Additions and Corrections

1997, Volume 36

Pertti Homanen, Matti Haukka, Markku Ahlgrén, and Tapani A. Pakkanen*: Formation of Ruthenium Nitrosyl Complexes: Reactions of Ru(bpy)(CO)₂Cl₂ and Its Methyl-Substituted Analogues Ru(4,4'-dmbpy)(CO)₂Cl₂ and Ru(6,6'-dmbpy)(CO)₂Cl₂ in Oxidizing Acidic Solutions.

Page 3795. In line 7, the $\nu(NO)$ values for complex 2 are erroneous; the correct values are as follows. IR (in KBr): $\nu(NO)$ 1917 (vs), 1903 (s, sh) cm⁻¹.

Page 3797. In paragraph 4, sentences 1 and 2, the erroneous $\nu(NO)$ values have been referred to; the sentences should read as follows: As expected, the $\nu(NO)$ bands in the IR spectrum of 3 were shifted to lower energy in comparison to those of 2; $\nu(NO) = 1917$ and 1903 cm⁻¹ for 2, 1902 and 1890 cm⁻¹ for 3, in KBr. The carboxylic acid substituents discussed above have the opposite effect on the nitrosyl stretching bands in comparison with the electron-donating methyl substituents in the bpy rings in this case.

IC971285S

1997, Volume 36

Thomas R. Cundari,* Laura L. Sisterhen, and Chryssanthi Stylianopoulos: Molecular Modeling of Vanadium Peroxides.

Pages 4029-4034. In this paper on the modeling of vanadium peroxides, it was stated (in reference to $[V(O_2)_4]^{3-}$) that "To our knowledge, no crystal structure has been reported." Recently, Professor R. C. Thompson (Department of Chemistry, University of Missouri-Columbia) kindly brought to our attention a contribution from his laboratory (Won, T.-J.; Barnes, C. L.; Schlemper, E. O.; Thompson, R. C. Inorg. Chem. 1995, 34,4499-4503) in which the complexes Na₃[V(O₂)₄]•10.5H₂O and Na₃[V(O₂)₄]·14H₂O are characterized by low-temperature $(-100 \pm 1 \, ^{\circ}\text{C})$ X-ray diffraction. The $[V(O_2)_4]^{3-}$ geometries predicted using the molecular mechanics (RMS_{ic} = RMS_{heavy} = 0.05 Å) and ab initio (RMS_{ic} = RMS_{heavy} = 0.03 Å) techniques discussed in our paper are in excellent agreement with the experimental structures subsequently provided to us by Professor Thompson. We thank Professor Thompson for bringing his work to our attention.

IC971287C