Synthesis and Structure of the Heterobimetallic Ladder Complex [{(MesNH)Sn(µ-Nma)}₂(Li·2THF)₂] (Mes = 2,4,6-Me₃C₆H₂, ma = 2-MeOC₆H₄)

Robert E. Allan, Michael A. Beswick, Neil Feeder, Michael Kranz, Marta E. G. Mosquera, Paul R. Raithby, Andrew E. H. Wheatley, and Dominic S. Wright*

> Chemistry Department, Lensfield Road, University of Cambridge, Cambridge CB2 1EW, U.K.

> > Received August 28, 1997

Introduction

Recently, much of our research has focused on the syntheses of anionic group 13,¹ 14,² and 15³ metal imido (RN²⁻) and phosphinidene (RP²⁻) complexes and their applications as novel ligands to a range of metals.⁴ We found that the deprotonation reactions of primary amido and phosphido lithium complexes ([REHLi]; E = N, P) with the cubane [SnN'Bu]₄ give heterometallic complexes containing Sn(II) imido and phosphinidene anions, e.g., [{Sn(μ -PCy})₂{ μ -PCy}]₂(Li-THF)₄ containing a metallacyclic [{Sn(μ -PCy})₂{ μ -PCy}]₂⁴⁻ tetraanion.² However, the 1:2 reactions of [Sn(NMe₂)₂] with [RNHLi] only result in the formation of the thermodynamically stable cubanes [SnNR]₄⁵ rather than the desired [Sn(NR)₂]²⁻ dianions. We report here that the use of polynuclear dimethylamido [{Sn(NMes)₂}{Sn(μ -NMe₂)}₂]⁶ as reagents in reactions with [RNHLi] allows the formation of imido Sn(II) anions.

Results and Discussion

The reaction of the polynuclear dimethylamido Sn(II) reagent $[{Sn(Mes)_2}{Sn(\mu-NMe_2)}_2]$ [Mes = 2,4,6-Me₃C₆H₂]⁶ with

- Allan, R. E.; Beswick, M. A.; Raithby, P. R.; Steiner, A.; Wright, D. S. J. Chem. Soc., Dalton Trans. 1996, 4135.
- (2) Allan, R. E.; Beswick, M. A.; Cromhout, N. L.; Paver, M. A.; Raithby, P. R.; Steiner, A.; Wright, D. S. J. Chem. Soc., Chem. Commun. 1996, 1501.
- (3) (a) Alton, R. A.; Barr, D.; Edwards, A. J.; Paver, M. A.; Rennie, M.-A.; Russell, C. A.; Raithby, P. R.; Wright, D. S. J. Chem. Soc., Chem. Commun. 1994, 1481. (b) Edwards, A. J.; Paver, M. A.; Rennie, M.-A.; Russell, C. A.; Raithby, P. R.; Wright, D. S. Angew. Chem. 1994, 106, 1334; Angew. Chem., Int. Ed. Engl. 1994, 33, 1277. (c) Barr, D.; Beswick, M. A.; Edwards, A. J.; Galsworthy, J. R.; Paver, M. A.; Rennie, M.-A.; Russell, C. A.; Raithby, P. R.; Verhorevoort, K. L.; Wright, D. S. Inorg. Chim. Acta, 1996, 248, 9. (d) Beswick, M. A.; Raithby, P. R.; Wheatley, A. E. H.; Wright, D. S. J. Chem. Soc., Chem. Commun. 1997, 1879.
- (4) (a) Barr, D.; Edwards, A. J.; Paver, M. A.; Pullen, S.; Rennie, M.-A.; Russell, C. A.; Raithby, P. R.; Wright, D. S. Angew. Chem. 1994, 106, 1960; Angew. Chem., Int. Ed. Engl. 1994, 33, 1875. (b) Edwards, A. J.; Paver, M. A.; Rennie, M.-A.; Russell, C. A.; Raithby, P. R.; Wright, D. S. Angew. Chem. 1995, 107, 1088; Angew. Chem., Int. Ed. Engl. 1995, 34, 1012. (c) Beswick, M. A.; Cromhout, N. L.; Harmer, C. N.; Paver, M. A.; Raithby, P. R.; Rennie, M.-A., Steiner, A.; Wright, D. S. Inorg. Chem. 1997, 36, 1740.
- (5) (a) Veith, M.; Schlemmer, G. Chem. Ber. 1982, 115, 2141. (b) Veith, M.; Recktenwald, O. Z. Naturforsch., Teil B 1983, 38, 1054. (c) Veith, M.; Grosser, M. Z. Naturforsch., Teil B 1982, 37, 1375. (d) Chen, H.; Bartlett, R. A.; Dias, H.; Olmstead, M. M.; Power, P. P. Inorg. Chem. 1991, 30, 3390. (e) Allan, R. E.; Beswick, M. A.; Paver, M. A.; Raithby, P. R.; Rennie, M.-A.; Wright, D. S. J. Chem. Soc., Dalton Trans. 1995, 1991.
- (6) Allan, R. E.; Coggan, G. R.; Raithby, P. R.; Wheatley, A. E. H.; Wright, D. S. *Inorg. Chem.* **1997**, *35*, 5202.

