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A new tight-binding band structure calculation method is described. This method, which is based on the Fenske-
Hall molecular orbital technique, should be extremely useful in the study of the bulk and surface electronic structure
of inorganic materials. The approximations used in the Fenske-Hall method are reviewed, and the extension of
this approach to periodic band structure calculations is outlined. Results of calculations for bulk MoS2 are in
good agreement with previous experimental and theoretical results. Results of calculations for two-dimensional
MoS2 slabs exposing (100) edge planes provide a description of coordinatively unsaturated Mo and S atoms on
these edges. Coordinative unsaturation at the Mo atoms introduces new surface states near the Fermi level.
Coordinative unsaturation at the S atoms leads to high-energy occupied bands that can be attributed to S lone pair
electrons. Surface bonds between Mo atoms and terminal S atoms are stronger than bulk Mo-S bonds, suggesting
that terminal S atoms may be more difficult to remove from the edges of MoS2 than bridging S atoms. Bonding
in a single two-dimensional layer of MoS2 is found to be more ionic than the bonding in the full three-dimensional
structure. This effect is also observed in one-dimensional MoS2 ribbons that expose (100) edge planes. The
simplified one-dimensional ribbons will be used for further studies of the electronic structure of the edge planes
of MoS2.

Introduction

In recent years, a number of computational techniques have
been developed for studying the electronic structure of solids
and surfaces. The algorithms are generally based on either first
principles1-4 or semiempirical methods.5,6 First principles (ab
initio) techniques are rigorous and potentially accurate, but they
are invariably computationally intensive. Their application to
solids which incorporate transition metals and have large unit
cells is hampered by the sheer size of the calculation. Further-
more, even though such methods have the potential to provide
accurate total energies, they may not provide a great deal of
physical insight. Semiempirical methods (e.g. extended Hu¨ckel
and CNDO), on the other hand, are considerably simpler; the
choice of suitable parameters enables one to obtain meaningful
qualitative results with a great reduction in computational effort.
At the same time, however, a lack of self-consistency and/or
the parametrization of the matrix elements often introduce(s)
considerable uncertainty into both the calculated energies and
charge distributions.
As a complement to these two classes of techniques, there is

a place for a band structure algorithm incorporating a method
intermediate in rigor. In the realm of molecular calculations,

this place has long been occupied by the Fenske-Hall molecular
orbital method.7 The Fenske-Hall method is an approximate
molecular orbital technique which utilizes a self-consistent field
procedure. It is nonempirical, in that there is no parametrization
of matrix elements, but the approximations invoked significantly
reduce the amount of computation required. In other words,
the Fenske-Hall approach is an approximation to a first-
principles Hartree-Fock calculation. While total energies are
not readily obtained from this method, the approach does yield
a reliable description of the electron distributions and orbital
energies for complex transition metal systems.
This report describes the extension of the Fenske-Hall

molecular orbital method to a tight-binding band structure
formalism for periodic systems. We are interested in the surface
electronic structure of inorganic solids (such as transition metal
sulfides and oxides) that serve as catalysts in heterogeneous
processes, and this computational approach provides a new tool
to study the electronic structure of such materials. This new
Fenske-Hall band structure method will enable us to obtain
reliable descriptions of the electron distributions and bonding
in these often very complex solid state systems. In systems
such as promoted transition metal sulfide hydrodesulfurization
(HDS) catalysts, for example, a reliable description of the charge
distributions and orbital structures of different possible active
surfaces and catalytic sites would greatly further our understand-
ing of the basis for the catalytic activity of these materials. The
large unit cells required for studies of the surfaces of these
materials mean, however, that ab initio calculations for these
systems are usually limited to studies of very simplified models.
Semiempirical techniques can easily treat large unit cells and
provide a qualitative description of the bonding. They cannot,
however, provide a reliable description of the charge distribu-
tions, possibly a critical factor in understanding what determines
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an active catalytic site. For these kinds of solid-state systems,
the Fenske-Hall band structure technique will offer an approach
that is intermediate in rigor but also yields chemically useful
information.
The first section of the paper reviews the features of the

Fenske-Hall molecular orbital approach and outlines the
development and implementation of this approach for periodic
band structure calculations. The second section discusses the
results of bulk electronic structure calculations for MoS2 and
compares these results to prior work. MoS2, which serves as a
catalyst for the hydrodesulfurization (HDS) of the sulfur
containing aromatic compounds found in petroleum feedstocks,8

has been the subject of several experimental and theoretical
investigations and therefore provides an ideal “test case” for
the Fenske-Hall calculations. The third section describes the
calculated electronic structure of (100) surface planes of MoS2.
Coordinatively unsaturated Mo atoms on these edge planes are
believed to provide the active sites for HDS catalysis.9 Finally,
the last section discusses the effects of modeling MoS2 with a
single MoS2 sheet. Use of this simplified system would enable
us to study the electronic structure both of edge planes having
isolated sulfur vacancies and of models for promoted MoS2

catalysts while maintaining a reasonably small unit cell size.

Mathematical Formalism

Fenske-Hall Molecular Orbital Method. For clarity, we first
review the key features of the Fenske-Hall molecular orbital method.7
In this approach, electron density is assigned to each center in the system
through Mulliken population analyses,10 and a point charge approxima-
tion is invoked in the calculation of multicenter coulomb and exchange
terms. These and other standard approximations form the basis for
constructing the Hartree-Fock-Roothaan11 (HFR) matrix. The di-
agonal matrix element for atomic orbitalæa (on center A) is

whereεa is the atomic orbital energy of an electron inæa, in which the
one-center interelectron repulsions are calculated using Slater’s average
of configuration approach;12 qC is the Mulliken charge on center C
(nuclear charge less the sum of Mulliken populations); andRAC is the
distance between centers A and C. The energetic placement ofæa is
determined primarily byFaa, and the value ofFaa depends on several
factors. Two of these factors, the kinetic energy and nuclear attraction
terms, do not depend on the charge distribution, but two other factors
dovary with the charge distribution. First, interelectron repulsions due
to the occupation of atomic orbitals on the same center destabilizeFaa;
second, an environmental factor (also related to electron repulsion)
destabilizesFaa if neighboring atoms are negatively charged and
stabilizesFaa if these neighboring atoms are positively charged.
Two-center off-diagonal elements between atomic orbitalsæa and

