114$ for 424 variables and 6213 independent reflections; $R_1 = 0.057$ for 4737 reflections having $F_0^2 > 2\sigma(F_0^2)$.
- (15) Nicholson, T.; Thornback, J.; O'Connell, L.; Morgan, G.; Davison, A.; Jones, A. G. *Inorg. Chem.* 1990, 29, 89–92.
 (16) (a) Meyer, O.; Cagle, P. C.; Weickhardt, K.; Vichard, D.; Gladysz, J.
- (16) (a) Meyer, O.; Cagle, P. C.; Weickhardt, K.; Vichard, D.; Gladysz, J. A. *Pure Appl. Chem.* **1996**, *68*, 79–88. (b) Harris, T. A.; McKinney, T. W.; Wu, W.; Fanwick, P. E.; Walton, R. A. *Polyhedron* **1996**, *15*, 3289–3298. (c) Rose, D. J.; Maresca, K. P.; Kettler, P. B.; Chang, Y. D.; Soghomomian, V.; Chen, Q.; Abrams, M. J.; Larsen, S. K.; Zubieta, J. *Inorg. Chem.* **1996**, *35*, 3548–3558.
- (17) Crystal data for [Re(S₂CC₆H₅)₃CN][(CH₃CH₂)₄N]: triclinic $P\overline{1}, Z = 4, a = 14.208(3)$ Å, b = 15.511(3) Å, c = 16.663(3) Å, $\alpha = 106.62-(3)^{\circ}, \beta = 107.14(3)^{\circ}, \gamma = 96.96(3)^{\circ}, V = 3276.8(11)$ Å³ at 293 K. $R_{\rm w}(F^2) = 0.128$ for 742 variables and 11496 independent reflections; $R_1 = 0.062$ for 6560 reflections having $F_0^2 > 2\sigma(F_0^2)$.
- (18) (a) Lorenz, B.; Schmidt, K.; Hiller, W.; Abram, U.; Hübener, R. *Inorg. Chim. Acta* 1993, 208, 195–199. (b) Abram, U.; Lorenz, B. Z. *Naturforsch.* 1993, 48B, 771–777.

Figure 3. The distorted pentagonal-bipyramidal $[\text{Re}(S_2\text{CC}_6\text{H}_5)_3(\text{CN})]^$ anion. Bond lengths (Å) and angles (deg): $\text{Re}-\text{C}_1 = 2.077(16)$, $\text{C}_1-\text{N}_1 = 1.149(16)$, mean Re-S = 2.423, mean C-S = 1.676, mean $(\text{S})\text{C}-\text{C}_{\text{PH}} = 1.458$, $\text{N}_1-\text{C}_1-\text{Re} 173.48(1.42)$, $\text{S}_1-\text{Re}-\text{S}_2 68.06(12)$, $\text{S}_4-\text{Re}-\text{S}_1 76.74(12)$, $\text{S}_4-\text{Re}-\text{C}_1 135.52(40)$, $\text{S}_4-\text{Re}-\text{S}_2 121.18(13)$, $\text{S}_3-\text{Re}-\text{S}_6 114.67(13)$, $\text{C}_1-\text{Re}-\text{S}_5 78.54(42)$, $\text{S}_5-\text{Re}-\text{S}_2 95.48(12)$, $\text{S}_1-\text{Re}-\text{S}_5 155.31(40)$, $\text{S}_6-\text{Re}-\text{C}_1 142.28(40)$, $\text{S}_3-\text{Re}-\text{S}_2 163.20(12)$, mean S-C-S 108.32, mean S-C-C_{Ph} = 125.83, mean Re-S-C 91.55.