[LiN(H)ma] [ma = $(2-MeO)C_6H_4$] (1:2 equiv) follows an unexpected pathway in which elimination of [Sn(NMe₂)₂], rather than facile deprotonation, gives rise to the novel heterobimetallic ladder complex [[MesNHSn(µ-Nma)]₂(Li•THF)₂] (1), containing the first example of a dinuclear Sn(II) imido dianion, [(MesNH)- $Sn(\mu-Nma)]_2^{2-}$ (see Experimental Section). Although various alkali metal alkoxides, amides, and phosphides adopt ladder structures⁷ and a few imido Si(IV) ligands form ladders with various main group metals,⁸ to our knowledge, the only other bimetallic main group ladder complex is the mixed alkali metal derivative [LiNa{N(CH2Ph)2}2.OEt2}2.9 The selection of a dinuclear Sn(II) anion unit in 1, stemming directly from reaction sequence involved in its formation, contrasts with the outcome of reactions of [REHLi] (E = N, P) with imido Sn(II) cubanes [SnNR]₄ which generate anions in which three or four of the Sn centers of the precursor survive (Scheme 1).²

A low-temperature X-ray crystallographic study of 1 was undertaken. Details of the structural refinement are given in the Experimental Section. The structure of 1 is that of a heterobimetallic complex formed from the association of the imido Sn(II) dianion [MesNHSn(u-Nma)]22- with two THFsolvated Li⁺ cations (Figure 1). This association results in an [Li₂N₄Sn₂] ladder arrangement in the core. The reaction of $[{Sn(NMes)_2}{Sn(\mu-NMe_2)}_2]$ with [LiN(H)ma] has resulted in formal redistribution of the Mes and ma groups, with maN groups forming the central Sn₂N₂ ring in 1 and with the MesNH groups being terminal. The planar Sn₂N₂ core of the [MesNHSn- $(\mu$ -Nma)]₂²⁻ dianion is rhombic shaped, with the very narrow N-Sn-N angle $[78.8(2)^{\circ}]$ and the Sn-N-Sn angle $[101.2(2)^{\circ}]$ being reminiscent of imido Sn(II) cubanes⁵ [e.g., in [SnNCy]₄ $(Cy = C_6H_{11})^{5e}$, the average N-Sn-N angle is 80.8° and the average Sn-N-Sn angle is 98.5°]. The elongation of the internal Sn(1)-N(1a) bonds [2.191(4) Å; cf. Sn(1)-N(1), 2.154(4) Å] appears to result from the chelation of the Li^+ cations by the bridging maN and terminal MesNH groups. The pseudo-pyramidal geometry of the Sn(II) centers of 1 is symptomatic of the presence of a stereochemically active metal lone pair and stresses the formulation of the imido Sn(II) fragment as the $[MesNHSn(\mu-Nma)]_2^{2-}$ dianion. The geometry of the Sn(II) centers [particularly the characteristic N(1)-Sn(1)-N(2) angle of 90.4(2)°, which is typical of Sn(II) systems] is largely responsible for the highly compressed ("Z-shaped") ladder arrangement in the [Li₂N₄Sn₂] core. Although the weak interactions of the MeO groups of the maN ligands with the Sn(II) centers [O(1)-Sn(1), 2.732(4) Å] are well within the sum of the van der Waals radii of O and Sn (ca. 3.7 Å), these have no discernible effect on the geometry of the metal atoms. The Z-shaped architecture of the core of 1 contrasts with the far more open arrangements found in noncyclic amido lithium ladder complexes¹⁰ [such as in [{pyrrolideLi}₂·TMEDA]₂