æb (on centers A and B, respectively) are expressed as follows:

The overlap and kinetic energy integrals,〈æa|æb〉 and〈æa| - 1/2∇2|æb〉,

are evaluated exactly, while the other terms are evaluated as in eq 1.
One-center off-diagonal elements are set to zero.
The HFR equation11

(S) overlap matrix;C ) eigenvector matrix;E ) diagonal eigenvalue
matrix) can then be solved by standard techniques. Since theFmatrix
depends on theCmatrix through the Mulliken populations, this equation
must be solved to self-consistency.
Extension to Periodic Systems. In general, a molecular orbital

technique can be extended to periodic systems by recognizing the
translational symmetry through the use of Bloch functions.

whereN is the total number of unit cells in the system;τb is the
translation vector between two lattice points;kB is a reciprocal lattice
vector; andæa

τ refers to the basis functionæa on center A in the unit
cell at the vector distanceτb from the zeroth unit cell. The HFR and
overlap matrixes can be constructed in analogy to the molecular case
for a particular reciprocal lattice vectorkB:

In terms of the molecular case,Fabτ ) 〈æa
o|F|æb

τ〉 is the matrix element
betweenæa in the zeroth unit cell andæb in the unit cell atτb and is
modulated by the phase factor eikB‚τb. TheSmatrix is similarly defined.
The energy ofæa is Faao, the equivalent of the molecular diagonal
element, where the “o” refers to both functions being in the same
(zeroth) unit cell. It should be noted that the phase factor can be written
either as eikB‚τb, as in eq 5, or as eikB(τb+rbB-rbA), where rbA and rbB are the
positions of centers A and B in the unit cell. In either form the Bloch
theorem is obeyed, and there is no difference numerically. We have
adopted the notation shown in eq 5 in order to be consistent with our
definition of the Bloch functions. Physically, this means that we are
taking into account the periodicity of the entire unit cell.
If we return to the Fenske-Hall method, the termsFabτ andSabτ can

be evaluated in analogy to the molecular case. That is

where the sum over C includes A in all other unit cells except the
zeroth and

In eq 6a, the two-center electrostatic term

is simply the negative of the electrostatic potential experienced by the
atom A and can be calculated using the Ewald summation technique
(see Appendix). The three-center terms that appear inFabτ can be
calculated from the Ewald sums by recognizing that
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As before, the charges on the various atoms are obtained via Mulliken
population analyses.
Since the matricesF(kB) and S(kB) are both Hermitian, the corre-

sponding HFR equation

can be solved to yield real eigenvalues. The vectorkB can take on any
real value within the first Brillouin zone, constituting a continuous
distribution. For example, for an orthorhombic (i.e. with all faces
rectangular) unit cell, the first Brillouin zone is defined by 0e kx, ky,
kz e π/a, π/b, π/c, wherea, b, andc are the dimensions of the unit
cell. In practice, however, finitek point sets are used, and these may
be tailored to the symmetry of the system. Procedures fork point
sampling are documented elsewhere.13-16

In the calculation of properties such as the density of states, atomic
and fragment molecular orbital populations, overlap populations, and
crystal orbital overlap population (COOP) curves, the computational
approach we have adopted is similar to that used in the extended Hu¨ckel
program of Whangbo and co-workers.5

Calculational Details for MoS2. Calculations on bulk MoS2 are
based on the known crystal structure of the solid.17 Surface calculations
for MoS2 were carried out on unreconstructed surfaces. Thek points
were sampled from the irreducible Brillouin zone (IBZ) of the
appropriate Patterson space groups, as documented by Ramı´rez and
Böhm;13,14 these are listed in Table 1.
Atomic basis functions were obtained by fitting the results of XR

(Herman-Skillman) calculations18 for a given atomic charge to Slater
type orbitals.19 In molecular Fenske-Hall calculations transition metal
basis functions are generally chosen by calculating a modified Mulliken
charge for the metal which is based on the d orbital populations only;
this modified charge, rounded to the nearest integer, determines the
choice of the 1s through valence d orbital functions. It became clear
while testing the program that this procedure is unsuitable for selecting
transition metal basis functions for the band structure calculations, since
the valence d functions thus obtained, particularly for second-row
transition metals, are too diffuse and lead to bandwidths that are too
wide. As a result, transition metal 1s through valence d orbital basis
functions used in the band structure calculations have been chosen by
fitting the width of part or all of the d band to the width obtained from
ab initio calculations on compounds of interest; when such calculations
are unavailable, extrapolations from similar compounds are made. For
second (and third) row transition metals, the basis functions need to
be more contracted; this is less the case for the smaller first row
transition metals. The calculated modified charge for Mo in MoS2,
for example, is+1.63, which in molecular calculations would dictate
the use of functions corresponding to Mo2+. To reproduce the d
bandwidths, however, the results reported here used atomic basis
functions corresponding to Mo2.4+. As in molecular calculations, the
Mo 5s and 5p functions were both chosen to have exponents of 2.2.
The selection of basis functions for sulfur was more straightforward.
Basis functions used in the calculations correspond toS(0). These
functions are the usual choice in molecular calculations for sulfur atoms
having a-2 oxidation state, and these same functions provide a
reasonable fit to the sulfur p bandwidths in band structure calculations
on transition metal sulfides.

