Structures and Energies of Hexa-, Hepta-, and Octacoordinate Alonium Ions AlH₆⁺, AlH₇²⁺, and AlH₈³⁺ and Related AlH₄⁺, AlH₅²⁺, and AlH₆³⁺ Ions¹

George A. Olah* and Golam Rasul

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661

Received December 19, 1996

Structures and energies of the parent hexa-, hepta-, and octacoordinate alonium ions AlH_6^+ , AlH_7^{2+} , and AlH_8^{3+} , respectively, were calculated at the ab initio MP2/6-31G** and QCISD(T)/6-311G** levels. The C_{2v} symmetrical 4, $C_{3\nu}$ symmetrical 7, and T_d symmetrical 10 were found to be the energy-minimum structures of AlH₆⁺, AlH₇²⁺, and AlH_8^{3+} , respectively. The related structures of AlH_4^+ (6), AlH_5^{2+} (9), and AlH_6^{3+} (11) were also calculated at the ab initio MP2/6-31G** level. Formation of AlH_6^+ by protonation of AlH_5 was found to be strongly exothermic by 181.0 kcal/mol. The protonation of AlH₃ to AlH₄⁺ (6) is also highly exothermic by 176.4 kcal/ mol.

Introduction

Higher coordinate² main group compounds are of substantial theoretical³ and experimental⁴ interest. Schmidbaur et al. have prepared a variety of monopositively charged higher coordinate gold complexes of main group elements.⁴ They have also prepared dipositively charged carbon⁵ { $[(C_6H_5)_3PAu]_6C$ }²⁺, nitrogen⁶ {[(C_6H_5)_3PAu]_5N}²⁺, phosphorus⁷ {[(C_6H_5)_3PAu]_5P}²⁺, sulfur⁸ {[(C_6H_5)₃PAu]₄S}²⁺, and oxygen⁹ {[(o-CH₃C₆H₄)₃- $PAu_{4}O_{4}^{2+}$ complexes and determined their X-ray structures. These represent isolobal analogues of CH₆²⁺, NH₅²⁺, PH₅²⁺, SH_4^{2+} , and OH_4^{2+} , respectively.

Calculated parent five-, six-, and seven-coordinate carbocations CH_5^+ (1),¹⁰ CH_6^{2+} (2),¹¹ and CH_7^{3+} (3),¹² respectively, have one, two, and three 2e-3c bonding interactions in their minimum-energy structures. 2e-3c interactions in hypercoor-

- (2) Olah, G. A.; Prakash, G. K. S.; Williams, R. E.; Field, L. D.; Wade, K. Hypercarbon Chemistry; John Wiley & Sons: New York, 1987. Olah. G. A.; Prakash, G. K. S.; Sommer, J. Superacids; John Wiley & Sons: New York, 1985.
- (3) Haberlen, O. D.; Schmidbaur, H.; Rosch, N. J. Am. Chem. Soc. 1994, 115, 5, 8241. Gorling, A.; Rosch, N.; Ellis, D. E.; Schmidbaur, H. Inorg. Chem. 1991, 30, 3986. Schreiner, P. R.; Schaefer, H. F.; Schleyer, P. v. R. Advances in Gas Phase Ion Chemistry; JAI Press Inc.: New York, 1996; p 125. Schreiner, P. R.; Schaefer, H. F.; Schlever, P. v. R. J. Chem. Phys. 1995, 103, 5565. Reed, A. E.; Weinhold, F. J. Am. Chem. Soc. 1985, 107, 1919. Jemmis, E. D.; Chandrasekhar, J.; Würthwein, E.-U.; Schleyer, P. v. R.; Chinn, J. W.; Landro, F. J.; Lagow, R. J.; Luke, B.; Pople, J. A. J. Am. Chem. Soc. 1982, 104, 4275. Schleyer, P. v. R.; Tidor, B.; Jemmis, E. D.; Chandrasekhar, J.; Würthwein, E.-U.; Kos, A. J.; Luke, B. T.; Pople, J. A. J. Am. Chem. Soc. 1983, 105, 484.
- (4) Schmidbaur, H. Chem. Soc. Rev. 1995, 24, 391.
- (5) Scherbaum, F.; Grohmann, A.; Huber B.; Krüger, C.; Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1988, 27, 1544.
- (6) Grohmann, A.; Riede, J.; Schmidbaur, H. Nature 1990, 345, 140.
- (7) Schmidbaur, H.; Beruda, H.; Zeller, E. Phosphorus, Sulfur Silicon 1994, 87, 245.
- (8) Zeller, E.; Beruda, H.; Schmidbaur, H. Inorg. Chem. 1993, 32, 3203.
- (9) Schmidbaur, H.; Hofreiter, S.; Paul, M. Nature 1995, 377, 503.
- (10) Marx, D.; Parrinello, M. Nature 1995, 375, 216. Muller, H.; Kutzelnigg, W.; Noga, J.; Klopper, W. J. Chem. Phys. 1997, 106, 1863 and references therein.