- (8) For example: (a) Veith, M. Z. Naturforsch., Teil B 1978, 33, 7; (b) Chen, H.; Bartlett, R. A.; Dais, H. V. R.; Olmstead, M. M.; Power, P. P. Inorg. Chem., 1991, 30, 2487.
- (9) Baker, D. R.; Mulvey, R. E.; Clegg, W.; O'Neil, P. A. J. Am. Chem. Soc. 1993, 115, 6472.
- (10) (a) Gregory, K.; Schleyer, P. v. R.; Snaith, R. Adv. Inorg. Chem. 1991, 37, 47. (b) Mulvey, R. E. Chem. Rev. 1991, 20, 167.

⁽⁷⁾ Beswick, M. A.; Wright, D. S. Comprehensive Organometallic Chemistry; C. Houscroft, C. E., Ed.; Pergamon: New York, 1996; Vol 1, Chapter 1, p 1.
(8) For example: (a) Veith, M. Z. Naturforsch., Teil B 1978, 33, 7; (b)

Scheme 1

Figure 1. Molecular structure of **1**. H atoms, except those attached to N, have been omitted for clarity. Selected bond lengths (Å) and angles (°); Sn(1)–N(2), 2.154(4); Sn(1)–N(2), 2.257(4); Sn(1)–N(1a), 2.191(4); Li–O, av 1.98, Li(1a)–N(1a), 2.09(1); Li(1a)–N(2), 2.07(1); N(2)–H(N2), 0.898; N(1)–Sn(1)–N(1a), 78.8(2); N(1a)–Sn(1)–N(2), 84.4(2), N(1)–Sn(1)–N(2), 90.4(2); Sn(1)–N(1a)–Sn(1a), 101.2(2); Sn(1)–N(1a)–Li(1a), 90.2(3); Sn(1)–N(2)–Li(1a), 88.9(3); N(1)–Li(1)–N(2a), 91.7(4); O–Li(1)–N, av 116.7; O(2)–Li(1)–O(3), 99.4(4). Symmetry transformations used to generate equivalent atoms (a) -x + 1, -y + 1, -z.

 $(TMEDA = (Me_2NCH_2)_2)^{11}$ and $[LiNa{N(CH_2Ph)_2}_2 \cdot OEt_2]_2^8$ and emphasizes that the Sn–N bonding dominates the largely ionic Li–N interactions in **1**. The chelation of the Li⁺ cations by the bridging maN and pendant MesNH groups (Li–N, average 2.08 Å; N–Li–N, 91.7°) gives puckered terminal LiN₂Sn rings (Li 0.58 Å out of the plane formed by the other atoms). The bond lengths involved and the pseudo-tetrahedral geometries of these ions are typical of amido lithium complexes.¹⁰

To further probe the relative influences of Sn-N and Li-N bonding and solvation on the structure of **1**, model semiempirical (PM3)¹² calculations were performed. Details of the calcula-