Results and Discussion

Electronic Structure of Bulk MoS2. MoS2 exhibits a
layered structure composed of two-dimensional sheets which
interact only through van der Waals forces (Figure 1a). The
unit cell is hexagonal, and each molybdenum atom is surrounded
by six sulfur atoms coordinated in a trigonal prismatic fashion
(Figure 1b). The electronic structure of MoS2 can be understood
in terms of the ligand field orbital splitting expected for trigonal
prismatic metals (dz2 < dx2-y2, dxy < dxz, dyz for z along the
vertical 3-fold axis of the trigonal prism), and this progression
of metal bands is observed in the calculated total density of
states (DOS) curve for MoS2 shown in Figure 2a. Since each
Mo is in the +4 oxidation state and formally has two 4d
electrons, the dz2 band is completely filled while the rest of the
d bands are empty. The partial density of state curves, Figure
2b, reveals that there is some mixing between the dz2 and the
dx2-y2, dxy bands, indicating a measure of metal-metal interac-
tion. This mixing was observed in the previous calculations of
Yee and Hughbanks20 and can be associated with metal-metal
bonding involving orbitals in thexyplane. The semiconducting
gap therefore separates what are nominally the dz2 and (dx2-y2,
dxy) bands. In fact, however, there is mixing between these sets
of orbitals, and the gap separates groups of bands which are
weakly Mo-Mo bonding and antibonding.
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Table 1. Irreducible Brilloiun Zones (IBZ) and Number ofk
Points Used in MoS2 Calculations

IBZ no. of k points

solids
bulk MoS2a P6/mmm 216
MoS2 sheet 2-D hexagonal 127

surfaces
MoS2 (100) rectangular 100
MoS2 (100) ribbon 1-D 100

a All calculations were carried out on an SGI Indy R5000 worksta-
tion. The CPU time required to reach convergence and generate all
necessary files for DOS and COOP curves for bulk MoS2 was 59 min.
The CPU time required can be considerably reduced by decreasing the
number of k points, making educated guesses for initial orbital
populations, and utilizing an extrapolaton routine to estimate starting
populations for successive cycles.

Figure 1. Structure of MoS2. (a) Illustration of the stacking of small
sections of MoS2 sheets; (b) local trigonal prismatic coordination
geometry of each Mo atom and corresponding crystal field splitting of
the Mo 4d orbitals.
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The calculated bandwidths and character are in reasonable
agreement with both photoelectron spectra and previous calcula-
tions on MoS2.20-23 (All of these previous calculations also
showed a “dz2” band approximately 1 eV in width at the top of
a 5-7 eV wide S 3p-derived band.) The size of the semicon-
ducting gap was calculated to be 0.86 eV, which is within the
range of reported experimental measurements. (Reported
experimental values24-26 range from 0.27 to 1.35 eV and include
one at 0.8 eV.) An artifact of our calculations is the∼1 eV
gap between the sulfur p and molybdenum dz2 bands; this gap
is not observed in the photoelectron spectrum of MoS2.22 (It
should be noted, however, that such a gap has also been found
in previous calculations.) We have found such a gap (of varying
width) to be present in all our calculations on second-row
transition metal sulfides. This appears to result from ap-
proximations used in the Fenske-Hall method. Particularly,
the use of point charge approximations tends to destabilize the
metal orbitals, and the manner in which the off-diagonal
elementsFabτ are calculated tends to exaggerate bonding-
antibonding splittings). This means that if we wish to make
comparisons between different sulfides we must recognize that
our results overestimate the separation between the sulfur p and
metal d bands. At the same time, however, the qualitative
features of the band structures of MoS2 and other transition metal
sulfides27 are modeled reasonably well, and comparisons may
be readily made between bulk and surface calculations of the
same compound.
MoS2 (100) Surface(s). One of the main motivations for

our development of a new band structure approach has been
our interest in the surface electronic structure of inorganic solids
that serve as catalysts in important chemical processes. Several

transition metal sulfides show significant activity as HDS
catalysts.28 While it is generally accepted that active HDS sites
on sulfides involve coordinatively unsaturated metal centers,
there is little agreement as to exactly which metal site is active
or how many sulfur vacancies exist in the metal coordination
sphere at this active site. To try to answer these questions, we
have begun a systematic study of the electronic structure of
possible active surfaces on these sulfides.
We report here our first results for edge plane surfaces of

MoS2. MoS2 itself shows significant activity as an HDS
catalyst, and Co- or Ni-promoted MoS2 is used in many
industrial HDS processes. Although extended Hu¨ckel calcula-
tions have been used previously to study surfaces of MoS2,29

our results represent the first self-consistent study of these
surfaces. In addition, these results provide a basis for further
studies of surfaces consistent with the “CoMoS” and “NiMoS”
models30 of the promoted edge planes.
To study the electronic structures of surfaces it is necessary

to carry out calculations on two-dimensional slabs of finite
thickness. One or both of the surfaces of the slab then represents
a surface of interest. Ideally, such a slab should be sufficiently
thick that the internal atoms exhibit the electronic properties of
“bulk” atoms. Since a slab has two- rather than three-
dimensional translational symmetry, however, the size of the
unit cell increases dramatically as the thickness of the slab
increases. In reality some compromise between computational
feasibility and a reasonable representation of the bulk solid must
be made; we have generally chosen to use slabs which
incorporate three or four layers of metal centers and their
surrounding ligands.
Two MoS2 surface planes of interest are the (001) basal plane

and the (100) edge plane. A (001) basal plane is generated by
slicing between two MoS2 layers; this exposes a layer of triply
bridging sulfur atoms. A (100) edge plane, on the other hand,
is formed by slicing down through the layers to expose edges
of the MoS2 layers. It is generally accepted that the MoS2 (001)
basal plane shows little catalytic activity in the HDS process
and that active sites occur on the edge plane (100) surface.9