dinate carbocations are very significant, although their natures vary from one molecule to another.

We recently reported¹³ the calculated structures and energies of the parent hexa-, hepta-, and octacoordiate boronium ions BH_6^+ , BH_7^{2+} , and BH_8^{3+} . The structures of BH_6^+ and BH_7^{2+} were found to be isostructural with their isoelectronic carbon analogues CH_6^{2+} (2) and CH_7^{3+} (3), respectively. Eight hydrogen atoms of BH₈³⁺ structure are found to be bonded to the boron atom by four 2e-3c bonds. In continuation of our study of hypercoordinate compounds, we have now extended our investigations to the parent hexa-, hepta-, and octacoordiate alonium ions AlH_6^+ , AlH_7^{2+} , and AlH_8^{3+} , respectively, by ab initio calculations. Recently, Schreiner et al.¹⁴ calculated the structures and energies of AlH₅. The authors concluded that AlH₅ can exist as a weak complex between AlH₃ and dihydrogen

- (11) Lammertsma, K.; Olah, G. A.; Barzaghi, M.; Simonetta, M. J. Am. Chem. Soc. 1982, 104, 6851. Lammertsma, K.; Barzaghi, M.; Olah. G. A.; Pople, J. A.; Schleyer, P. v. R.; Simonetta, M. J. Am. Chem. Soc. 1983, 105, 5258.
- (12) Olah, G. A.; Rasul, G. A. J. Am. Chem. Soc. 1996, 118, 8503.
- (13) Rasul, G. A.; Olah. G. A. *Inorg. Chem.* 1997, 36, 1278.
 (14) Schreiner, P. R.; Schaefer, H. F.; Schleyer, P. v. R. J. Chem. Phys. **1995**, 103, 5565.

S0020-1669(96)01498-X CCC: \$15.00 © 1998 American Chemical Society Published on Web 03/27/1998

⁽¹⁾ Chemistry in Superacids. 28. Part 27: Olah, G. A.; Rasul, G. Acc. Chem. Res. 1997, 30, 245.

Table 1. Calculated Total Energies, -au (ZPE, a kcal/mol)

	MP2/6-31G**//	~ ~	QCISD(T)/6-311G**//
	MP2/6-31G**	G2	QCISD(T)/6-311G**
$AlH_{6}^{+}(4)$	245.14777 (25.8)	245.20925	245.21216
AlH_{6}^{+} (5) TS	245.08807 (26.0)	245.15330	
AlH ₄ ⁺ (6)	243.98065 (16.3)	244.03507	
AlH_7^{2+} (7)	245.18522 (30.3)	245.24276	245.25416
AlH ₇ ²⁺ (8) TS	245.10841 (30.1)	245.16940	
AlH_5^{2+} (9)	243.99496 (20.3)	244.04601	
AlH_8^{3+} (10)	244.99517 (32.8)	245.05235	245.06758
AlH_{6}^{3+} (11)	243.77040 (23.4)	243.81934	
AlH ₃	243.69034 (11.2)	243.75396	
AlH ₅	244.84928 (19.0)	244.92086	
AlH_2^+	242.81420 (6.5)	242.86067	
H_3^+	1.32428 (12.6)	1.32445	

 a Zero-point vibrational energies (ZPE) at MP2/6-31G**//MP2/6-31G** scaled by a factor of 0.93.