In summary, reaction of [ReS₄]⁻ with (C₆H₅CS₂)₂ produces a unique sulfur-rich rhenium(III) complex, [Re(S₂CC₆H₅)- $(S_3CC_6H_5)_2$]. Sulfur (in the sulfur-rich ligands) can be quantitatively extracted with Ph3P or CN-, to form new sevencoordinate rhenium complexes in high yield. Sulfur addition quantitatively regenerates the starting complex. The influence of the ligand/oxidant on the resulting product can be seen by comparing the reaction between $[Re^{VII}S_4]^-$ and $(R_2NCS_2)_2$, which yields the dimer $[Re^{IV}_2(\mu-S)_2(R_2NCS_2)_4]$.^{1e} The electrondonating ability of the chelating ligand may influence the oxidation state of the product. Dithiocarbamate is a better electron donor than dithiobenzoate,²² stabilizing a higher oxidation state on the metal [i.e., Re(IV) vs Re(III)]. The ability of dithiocarbamate to stabilize higher metal oxidation states is also seen in the reaction between $[Mo^{VI}S_4]^{2-}$ and $(R_2NCS_2)_2$, which yields [Mo^VS₂(R₂NCS₂)₃],^{1d} instead of the hypothetical isomer $[Mo^{III}(S_2CC_6H_5)(S_3CC_6H_5)_2]$, which would be the analog of the $[\text{Re}^{\text{III}}(\text{S}_2\text{CC}_6\text{H}_5)(\text{S}_3\text{CC}_6\text{H}_5)_2]$ complex reported here.²³ Clearly, the nature of the metal and ligand both influence the course of the internal redox reactions.

Supporting Information Available: Experimental details (Tables S1, S7, and S12), atomic parameters (Tables S2, S8, S13), bond lengths and angles (Tables S3, S9, and S14), anisotropic displacement parameters (Tables S4, S10, and S15), H parameters (Tables S5, S11, and S16), and least-squares planes (Table S6) (29 pages). Ordering information is given on any current masthead page.

IC970689H

- (19) Masciocchi, N.; Moret, M.; Ardizzoai, G. A.; Monica, G. L. Acta Crystallogr. 1995, C51, 201–203.
- (20) (a) Coucouvanis, D.; Fackler, J. P., Jr. J. Am. Chem. Soc. 1967, 89, 1346–1351. (b) Fackler, J. P., Jr.; Coucouvanis, D.; Fetchin, J. A.; Seidel, W. C. J. Am. Chem. Soc. 1968, 90, 2784–2788. (c) Fackler, J. P., Jr.; Fetchin, J. A.; Smith, J. A. J. Am. Chem. Soc. 1970, 92, 2910–2912. (d) Fackler, J. P., Jr.; Fetchin, J. A.; Fries, D. C. J. Am. Chem. Soc. 1972, 94, 7323–7333.
- (21) Tatsumisago, M.; Matsubayashi, G.; Tanaka, T.; Nishigaki, S.; Nakatsu, K. J. Chem. Soc., Dalton Trans. 1982, 121–127.
- (22) (a) Nicholson, T.; Thornback, J.; O'Connell, L.; Morgan, G.; Davison, A.; Jones, A. G. *Inorg. Chem.* **1990**, *29*, 89–92. (b) Merlino. S. *Acta Crystallogr.* **1969**, *B25*, 2270–2276. (c) Hyde, J.; Zubieta, J. *J. Inorg. Nucl. Chem.* **1977**, *39*, 289–296. (d) Nakamoto, K.; Fujita, J.; Condrate, R. A.; Morimoto, Y. J. Chem. Phys. **1963**, *39*, 423–427.
- (23) In each case only one redox isomer is formed, i.e. $[Mo^VS_2(R_2NCS_2)_3]$ instead of $[Mo^{III}(S_2CC_6H_5)(S_3CC_6H_5)_2]$ in the $[Mo^{VI}S_4]^{2-/}(R_2NCS_2)_2$ reaction and $[Re^{III}(S_2CC_6H_5)(S_3CC_6H_5)_2]$ instead of $[Re^VS_2(R_2NCS_2)_3]$ in the $[ReS_4]^{-/}(C_6H_5CS_2)_2$ reaction.