This edge plane is also associated with promotion by Co or Ni
and the formation of the active “CoMoS” or “NiMoS” promoted
catalytic phases.8 We have thus begun our studies of the
surfaces of metal sulfides by focusing on the (100) edge planes
of MoS2.
Slabs appropriate for studying the MoS2 (100) edge can be

constructed by cutting two planes (both parallel to thexzplane,
in the coordinate system defined in Figure 3) through the bulk
MoS2 crystal. This generates surfaces that are periodic in the
x andz directions. The edges of the MoS2 layers repeat in the
x direction, while the MoS2 layers repeat in thezdirection; the
y dimension defines the thickness of the slab. The results
presented here are based on slabs which are four Mo atoms
thick; this limits the size of the unit cell and provides a
reasonable description of the “bulk” atoms. The diagrams in
Figure 3 show portions of slabs exposing the (100) edge. When
all the edge Mo atoms are coordinatively saturated (Figure 3a),
one surface of the slab exposes terminal sulfur atoms while the
other exposes 2-coordinate bridging sulfur atoms. (Sulfur atoms
in the bulk are 3-coordinate.) These are commonly referred to
as the (101h0) and (1h010) surfaces, respectively. While the slab
shown in Figure 3a does not maintain the stoichiometry of MoS2

(21) Mattheis, L. F.Phys. ReV. Lett.1973, 30, 84.
(22) Wertheim, G. K.; DiSalvo, F. J.; Buchanan, D. N. E.Solid State

Commun.1973, 13, 1225.
(23) Coehoorn, R.; Haas, C.; Dijkstra, J.; Flipse, C. J. F.; de Groot, R. A.;

Wold, A. Phys. ReV. B 1987, 35, 6195.
(24) Wilson, J. A.; Yoffe, A. D.AdV. Phys.1969, 18, 193.
(25) Huisman, R.; de Jong, R.; Haas, C.; Jellinek, F.J. Phys. C1971, 10,

1079.
(26) Yoffe, A. D.Chem. Soc. ReV. 1976, 5, 51.
(27) Tan, A.; Harris, S.Inorg. Chem.1998, 37, 2215.

(28) Pecoraro, T. A.; Chianelli, R. R.J. Catal.1981, 67, 430.
(29) Zonnevylle, M. C.; Hoffmann, R.; Harris, S.Surf. Sci.1988, 199, 320.
(30) Topsøe, H.; Clausen, B. S.; Candia, R.; Wivel, C.; Mørup, S.J. Catal.

1981, 68, 433.

Figure 2. Calculated density of states (DOS) for bulk MoS2. (a) Total
DOS and Mo projections. The Mo projections include the total Mo
orbital contribution to each band. (b) Individual Mo 4d orbital partial
DOS.
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(there are excess sulfur atoms), the slabs actually used in the
calculations (Figures 3b and 3c) do maintain the MoS2 stoichi-
ometry. In the first case (Figure 3b), the terminal sulfur atoms
are removed from the (101h0) edge plane of each MoS2 layer.
This exposes 4-coordinate Mo atoms on one surface of each
MoS2 layer but leaves the opposite side of the layer terminated
by doubly bridging sulfurs; this will be referred to as the
4-coordinate slab. In the second case (Figure 3c), the bridging
sulfur atoms are removed from the (1h010) edge plane of each
MoS2 layer. This exposes 2-coordinate Mo atoms on one
surface of each layer but leaves the opposite side of the layer
terminated by terminal sulfurs; this will be termed the 2-coor-
dinate slab. Because the MoS2 layers in bulk MoS2 stack in an
...ABABABAB... pattern the S atom vacancies on the slabs
alternate between the “top” and “bottom” sides of adjacent MoS2

layers. For example, Figure 3b shows the sulfur vacancies
occurring on the-y side of the layer; the sulfur vacancies on
the layers on either side of this layer (in the+zor-zdirection)
will occur on the+y side of the slab. This same alternation
occurs for the slab in Figure 3c.
Although it is unlikely that all of the terminal or bridging

sulfurs would be removed from a MoS2 edge, this first set of
calculations provides a description of the orbital structure and
charge distribution of 4-coordinate and 2-coordinate surface Mo
atoms. At the same time, the opposite surface of each slab
provides a description of a fully sulfided (1h010) or (1h010) edge.
Future calculations will consider more isolated vacancy patterns
(at the expense of much larger unit cells and longer computation
times).
Surface States of the 4-Coordinate Slab.Both surfaces of

this slab expose coordinatively unsaturated atoms, 4-coordinate
Mo centers (Mo1 in Figure 3b) on one surface, and 2-coordinate
S centers (S4 in Figure 3b) on the other. The total DOS curve
for the slab (Figure 4a) thus exhibits a number of surface states
not found in the DOS of bulk MoS2, and the semiconducting
gap observed in the total DOS curve for bulk MoS2 (Figure 2a)
is absent in the slab. The projections of the surface Mo1 d
orbitals and the projection of the bridging 2-coordinate S4 3s
and 3p orbitals are also shown in Figure 4b and 4c, respectively.
Comparisons between the Mo d orbital projections in bulk MoS2

(Figure 2b) and the surface Mo d orbital projections in the slab
(Figure 4b) show that the new surface states primarily arise from
two sources. The largest effects stem from the loss of two
nearest-neighbor S atoms. While all the surface Mo d bands
are affected to some degree by this change in coordination

geometry, the most noticeable change is the significant drop in
energy of the surface Mo dyzband; this results from the loss of
σ interactions between this orbital and the two missing sulfur
ligands. The dyz band is thus stabilized and actually partially
occupied. Effects on the other d orbitals are much smaller and
appear to decrease in the order dx2-y2 > (dz2, dxy, dxz). At the
same time, since the surface Mo atoms have two fewer next
nearest-neighbor Mo atoms than the Mo atoms in the bulk, Mo-

Figure 3. Portions of MoS2 slabs exposing (101h0) and (1h010) edge planes. Surfaces of the slabs are periodic in thex andz directions. Edges of
the MoS2 layers repeat in thex direction, and MoS2 layers repeat in thez direction. (a) Slab exposing fully sulfided edges; (b) slab exposing
4-coordinate Mo atoms; (c) slab exposing 2-coordinate Mo atoms. (For calculations based on a single MoS2 layer, (a-c) illustrate the one-dimensional
ribbons exposing the edge planes.)