Table 2. MP2/6-31G^{**} (QCISD(T)/6-311G^{**}) Calculated Lowdin Bond Orders and Charges^{*a*}

no.	bond	bond order	atom	charge
4	$\begin{array}{c} Al-H_a\\ Al-H_b\\ H_b-H_c \end{array}$	0.98 (0.97) 0.21 (0.20) 0.77 (0.79)	Al H _a H _b	+1.44 (+1.41) -0.32 (-0.32) +0.05 (+0.06)
6	$\begin{array}{c} Al-H_a\\ Al-H_b\\ H_b-H_c \end{array}$	0.98 0.21 0.78	Al H _a H _b	+1.59 -0.34 +0.04
7	$\begin{array}{c} Al-H_a\\ Al-H_b\\ Al-H_c\\ H_b-H_c \end{array}$	0.96 (0.97) 0.29 (0.27) 0.31 (0.28) 0.66 (0.70)	$\begin{array}{c} Al\\ H_a\\ H_b\\ H_c \end{array}$	$\begin{array}{c} +1.60 \ (+1.58) \\ -0.18 \ (-0.19) \\ +0.15 \ (+0.15) \\ +0.04 \ (+0.06) \end{array}$
9	$\begin{array}{c} Al-H_a\\ Al-H_b\\ Al-H_c\\ H_b-H_c \end{array}$	0.95 0.30 0.32 0.65	$\begin{array}{c} Al\\ H_a\\ H_b\\ H_c \end{array}$	+1.81 -0.16 +0.14 +0.04
10	$\begin{array}{c} Al{-}H_a\\ Al{-}H_b\\ H_a{-}H_b \end{array}$	0.36 (0.33) 0.36 (0.33) 0.58 (0.62)	Al H _a H _b	+1.84 (+1.81) +0.14 (+0.15) +0.15 (+0.15)
11	Al-H H_a-H_b	0.39 0.54	Al H	+2.14 +0.14

^{*a*} For numbering scheme, see Figures 1-3.

at low temperature. Olah et al. also studied¹⁵ the protonation of AlH_4^- previously and obtained evidence via H–D exchange for the intermediacy of AlH_5 (or its isotopomers). However, calculations show that intramolecular hydrogen scrambling in AlH_5 prior to dissociation into AlH_3 and H_2 is unlikely,¹⁴ and thus observed exchange could have been the consequence of the reaction of formed HD with alane or protonation (deuteration) of AlH_5 to AlH_6^+ (or that of the corresponding isotopomers).

Calculations

Calculations were carried out with the Gaussian 94 program system.¹⁶ Geometry optimizations and frequency calculations were performed at the MP2/6-31G** and QCISD(T)/6-311G** levels. From calculated frequencies, the optimized structures were characterized as minima

Figure 1. MP2/6-31G** (QCISD(T)/6-311G**) structures of 4-6.

Scheme 1

		ΔH (kcal/mol) ^a
$AlH_5 + H^+ - AlH_6^+ (4)$	(1)	-181.0
$AlH_3 + H_3^+> AlH_6^+ (4)$	(2)	-82.1
$AlH_3 + H^+> AlH_4^+ (6)$	(3)	-176.4
$AlH_4^+(6) + H_2> AlH_6^+(4)$	(4)	-4.9
$AlH_6^+(4) + H^+> AlH_7^{2+}(7)$	(5)	-21.0
$AlH_4^+(6) + H_3^+ - AlH_7^{2+}(7)$	(6)	+73.3
$AlH_4^+(6) + H^+> AlH_5^{2+}(9)$	(7)	-6.9
$AlH_5^{2+}(9) + H_2 - AlH_7^{2+}(7)$	(8)	-19.1
$AlH_7^{2+}(7) + H^+> AlH_8^{3+}(10)$	(9)	+119.5
$AlH_5^{2+}(9) + H_3^+ - AlH_8^{3+}(10)$	(10)	+199.6
$AlH_5^{2+}(9) + H^+ \dots > AlH_6^{3+}(11)$	(11)	+142.2
$AlH_6^{3+}(11) + H_2> AlH_8^{3+}(10)$	(12)	-41.8
$AIH_2^+ + H_2> AIH_4^+$ (6) ^a with the G2 method	(13)	-5.1

(NIMAG = 0) or transition structures (NIMAG = 1). Furthermore, the transition structures were examined by IRC calculations.¹⁸ For improved energy, the Gaussian-2 (G2) energies¹⁷ were computed. MP2/ $6-31G^{**}$ geometrical parameters and G2 calculated energies will be discussed throughout, unless stated otherwise. Calculated energies are given in Table 1. Atomic charges and Lowdin¹⁹ bond orders were obtained using the natural bond orbital analysis (NBO)²⁰ method (Table 2). Calculated vibrational frequencies are given in Table 3.