Table 1. PM3 Optimized Energies of Models of 1^a

compound	$\Delta H_{\text{formation}}$	$\Delta H_{solvation}$ (kcal mol ⁻¹ ,
compound	(Kear mor)	per more or m ₂ O)
$[(\text{LiNH}_2) \cdot \{\text{Sn}(\mu - \text{NH})\}_2(\text{LiNH}_2)]$	1.4	-
(ladder, A)		
$[(SnNH)_2(LiNH_2)_2]$ (cubane, B)	2.4	-
$[(SnNH_2) \cdot \{Li(\mu - NH)\}_2 \cdot (SnNH_2)]$	4.5	-
(ladder, C)		
$[(SnNH_2)_2(LiNH)_2]$ (cubane, D)	35.8	-
$A \cdot 2H_2O$	-136.6	-15.6
$\mathbf{B} \cdot 2\mathbf{H}_2\mathbf{O}^b$	-126.0	-10.8
C•2H ₂ O	-114.6	-6.2
$A \cdot 4H_2O$	-261.9	-9.2
C•4H ₂ O	-221.4	0.0

^{*a*} $\Delta H_{\text{formation}}(\text{H}_2\text{O}) = -53.4 \text{ kcal mol}^{-1}$. ^{*b*} Further solvation of **B**·2H₂O leads to **A**·4H₂O with $\Delta H_{\text{solvation}}$ per mole of H₂O of 14.6 kcal mol⁻¹.

tional models investigated are given in Table 1. Only small energy differences exist between the open ladder [(LiNH₂)- $\{Sn(\mu-NH)\}_2(LiNH_2)\}$ (A), the cubane $[(SnNH)_2(LiNH_2)_2]$ (B), and the ladder $[(SnNH_2){Li(\mu-NH)}_2(SnNH_2)]$ (C) models. However, monosolvation of the Li⁺ cations in these species leads to the preference of the $[Sn(\mu-NH)]_2$ bridged species A·2H₂O, which is 10.6 kcal mol⁻¹ more stable than the cubane **B**·2H₂O and 22.0 kcal mol⁻¹ more stable than the [Li(μ -NH)]₂ bridged open ladder $C \cdot 2H_2O$ (Figure 2). The preference for $A \cdot 2H_2O$ over $B \cdot 2H_2O$ is probably due to unfavorable bond angles at Sn in the cubane. Further solvation accentuates the preference for the $[Sn(\mu-NH)]_2$ ladder arrangement of A·4H₂O, the same structural pattern found in 1. Solvation of the Li⁺ cations of B·2H₂O opens up the cubane and gives A·4H₂O (the total $\Delta H_{solvation}$ of **B**·2H₂O to **A**·4H₂O being 29.1 kcal mol⁻¹). There is no gain in energy for further solvation of the Sn centers of C·2H₂O, and the alternative solvation of Li^+ in A·4H₂O is preferred by 40.5 kcal mol⁻¹.

The calculations reveal that solvation has a marked effect on the structure adopted by this system. The importance of Lewis base solvation in **1** is that it depletes the influence of the more electropositive Li^+ cations by diminishing their competition for ligand electron density, in so doing solvation enhances the dominance of the Sn-N bonding over the structure.

We are exploring the transmetalation of **1** with transition and main group metal salts as a means to structured assembly of other heterometallic cage compounds.

 ⁽¹¹⁾ Armstrong, D. R.; Barr, D.; Clegg, W.; Hodgson, S. M.; Mulvey, R. E.; Reed, D.; Snaith, R.; Wright, D. S. J. Am. Chem. Soc. 1989, 111, 4719.

^{(12) (}a) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209; 1991, 12, 320.
(b) Li parametrization: Anders, E.; Koch, R.; Freunscht, P. J. Comput. Chem. 1993, 14, 1301.

Figure 2. PM3 heats of formation ($\Delta H_{\text{formation}}$) for models of 1.