Figure 4. Calculated DOS for the MoS2 slab exposing 4-coordinate
Mo atoms. (a) Total DOS and projection of surface Mo (Mo1 in Figure
3b) orbitals. (b) Individual Mo1 4d orbital partial DOS. (c) Projection
of surface S (S4 in Figure 3b) 3s and 3p orbital partial DOS.
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Mo interactions involving surface Mo orbitals having compo-
nents in thexyplane (dz2, dx2-y2, and dxy) are decreased, and the
gap separating the bonding and antibonding combinations of
these orbitals decreases. As a result, all of the surface Mo d
orbitals exceptdxz contribute to bands near the Fermi level.
Not surprisingly, the projection of the 3s and 3p orbitals of

the doubly bridging S atoms which terminate the opposite side
of the slab (Figure 4c) shows that both the s and p bands are
destabilized relative to the corresponding bands in bulk MoS2

(and to the “bulk” S atoms in the slab). The fairly narrow band
(-7 to -6 eV) just below the Fermi level results from the
coordinative unsaturation of the doubly bridging surface S atoms
and can be associated with nonbonding S lone pair electrons.
Calculated Mulliken charges, diagonal terms of the Hartree-

Fock matrix (Faa°) for the Mo 4d and S 3p orbitals, and
electrostatic potentials (-QA) for Mo and S atoms in bulk MoS2
and for all nonequivalent Mo and S atoms in the 4-coordinate
slab are listed in Table 2. Comparisons between these values
for the “bulk” atoms in the slab (Mo2, Mo3, S2, and S3) and
for the Mo and S atoms in bulk MoS2 show that the bulk is
fairly well represented in the slab. While the 4-coordinate
surface Mo atoms and the doubly bridging surface S atoms are
both slightly reduced in comparison to bulk Mo and S atoms,
the reduction of the S centers is greater. The diagonal matrix
elements (Faao) provide a measure of the Mo 4d and S 3p orbital
energies of the surface atoms relative to those in the bulk, and
it is clear that the levels of the doubly bridging S atoms are
destabilized. In terms of the discussion concerning eq 1 and
thus eq 6a, the destabilization of the surface S levels is caused
partly by the increased negative charge and partly by the absence
of the stabilizing effect of one positive nearest-neighbor Mo
center. Although the surface Mo atoms are also slightly
reduced, the d levels are not destabilized since any destabiliza-

tion resulting from an increased orbital occupation is offset by
the stabilizing effect of the loss of two negative nearest-neighbor
S centers. Overlap populations involving surface Mo and S
centers are also listed in Table 2. Comparison with the Mo-S
overlap population in bulk MoS2 provides a measure of the
relative Mo-S bond strengths on the surfaces. While the
remaining Mo-S bonds for the coordinatively unsaturated Mo
centers are actually slightly weaker than in the bulk, the Mo-S
bonds involving the coordinatively unsaturated S centers show
little change from those involving bulk S atoms.
The results of the calculations for the slab thus provide a

description of the electronic structure of both the 4-coordinate
Mo sites on one side of the slab and the 2-coordinate S sites
terminating the other side. Removal of the terminal S atoms
from the (101h0) edge of MoS2 leaves 4-coordinate Mo centers
which are only slightly reduced relative to a bulk Mo center.
At the same time, however, loss of two nearest-neighbor S atoms
and two next-nearest-neighbor Mo atoms introduces a number
of surface states in the region of the Fermi level. Most notably,
a narrow Mo dyz band is stabilized and partially filled. The
doubly bridging S centers terminating the (1h010) edge plane
show a greater reduction than the surface Mo atoms on the
opposite edge. The S levels are destabilized, relative to those
of the bulk S atoms, and S3p lone pair electrons lead to the
appearance of a new high energy occupied band. The strength
of the Mo-S bonds involving the doubly bridging S atoms (S4)
appears to be very similar to the strength of Mo-S bonds in
the bulk.
Surface States of the 2-Coordinate Slab.Both surfaces of

this slab also expose coordinatively unsaturated atoms: 2-co-
ordinate Mo centers (Mo4 in Figure 3c) on one surface and
terminal S atoms (S1 in Figure 3c) on the other surface. The
total DOS for the slab, the projections of the surface Mo 4d
orbitals, and the projections of the terminal S1 3s and 3p orbitals
are plotted in Figure 5. Once again surface states arise from
the unsaturated surface atoms, and the semiconducting gap
observed in bulk MoS2 is no longer observed. The partial
(DOS) for the Mo d orbitals show that all of the Mo bands are
affected by loss of the surface S atoms. The Mo dxzband drops
so much in energy that it is nearly filled. The dyz band is also
stabilized but remains unoccupied. In addition, the gap separat-
ing the bonding and antibonding combinations of the dz2, dx2-y2,
and dxy orbitals disappears. The projection of the s and p bands
of the terminal S atoms on the opposite side of the slab shows
that these orbitals are destabilized even more than the orbitals
of the bridging sulfurs on the 4-coordinate slab. A portion of
the p band, which can now be associated with the presence of
two lone pairs of electrons per S atom, is actually pushed up
above the Fermi level and is thus unoccupied.
Calculated Mulliken charges,Faao, and electrostatic potentials

for all of the nonequivalent atoms are listed in Table 2. The
exposed Mo atoms are highly coordinatively unsaturated, and
it is not surprising that they are quite highly reduced. The Mo
d orbitals are destabilized relative to both the bulk Mo atoms
and the 4-coordinate Mo centers discussed above; the stabilizing
effect of the loss of four negatively charged S atoms is not
sufficient to offset the destabilizing effect of the increased Mo
orbital occupations. As might be expected the Mo4-S4 overlap
population indicates that the two remaining Mo-S bonds are
stronger than those in the bulk. The Mo1-S1 overlap popula-
tion indicates that the Mo-S bonds involving the terminal S
atoms are also considerably strengthened over those in the bulk.
The terminal S1 atoms carry a relatively low negative charge
while Mo1 atoms carry a surprisingly high positive charge. The