Results and Discussion

AlH₆⁺. $C_{2\nu}$ symmetrical structure 4 was found to be the only minimum on the potential energy surface of AlH_6^+ (Figure 1). Structure 4 has two 2e-3c bonds and two 2c-2e bonds and can be considered as a complex between AlH_2^+ and two hydrogen molecules. Structure 4 is isostructural with hexacoordinate boron¹³ BH₆⁺ as well as carbon¹¹ CH₆²⁺. At the MP2/6-31G^{**} level, the Al-H bond distance the of 2e-3c bond is 2.056 Å, significantly longer than that of the 2c-2e bond (1.540 Å). The H-H 2e-3c bond length is 0.762 Å, only 0.028 Å longer than that of H₂ molecule at the same level. These results indicate that the interaction between H₂ and the aluminum atom in the 2e-3c bond of 4 is weak. This is in agreement with the calculated Lowdin¹⁹ bond orders of Al-H and H-H bonds (Table 2). Thus the Al-H bond order of the 2e-3c bond is only 0.21, less than a quarter of that of the 2c-2e bond (0.98). On the other hand, the H-H bond order of the 2e-3c bond is 0.77, only 0.23 less than that of neutral H_2 .

We found that the protonation of AlH₅ to form C_{2v} AlH₆⁺ (4) is highly exothermic by 181.0 kcal/mol (eq 1, Scheme 1), which is even 17.9 kcal/mol more exothermic than that of

- (19) Lowdin, P. O. Phys. Rev. 1955, 97, 1474.
- (20) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.

⁽¹⁵⁾ Olah, G. A.; Westerman, P. W.; Mo, Y. K.; Klopman, G. J. Am. Chem. Soc. 1972, 94, 7859.

⁽¹⁶⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*, Revision A.1; Gaussian, Inc.: Pittsburgh, PA, 1995.

⁽¹⁷⁾ Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. **1991**, 94, 7221.

⁽¹⁸⁾ Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.

no.	frequencies, cm ⁻¹ (intensities, KM/mol)
4	303 (0), 339 (0), 911 (0), 346 (0), 493 (0), 498 (7), 558 (268), 562 (245), 690 (43), 704 (75), 924 (0), 930 (50), 2132 (5), 2205 (28),
	4349 (93), 4353 (91)
6	364 (0), 499 (4), 541 (271), 592 (185), 697 (51), 901 (28), 2127 (2), 2209 (16), 4349 (110)
7	210 (0), 218 (4), 352 (0), 380 (1), 438 (164), 907 (114), 928 (21), 987 (174), 995 (21), 2143 (48), 4088 (788), 4113 (89)
9	122 (0), 126 (4), 330 (32), 377 (1), 381 (65), 899 (99), 904 (85), 1009 (8), 1011 (72), 2074 (127), 4021 (539), 4047 (226)
10	114 (0), 320 (3), 326 (15), 328 (1), 330 (5), 822 (4), 827 (182), 829 (203), 836 (175), 1117 (0), 1157 (0), 3715 (2016), 3801 (0)
11	82 (0), 92 (0), 213 (28), 293 (13), 781 (88), 795 (417), 1149 (0), 1210 (3), 3500 (1902), 3600 (0)
^a Not	scaled.

Figure 2. MP2/6-31G** (QCISD(T)/6-311G**) structures of 7-9.

protonation of water. However, the transition state for the deprotonation process could not be located. Structure **5** (Figure 1), which lies 35.1 kcal/mol higher in energy than structure **4**, was located as transition structure for hydrogen scrambling in **4**. Thus, hydrogen scrambling in cation **4** through transition state **5** has a considerable kinetic barrier. The dissociation of **4** into AlH₃ and H₃⁺ (eq 3) is calculated to be endothermic by 82.1 kcal/mol (Scheme 1).