Experimental Section

All procedures were carried out under dry, O2-free argon using standard inert atmosphere techniques.¹³ [Sn(NMe₂)₂] was prepared in the manner described in the literature from the 2:1 reaction of [LiNMe₂] with SnCl₂ in Et₂O in ca. 80% yield.¹⁴ The precursor [{Sn(NMes)₂}- $\{Sn(\mu-NMe_2)\}_2\}$ was prepared by the reaction of $[Sn(NMe_2)_2]$ with mesNH2 in THF in ca. 60% yield.6 THF and Et2O used in reactions were dried over Na/benzophenone, and the o-anisole was freshly distilled and stored over molecular sieve (13X). Complex 1 was isolated and characterized with the aid of an argon-filled glovebox (Miller-Howe, fitted with a Belle internal circulator). Melting point analysis was made using a standard apparatus and sealing a sample in airtight capillaries under argon. IR spectra were obtained using a Paragon 4000 FT/IR spectrometer. Elemental analyses (C, H, N) were performed by first sealing samples in airtight aluminum boats (1-2)mg) under argon prior to analysis using a Perkin-Elmer 240 Elemental Analyzer. ¹H NMR spectra of 1 were recorded on a Bruker WH 250 MHz spectrometer, using the solvent (benzene- d_6) resonances as the internal standard. ¹¹⁹Sn NMR spectra were obtained using a Bruker WH 400 MHz spectrometer, using SnCl₂/D₂O as an external standard.

Synthesis of 1. To a solution of $[{Sn(NMes)_2} {Sn(\mu-NMe_2)}_2]$ (0.89) g, 1.5 mmol) in toluene (10 mL) was added a solution of [LiN(H)ma] at 25 °C [3.0 mmol, prepared by the in situ reaction of 0.35 mL (3.0 mmol) of maNH2 with 2.0 mL of "BuLi (3.0 mmol, 1.5 mol L-1, in hexanes) in 5 mL of toluene and 2 mL of THF]. The solution was stirred (5 min), changing color from orange to vellow-green, and brought to reflux (5 min). The solution was filtered (Celite, porosity 3) to remove a small amount of insoluble material, and all the solvent was removed in vacuo (producing an oil). Et₂O (10 mL) was added, and the yellow precipitate was dissolved by adding THF (ca. 5 mL). Storage of this solution (-18 °C, 24 h) gave yellow cubic crystals of 1; yield of crystalline material 0.59 g (37%); mp 106-108 °C (decomp dark red solid >250 °C); IR (Nujol) ν_{max} (cm⁻¹) = ca. 3040 (w) (aryl C-H str.), 1576 (m) (aryl C···C str.), 1239 (vs) (C-O str.), other bands at 1111 (m), 1046 (m), 1019 (m), 855 (m), 723 (s) (no sharp N-H str. observed); ¹H NMR (250 MHz, +25 °C, benzene- d_6), $\delta = 7.41$ (d.d., 1H, C(3)-H, ma), 6.99 (d.t., 1H, C(4)-H, ma), 6.91 (s, br., 2H, Mes), 6.75 (d.t., 1H, C(5)-H, ma), 6.54 (d.d., 1H, C(6)-H, ma), 3.45 (m., 4H, THF) (coincident with 4-Me of Mes, 3H), 3.28 (s., 6H, 2,6-Me of

Mes), 2.35 (s., 3H, OMe of ma), 1.30 (m., 4H, THF), the N–H could not be identified unequivocally; ¹¹⁹Sn NMR (162 MHz, +25 °C, benzene- d_6 , rel. to SnCl₂/D₂O) –961.3 (s.); elemental anal., found C, 53.9, H, 6.6, N, 5.6; calcd C, 54.8, H, 6.7, N, 5.3.

X-ray Structure of 1. $C_{48}H_{70}Li_2N_4O_6Sn_2$, M = 1050.34, monoclinic, space group $P\bar{1}$ (No. 2), a = 11.080(7) Å, b = 11.720(7) Å, c = 10.561(5) Å, $\alpha = 104.45(4)^\circ$, $\beta = 99.70(5)^\circ$, $\gamma = 102.01(5)^\circ$, V = 1263(1) Å³, Z = 1, $\rho_{calcd} = 1.381$ M gm⁻³, $\lambda = 0.710$ 73 Å, T = 153(2) K, μ (Mo K α) = 1.036 mm⁻¹. Data were collected on a Rigaku AFC5R diffractometer using an oil-coated rapidly cooled crystal¹⁵ of dimensions $0.20 \times 0.15 \times 0.15$ mm by the $\theta/2\omega$ method $(3.01^\circ \le \theta \le 27.51^\circ)$. