SrHg₂O₂Cl₂, the First Strontium Mercury Oxychloride. Crystal Structure Determination by *ab Initio* Powder Methods

William T. A. Harrison,*,[†] Lumei Liu,[‡] Allan J. Jacobson,[‡] and Thomas Vogt[§]

Department of Chemistry, University of Western Australia, Nedlands, WA 6907, Australia, Department of Chemistry, University of Houston, Houston, Texas 77204-5641, and Physics Department, Brookhaven National Laboratory, Upton, New York 11973

Received May 19, 1997

Little work has been reported on simple inorganic compounds containing Sr and Hg in combination.¹ Here, we report the synthesis and *ab initio* structure determination from powder data of SrHg₂O₂Cl₂, the first strontium mercury oxychloride.

SrHg₂O₂Cl₂ was prepared by the solid-state reaction of SrO₂ and Hg₂Cl₂, resulting in a rusty brown powder. An electron microprobe analysis indicated an Sr:Hg ratio of 1:1.96 (estimated uncertainty $\pm 2\%$). We were unable to prepare single crystals of SrHg₂O₂Cl₂ for conventional structure determination; hence, the crystal structure was determined by *ab initio* methods²⁻⁴ using laboratory X-ray powder diffractometer data. A joint Rietveld refinement⁵ against X-ray powder data and neutron powder diffraction data allowed the light-atom positions (O and Cl) to be located to satisfactory precision.

SrHg₂O₂Cl₂ (Table 1, Figures 1 and 2) contains seven distinct atoms. The strontium cation is coordinated by three O atoms and five Cl atoms in irregular coordination. The two Hg atoms show approximately linear "dumbbell" O–Hg–O coordination $[d_{av}(Hg-O) = 2.07 \text{ Å}]$, which is characteristic of divalent mercury.⁶ Thus, during the synthesis, Hg^I was oxidized to Hg^{II}, with concurrent reduction of peroxide to oxide ions.⁷ Hg(1) also bonds to a third oxygen atom, resulting in an unusual T-shaped Hg(1)O₃ grouping. Three chlorine atoms complete the irregular Hg(1)O₃Cl₃ coordination polyhedron. Hg(2) bonds to four Cl atoms, in addition to its two O atom neighbors, resulting in a distorted Hg(2)O₂Cl₄ octahedron. Nonbonded Hg•••Hg distances of >3.1 Å are found in SrHg₂O₂Cl₂, which are characteristic of Hg^{II}, as opposed to Hg^I, for which Hg–Hg bonding contacts of

- [†] University of Western Australia.
- [‡] University of Houston.
- § Brookhaven National Laboratory.
- (1) Soll, M.; Müller-Buschbaum H. J. Less-Common. Met. 1991, 175, 295.
- (2) Harris, K. D. M.; Tremayne, M. Chem. Mater. 1996, 8, 2554.
- (3) Poojary, D. M.; Bortun, A. I.; Bortun, L. N.; Clearfield A. J. Solid State Chem. **1997**, 132, 213.
- (4) Unit cell by autoindexing; space group of P2₁/n by inspection; structure solution (Hg, Sr atoms) by intensity extraction followed by direct methods; Rietveld refinement and Fourier difference maps to locate O and Cl species. Full details and software references are given in the Supporting Information.
- (5) Neutron diffraction: ~10 g sample, cylindrical vanadium sample can, T = 298 (2) K, diffractometer HRNPD (Brookhaven National Laboratory), λ = 1.8832(1) Å. A joint X-ray/neutron Rietveld refinement resulted in a satisfactory solution (R_p = 3.89%, R_{wp} = 4.83%, X-ray R(F²) = 5.98%, neutron R(F²) = 8.77%, χ² = 3.21, 4199 data points, 75 parameters, residuals defined in ref 7). Four regions containing peaks due to a small amount of an unidentified impurity phase were excluded from the neutron data (d = 2.75, 2.48, 1.43, 1.24 Å). A fixed absorption correction (µr effective = 0.5) was applied to the neutron data to account for the substantial absorption of mercury at this wavelength. Crystal data: SrHg₂O₂Cl₂, M_r = 591.71, monoclinic, space group P2₁/n (No. 14), a = 9.9432(4) Å, b = 7.0226(3) Å, c = 8.2877(3) Å, β = 102.441(1)°, V = 565.44(6) Å³, Z = 4.
- (6) Wells, A. F. Structural Inorganic Chemistry; Oxford University Press: New York, 1984.
- (7) Harrison, W. T. A.; Liu, L.; Jacobson, A. J. Angew. Chem., Int. Ed. Engl. 1996, 35, 625.