Olah et al. previously investigated¹⁵ the protonation of $AlH_4^$ in strong acids such as H_2SO_4 and HF and suggested evidence by H–D exchange for the intermediacy of AlH₅. However, hydrogen scrambling in AlH₅ prior to dissociation into AlH₃ and H₂ was calculated to be an unfavorable process.¹⁴ Hydrogen scrambling in AlH₅ was calculated to have a high 26.0 kcal/ mol kinetic barrier. It is thus probable that indeed AlH₆⁺ is formed in the acidic solutions and is responsible for the observed scrambling.

Structure **4** can also be viewed as a complex between AlH₄⁺ and H₂. Structure **6**, a planar $C_{2\nu}$ form with a 2e-3c interaction, was found be the global minimum for AlH₄⁺ (Figure 1). Similar structures were also calculated for carbon²¹ (CH₄²⁺) and boron¹³ (BH₄⁺) analogues. Protonation of AlH₃ to give **6** was also found to be highly exothermic by 176.4 kcal/mol. On the other hand, the reaction AlH₄⁺ + H₂ (eq 4) is only 4.9 kcal/mol exothermic. In comparison, the reaction AlH₃ + H₂ is endothermic by 3.1 kcal/mol.¹⁴

AlH₇²⁺. The C_{3v} structure **7** is the only minimum that was located on the potential energy surface of AlH₇²⁺. Structure **7** is characterized by three 2e-3c bonds and a 2c-2e bond and resembles a complex between AlH²⁺ and three hydrogen molecules (Figure 2). Structure **7** is isostructural with that of CH₇^{3+ 12} and BH₇^{2+.13} The Al–H bond distances of 2e-3c interactions are 1.940 and 1.920 Å, slightly shorter than that of **4**. This indicates that the 2e-3c interaction between H₂ and Al is probably stronger in **7** than in **4**. The calculated 2e-3c Al–H bond order of **7** is therefore slightly larger than that of **4** (Table 2). We have also calculated the transition structure **8** for intramolecular hydrogen transfer in the trication (Figure 2). Structure **8** lies 46.0 kcal/mol higher in energy than structure **7**. Hydrogen scrambling in **7** therefore also has high kinetic barrier. On the other hand, hydrogen scrambling was calculated

Figure 3. MP2/6-31G** (QCISD(T)/6-311G**) structures of 9 and 10.

to be facile for BH_7^{3+1} and $CH_7^{3+,12}$ The dissociation of **7** into **4** and H^+ (eq 4) is 21.0 kcal/mol endothermic, whereas that into AIH_4^+ and H_3^+ (eq 6) is exothermic by 73.3 kcal/mol (Scheme 1).

Ion 7 can also be considered as a complex between AlH_5^{2+} and H_2 . The structure of **9** is of a planar C_{2v} symmetry with two 2e-3c bonds and a 2c-2e bond. A similar structure has also been reported²² for BH_5^{2+} . Formation of **9** by protonation of AlH_4^+ (**6**) is exothermic by 6.9 kcal/mol (eq 7). Formation of **7** from the reaction of **9** with H_2 is also exothermic by 19.1 kcal/mol (eq 8).

 AlH_8^{3+} . We have also calculated the minimum-energy structure 10 for the octacoordinate trication AlH_8^{3+} . The structure resembles a complex of four H2 molecules bound to a tripositively charged aluminum atom, Al³⁺ (Figure 3). A similar structure was also calculated for the octacoordinate boronium trication BH₈^{3+.13} In contrast, the parent octacoordinate carbonium tetracation CH84+ was not found to be a stable species at the MP2/6-31G** level probably due to excessive charge-charge repulsion.¹² In comparison with those of **4** and 7, the H_2 units of the 2e-3c interactions of 10 are more tightly bound to the aluminum atom. Thus, the Al-H bond distances of the 2e-3c interactions (1.887 and 1.885 Å) are shorter than those of 4 and 7. The calculated Al-H bond orders are also considerably higher than those of 4 and 7. The dissociation of the trication into 7 and H^+ (eq 9) and into AlH_5^{2+} and H_3^+ (eq 10) are calculated to be exothermic by 119.5 and 199.6 kcal/ mol, respectively (Scheme 1). From eqs 6, 9, and 13 it can be seen that, whereas the formation of AlH_4^+ (6) from AlH_2^+ and H₂ is slightly favorable thermodynamically, the formation of AlH_7^{2+} (7) and subsequently AlH_8^{3+} (10) is strongly unfavorable.