Table 2. Calculated Mulliken Charges (qA), Energy Levels (Faao,
EV, for Metal d and Sulfur p Orbitals), Potential Energies (-QA,
eV), and Selected Mo-S Overlap Populations for Bulk MoS2 and
for the 4- and 2-Coordinate (100) Surface Slabs

qA Faao -QA

Bulk MoS2
Mo 1.05 -6.64 -7.34
S -0.53 -11.12 5.68

Mo-S overlap population 0.081

4-Coordinate Slab
Mo1a 1.00 -6.76 -5.83
Mo2 1.15 -6.96 -8.21
Mo3 1.09 -6.50 -7.88
Mo4 1.33 -6.27 -11.55
S1 -0.56 -11.69 6.60
S2 -0.50 -11.54 5.84
S3 -0.55 -11.27 6.11
S4a -0.68 -8.88 5.18

Mo1-S1 overlap population 0.058
Mo4-S4 overlap population 0.084

2-Coordinate Slab
Mo1 1.23 -6.60 -9.86
Mo2 1.08 -6.40 -7.82
Mo3 1.16 -6.50 -8.83
Mo4a 0.74 -5.69 -2.87
S1a -0.44 -8.50 2.13
S2 -0.55 -11.36 6.17
S3 -0.53 -11.25 5.82
S4 -0.59 -11.22 6.48

Mo1-S1 overlap population 0.120
Mo4-S4 overlap population 0.101

a Surface atoms as defined in Figure 3.
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low negative charge on the terminal S atoms results from the
incomplete filling of the destabilized p band associated with
these atoms. The high positive charge on Mo1 comes about
because, unlike the bulk Mo atoms, part of the Mo1 dz2 band
also lies above the Fermi level. The destabilization of part of
both the terminal S p bands and the Mo1 dz2 bands can be
understood by considering the projections of the terminal S1 p
orbitals, the projections of the Mo1 d orbitals, and the Mo1-
S1 COOP curve (this COOP curve is shown in Figure 6). The
COOP curve reveals that the sulfur p lone pair orbitals (between
-5 and-7 eV) are not truly nonbonding but instead consist of
components which are weakly bonding and weakly antibonding
between the sulfur p orbitals and the Mo orbitals. These
interactions involve primarily the Mo dz2 orbital. Since the
antibonding component, which is high in dz2 character but also
has S1 p character, is destabilized above the Fermi level, neither
the Mo dz2 nor the S1 “lone pair” bands are completely occupied.
The Mo-S1 interactions thus increase the positive charge on
Mo1, decrease the negative charge on S1, and strengthen the
Mo1-S1 bond.
In summary, removal of bridging S atoms from the (1h010)

edge of MoS2 leaves 2-coordinate Mo centers that are consider-
ably reduced in comparison to bulk Mo centers. Loss of four
nearest-neighbor S atoms and two next nearest-neighbor Mo
atoms affects all of the Mo d bands and introduces a number of
surface states in the area of the Fermi level. Notably, most of
the narrow dyz band actually lies below the Fermi level and is

nearly completely occupied. Unexpectedly, the terminal S1 and
the six-coordinate Mo1 on the fully sulfided edge are actually
oxidized relative to the bulk atoms. The S levels are destabilized
relative to the bulk S atoms, and weak interactions between the
S lone pair orbitals (which lie particularly high in energy) and
the Mo dz2 orbital lead to a band having components that are
both weakly bonding and weakly antibonding between Mo1 and
S1. In contrast to bulk MoS2, where the dz2 band is fully
occupied, part of this band is now more antibonding in character
and is destabilized such that the band is only partially occupied.
Since the band has both S and Mo character, both atoms show
a loss of electron density. At the same time, however, the
terminal Mo-S bonds are stronger than the Mo-S bonds in
the bulk.
Decreasing the Dimensionality of MoS2. All of the calcula-

tions discussed above take into account the three-dimensional
layered structure of MoS2. Because of this structure MoS2 often
grows in thin extended sheets, and discussions of catalytic
activity often assume that MoS2 exists as finite slabs of varying
thickness.9 It has been proposed that highly active MoS2 may
actually be a single-layer MoS2 sheet, and previous extended
Hückel calculations modeled MoS2 by such a single-layer two-
dimensional sheet.29 A single layer MoS2 sheet consists of just
one of the MoS2 layers shown in Figure 1a; it is periodic in the
x and y directions but not inz because it is only one MoS2
layer thick. If MoS2 is modeled by such a sheet, the (100) edge
planes can then be studied by slicing off a one-dimensional
ribbon (rather than a two-dimensional slab). Use of such a
ribbon greatly decreases the number of atoms which must be
included in a unit cell for surface calculations. Because we
wish to study more isolated S vacancies on these edges
(necessitating a considerably larger unit cell in thex direction
along the edge of a layer), it would be desirable to utilize a
ribbon rather than a slab to model the edge planes. To first

Figure 5. Calculated DOS for the MoS2 slab exposing 2-coordinate
Mo atoms. (a) Total DOS and projection of surface Mo (Mo4 in Figure
3c) orbitals. (b) Individual Mo4 4d orbital partial DOS. (c) Projection
of surface S (S1 in Figure 3c) 3s and 3p orbital partical DOS.

Figure 6. Calculated DOS and Mo1-S1 COOP for the MoS2 slab
exposing 2-coordinate Mo atoms. (a) Total DOS. (b) Projection of
terminal S1 3s and 3p orbitals. (c) COOP between Mo1 and S1. (Mo1
and S1 are defined in Figure 3c.)
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gauge the effects of removing the periodicity in the third
dimension and to then determine whether a ribbon model is
appropriate for further studies of the (100) edges, we performed
calculations on several simplified MoS2 systems. These include
a two-dimensional single-layer MoS2 sheet and two different
ribbons exposing (100) edge plane atoms.
The DOS of the two-dimensional single-layer MoS2 sheet is