Table 1. Atomic Positional/Thermal Parameters for SrHg₂O₂Cl₂

atom	x	у	z	$U_{\rm iso}({\rm \AA}^2)$
Sr(1)	0.3737(4)	0.6224(5)	0.7237(5)	0.006(1)
Hg(1)	0.3673(3)	0.1654(4)	0.4721(3)	0.0090(7)
Hg(2)	0.1038(3)	0.4349(4)	0.3711(3)	0.0096(6)
Cl(1)	0.1160(4)	0.1026(5)	0.1580(4)	0.012(1)
Cl(2)	0.3724(4)	0.3224(5)	0.9661(4)	0.0104(9)
O(1)	0.0041(5)	0.4253(8)	0.8326(6)	0.007(2)
O(2)	0.2307(5)	0.3214(8)	0.5782(6)	0.007(2)

Figure 1. View down [010] of the $SrHg_2O_2Cl_2$ structure. Atoms are represented by spheres of arbitrary radius.

Figure 2. Detail of the SrHg₂O₂Cl₂ structure showing part of an infinite mercury/oxygen sheet.

~2.5 Å occur.⁶ The bond angles about the two distinct oxygen atoms are both approximately tetrahedral [O(1) bonds to 1 Sr + 3 Hg; O(2) bonds to 2 Sr + 2 Hg]. The Cl(1) atom bonds to two Sr and five Hg neighbors in irregular coordination. Cl(2) is coordinated to three Sr and two Hg atoms which form an

S0020-1669(97)00600-9 CCC: \$15.00 © 1998 American Chemical Society Published on Web 02/10/1998

^{*} Corresponding author. E-mail: wtah@chem.uwa.edu.au.

approximate square-based pyramid about this atom (Hg in the apical position). Bond valence calculations for the constituent atoms in SrHg₂O₂Cl₂ were in accordance with their expected values.⁸

SrHg₂O₂Cl₂ crystallizes as a new structure type with significant two-dimensional character. Infinite, formally neutral, sheets of stoichiometry [Hg₂O₂]_∞ are arrayed normal to the [101] direction (Figure 2). These sheets are built up from pairs of O(1)–Hg(1)– O(2) dumbbell units, which fuse together *via* Hg(1)–O(1) bonds to result in "4-rings" of alternating Hg(1) and O(1) atoms. The Hg(2) cation makes a dumbbell link to O(1) and O(2) neighbors in adjacent 4-rings, resulting in highly puckered, infinite layers. The Sr²⁺ and Cl⁻ species then serve to "pillar" the [Hg₂O₂]_∞ sheets into a three-dimensional structure. An alternative way to picture the structure (Figure 1) reveals a complex network of Hg, O, and Cl atoms surrounding one-dimensional channels propagating along [010], which are occupied by the strontium cations. There is no suggestion, however, that the Sr species show any mobility in these channels.

The structure of $SrHg_2O_2Cl_2$ is completely different from that of $BaHg_2O_2Cl_2$, and its isostructure $PbHg_2S_2I_2$,⁹ in which isolated

 Hg_4O_4 and Hg_4S_4 squares, respectively, are found. The T-shaped $Hg(1)O_3$ local coordination in $SrHg_2O_2Cl_2$ is rare. In one form of mercury oxychloride, $Hg_6O_4Cl_4$,¹⁰ some Hg^{II} atoms are three-coordinated to O but in flat pyramidal geometry, as opposed to the T-shape found here. The most common "isolated" O-Hg-O dumbbell coordination occurs in most mercury(II) compounds including high- T_c superconductor related phases such as $(Hg_{0.5}Bi_{0.5})(Sr_{1.5}La_{0.5})CuO_5$.¹¹

Acknowledgment. We thank the Australian Research Council and the National Science Foundation for financial support. Work at Brookhaven was supported by the Department of Energy under Contract No. DE-AC02-76CH00016.

Supporting Information Available: Text describing the synthesis and structure determination procedures, a listing of geometrical data, and figures showing final Rietveld difference profile plots (8 pages). Ordering information is given on any current masthead page.

IC9706008

 (11) Pelloquin, D.; Michel, C.; Van Tendeloo, G.; Maignan, A.; Hervieu, M.; Raveau, B. *Physica C (Amsterdam)* 1993, 214, 87.

⁽⁸⁾ O'Keeffe, M. Program EUTAX. Department of Chemistry, Arizona State University. BVS values: Sr(1) 2.01, Hg(1) 1.79, Hg(2) 1.89, Cl(1) 0.88, Cl(2) 0.98, O(1) 1.94, O(2) 1.88.

⁽⁹⁾ Blachnik, R.; Buchmeier, W.; Dreisbach, H. A. Acta Crystallogr. 1986, C42, 515.

⁽¹⁰⁾ Aurivillius, K.; Stålhandske, C. Acta Crystallogr. 1978, B34, 79.