The related hexacoordinate trication AlH_6^{3+} (11), which can complex with H_2 to form 10, was also calculated. The minimum structure of AlH_6^{3+} is a propeller-shaped molecule with three 2e-3c bonds. The plane of each 2e-3c unit is rotated 65.5° around its axis from the plane of the molecule at the MP2/6-31G** level. The calculated²² structure of BH_6^{3+} is also a propeller-shaped molecule with three 2e-3c bonds. But the plane of each of the 2e-3c unit in BH_6^{3+} is rotated only 1.6° around its axis from the plane of the molecule at the same MP2/ 6-31G** level. Formation of **11** by protonation of AlH_5^{2+} (**9**) is highly endothermic by 142.2 kcal/mol (eq 11). On the other hand, reaction of **11** and H₂ is exothermic by 41.8 kcal/mol (eq 12).

We also calculated the NBO charges²⁰ of the alonium ions (Table 2). The charges of the aluminum atom in the ions **4**, **7**, and **10** are 1.44, 1.60, and 1.84 au, respectively. This indicates that the aluminum atoms bear the most of the positive charge. In contrast, the hydrogen atoms of the corresponding analogous boron cations bear most of the positive charge.¹³ This is consistent with the better hydride donor ability of aluminum compounds compared to that of the boron analogues.¹⁴

Our present studies show that the hexa- and heptacoordinate alonium ions AlH_6^+ (4) and AlH_7^{2+} (7), with two and three 2e-3c bonds, respectively, are isostructural with their boron analogues BH_6^+ and BH_7^{2+} as well as carbon analogues CH_6^{2+} (2) and CH_7^{3+} (3). The octacoordinate alonium ion AlH_8^{3+} (10), with four 2e-3c bonds, is isostructural with the boron analogue BH_8^{3+} . Calculated charges and protonation energies are consistent with the better hydride donor ability of aluminum compounds compared to that of boron analogues.¹³ The instability of the trication AlH_8^{3+} (10) is mainly due to the charge–charge repulsion, and if formed, it will probably dissociate spontaneously into AlH_7^{2+} (7) and H⁺. An implication of the study of these ions is the relationship of their bonding nature (2e-3c bonds) to that of Schmidbaur type gold complexes,⁴ although, in the latter complexes, substantial metal– metal bonding (which exceeds 2e-3c) makes them stable and even isolable as crystalline salts.

Conclusions

Structures and energies of the parent hexa-, hepta-, and octacoordinate alonium ions AlH_6^+ (4), AlH_7^{2+} (7), and AlH_8^{3+} (10), respectively, were calculated at the ab initio MP2/6-31G** and QCISD(T)/6-311G** levels of theory. The cations, with eight valence electrons, C_{2v} symmetrical 4, C_{3v} symmetrical 7, and T_d symmetrical 10, are isostructural with their boron analogues¹³ BH₆⁺, BH₇²⁺, and BH₈³⁺, respectively, and are stabilized by two, three, and four 2e-3c bonds. The local geometry around the aluminum atom is therefore expectedly roughly tetrahedral, the substituent being a hydrogen atom or a dihydrogen molecule. The structures of related AlH_4^+ (6), AlH_5^{2+} (9), and AlH_6^{3+} (11), with six valence electrons, were also calculated at the ab initio MP2/6-31G** level. The local geometry around the aluminum atom is therefore expectedly roughly planar trigonal, the substituent being a hydrogen atom or a dihydrogen molecule. The protonation of AlH5 to form AlH_6^+ (4) is calculated to be highly exothermic by 181.0 kcal/ mol and may be responsible for the experimentally observed hydrogen-deuterium scrambling of AlH₄⁻ in superacid solutions. The protonation of AlH₃ to form AlH_4^+ (6) is very exothermic by 176.4 kcal/mol.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

IC9614982