both qualitatively and quantitatively similar to the full bulk
structure and is therefore not illustrated here. The calculated
semiconducting gap (1.04 eV) is somewhat larger, however,
than that calculated for the full three-dimensional structure (0.86
eV). The Mo and S atoms are calculated to be more positive
and more negative, respectively (compare Tables 2 and 3), than
in the three-dimensional bulk structure. This effect can be
explained in terms of the removal of unfavorable repulsive
interactions between the sulfur anions of neighboring basal
planes. This results in decreased mixing of the Mo and S
orbitals and increased occupation of the sulfur orbitals, i.e., a
decrease in the covalency (or increase in the ionicity) of the
molybdenum-sulfur bonding. The increased ionicity of the
Mo-S bonds is also reflected in the Mo-S overlap population,
which decreases from the bulk value of 0.081 to 0.051 in the
two-dimensional sheet. A single-layer two-dimensional sheet
of MoS2 is therefore expected to be more ionic than the full
three-dimensional structure. This result suggests that Mo-S
bonds on a basal plane capping a “stack” of MoS2 sheets should
also show, although not as pronounced, an increase in ionicity.
The 4-coordinate and 2-coordinate ribbons were constructed

in exactly the same manner as the 4-coordinate and 2-coordinate
slabs described above and therefore can also be illustrated by
Figure 3b and 3c. The illustrations now represent portions of
ribbons rather than slabs since there is no translation in thez
direction. The DOS curves of the ribbons are similar to those
of the slabs and are not illustrated here. The calculated charges

listed in Table 3 indicate that Mo-S bonding in the one-
dimensional ribbons is also more ionic than in the 4- and
2-coordinate slabs. Comparisons between the values listed in
Tables 2 and 3 illustrate, however, that the differences between
surface and bulk atoms show consistent trends in going either
from bulk MoS2 to a surface slab or from a sheet of MoS2 to a
surface ribbon. Interestingly, however, the Mo-S bonds along
the fully sulfided edge of each ribbon (Mo4-S4 in Figure 3b
and Mo1-S1 in Figure 3c) appear to be stronger than the
corresponding bonds in the two-dimensional slabs. This comes
about primarily because of the absence of an adjacent MoS2

layer. In the calculations on the two-dimensional slabs, the
alternating pattern of the MoS2 layers in the slabs allows the
edge S atoms of each layer to feel the stabilizing effect of the
coordinatively unsaturated Mo atoms on the edges of adjacent
layers. Removal of these adjacent layers destabilizes the energy
levels on the edge S atoms; this in turn strengthens the Mo-S
edge bonds. While this effect is to some degree an artifact of
the structures of the slabs and ribbons used for the calculations,
it illustrates that the strengths of the edge Mo-S bonds appear
to be sensitive not only to the presence of adjacent layers but
also to the way in which the adjacent layers are terminated.
Although the Mo-S bonding in both the MoS2 sheet and

the one-dimensional ribbons is more ionic than in bulk MoS2

or in the two-dimensional slabs, the differences between bulk
and surface atoms show consistent trends in the two systems.
This suggests that the ribbons can serve as the bases for further
studies of more isolated S vacancy patterns. The reduction in
dimensionality from slabs to ribbons greatly reduces the size
of the unit cell needed for these studies, and we will make use
of the one-dimensional ribbons for further studies of MoS2

edges.

Conclusions

The results presented here verify that the Fenske-Hall
method provides a reliable description of the electronic structure
of inorganic solids containing transition metals. These results,
as well the results of test calculations for a number of other
inorganic solids, suggest that this method will be particularly
useful for examining the electronic structure of the surfaces of
catalytic materials such as transition metal sulfides and oxides.
The calculated electronic structure of bulk MoS2 is in

reasonable agreement with previous experimental and theoretical
studies and provides the basis for studies of surface electronic
structure. Results of calculations for MoS2 slabs exposing 4-
and 2-coordinate Mo atoms and bridging and terminal S atoms
provide a description of coordinatively unsaturated edge atoms.
Four-coordinate Mo atoms are only slightly reduced relative to
bulk Mo atoms, while the reduction is much more pronounced
for 2-coordinate Mo atoms. Coordinative unsaturation of the
Mo atom introduces surface states near the Fermi level, and,
not surprisingly, this effect is more pronounced for the
2-coordinate Mo atoms. Comparisons of bulk and surface
Mo-S overlap populations indicate that while surface Mo-S
bonds involving bridging S atoms are comparable in strength
to bulk Mo-S bonds, surface Mo-S bonds which involve
terminal S atoms are considerably stronger than bulk Mo-S
bonds. This suggests that removal of terminal S atoms to form
coordinatively unsaturated Mo sites may be more difficult than
removal of bridging S atoms.
The results of calculations for a single-layer two-dimensional

sheet of MoS2 show that the bonding in a single layer of MoS2

is more ionic than in bulk MoS2. While this same effect is
observed in one-dimensional surface ribbons, consistent changes

Table 3. Calculated Mulliken Charges (qA), Energy Levels (Faao,
eV, for Metal d and Sulfur p Orbitals), Potential Energies (-QA,
EV), and Selected Mo-S Overlap Populations for a Single-Layer
Sheet of MoS2 and for the 4- and 2-Coordinate (100) Surface
Ribbons

qA Faao -QA

MoS2 Sheet
Mo 1.21 -6.33 -9.61
S -0.61 -11.34 6.85

Mo-S overlap population 0.051

4-Coordinate Ribbon
Mo1a 1.20a -6.77 -8.63
Mo2 1.26 -7.00 -9.59
Mo3 1.21 -6.63 -9.29
Mo4 1.41 -6.56 -12.34
S1 -0.61 -11.84 7.32
S2 -0.57 -11.76 6.78
S3 -0.60 -11.54 6.95
S4a -0.77 -9.43 6.85

Mo4-S4 overlap population 0.089

2-Coordinate Ribbon
Mo1 +1.37 -6.95 -11.41
Mo2 +1.211 -6.69 -9.21
Mo3 +1.26 -6.83 -9.84
Mo4a +1.02 -6.15 -6.27
S1a -0.64 -8.62 4.54
S2 -0.58 -11.69 6.94
S3 -0.58 -11.64 6.80
S4 -0.63 -11.63 7.35

Mo1-S1 overlap population 0.131

a Surface atoms as defined in Figure 3.
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between bulk and surface electronic structure are observed in
comparisons between bulk MoS2 and surface slabs and between
a sheet of MoS2 and one-dimensional surface ribbons. This
indicates that one-dimensional ribbons can be used to study
different types of surface sites for MoS2, and we are making
use of the ribbons to study other types of coordinatively
unsaturated Mo atoms, different S-vacancy patterns, and possible
models for Co or Ni promoted edge planes.
The results presented here are part of a larger study of HDS

catalysis. We are particularly interested in understanding how
the electronic structures of transition metal sulfides are related
to their activity as HDS catalysts, and we are carrying out a
systematic study of the bulk and surface electronic structure of
metal sulfides which can act as HDS catalysts. Two sulfides
that exhibit high HDS activity are RuS2 and Rh2S3, and results
of Fenske-Hall band structure calculations for these two
materials are described in another paper.27
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Appendix: The Ewald Method of Evaluating
Electrostatic Potentials

The problem at hand is the evaluation of the electrostatic
potential at a center A in the zeroth unit cell:

where C includes A in other unit cells but not the zeroth. This
sum is conditionally convergent, and its evaluation is greatly
facilitated by the use of standard techniques such as the Ewald
method.31-33

In the Ewald method, the charge distribution is divided into
two components. At an arbitrary pointrb these are

whereV is the volume of the unit cell. The potentialV1(rb) due
to the first component is readily evaluated:

If the unit cell is electrically neutral, the constant term cancels
out.
The second component of the charge distribution is expressed

as a Fourier series. This is straightforward for a three-
dimensional lattice:

wherekB is a reciprocal lattice vector. The potential is obtained
by solving Poisson’s equation

which yields

Since

where the correction 2ηqA/π1/2 takes into account that the
potential due to the charge distribution at A must be omitted,
we have

The parameterη is chosen to maximize convergence; we have
foundη ) 0.2 to be a suitable value.
For a lattice which is periodic in two dimensions,V1(rb)

assumes the same form as in eq A3. The evaluation ofV2(rb) is
somewhat more involved. One way of dealing with it is to begin
with the expression in eq A6 and recognize that the summation
overk space in the nonperiodic dimension needs to be replaced
by a Fourier integral. This integral can be solved analytically,
and gives34

Here a refers to the area of the unit cell;rb| and rb⊥ are the
projections of the vector distance (rbC - rb) parallel and perpen-
dicular to the plane of periodicity, respectively; and thek space
summation is in two dimensions.
The other way is to expandF2(rb) as a Fourier series in two

dimensions:

and then solve the two-dimensional Poisson equation

This yields(31) Tosi, M. P.Solid State Physics1964, 16, 1.
(32) de Leeuw, S. W.; Perram, J. W.; Smith, E. R.Roc. R. Soc. London

1980, A373, 27.
(33) Heyes, D. M.J. Chem. Phys.1981, 74, 1924. (34) Parry, D. E.Surf. Science1975, 49, 433.

-QA ) ∑
τ

∑
C*Ao

qC

RAC
τ

(A1)

F1( rb) ) ∑
τ
∑
C

qC[δ( rbC
τ - rb) -

η3

π3/2
e-η2( rbC

τ- rb2)]
F2( rb) ) ∑

C

qC[∑τ

η3

π3/2
e-η2( rbC

τ- rb) -
1

V] (A2)

V1( rb) ) ∑
τ
∑
C

qC[erfc(η| rbC
τ - rb|)

| rbC
τ - rb|

+ constant] (A3)

F2( rb) )
1

V
∑
C

∑
k*0
qCe

-k2/4η2 eikB‚(rjC- rb) (A4)

∇2V) -4πF (A5)

V2( rb) )
4π

V
∑
C

∑
k*0
qC

1

k2
e-k2/4η2eikB‚( rbC- rb) (A6)

-QA ) V1( rbA) + V2( rbA) -
2η

xπ
qA (A7)

-QA ) ∑
C*Ao

qC{4π

V
∑
k*0

1

k2
e-k2/4η2eikB‚( rbC- rbA) +

∑
τ

erfc(ηRAC
τ)

RAC
τ } -

2η

xπ
qA (A8)

V2( rb) )
π

a
∑
k*0

∑
C

qC
1

k
eikB‚ rb| [ekr⊥ erfc( k2η

+ ηr⊥) +

e-kr⊥ erfc( k2η
- ηr⊥)] (A9)

F2( rb) )
η

axπ
∑
k*0

∑
C

qCe
-η2r⊥

2
e-k2/4η2eikB‚ rb| (A10)

∇2V) -2πF (A11)

Bulk and Surface Electronic Structure of MoS2 Inorganic Chemistry, Vol. 37, No. 9, 19982213



A similar procedure as in eqs A10-A12 was apparently invoked
to calculate a modified electrostatic sum in a periodic MINDO
formalism.35

It turns out that for a “flat” lattice, i.e. with allr⊥ ) 0, eqs
A9 and A12 yield identical results. (For a two-dimensional
centered NaCl lattice with a nearest-neighbor separation of 2.814
Å, the Madelung constant, which is 2.814|QNa|, was calculated
to be 1.616, as compared to 1.748 for a 3-D lattice.) For a slab
of finite thickness, however, eq A12 yields reasonable potential

energies, while eq A9 appears to do rather poorly. (While the
source of the error in eq A9 is not entirely clear, the ekr⊥ term
in eq A9 may cause divergence.) We have therefore made use
of eq A12 when the lattice is periodic in two dimensions.
Using a similar procedure for a one-dimensional lattice, where

the Poisson equation is now∇2V ) -F, one obtains

wherel is the length of the unit cell. Once again, the potential
energies obtained are physically reasonable. As an example,
the Madelung constant for one-dimensional NaCl was calculated
to be 1.386, which compares well with a brute force calculation.

IC970874V(35) Craig, B. I.; Smith, P. V.Surf. Science1989, 210, 468.
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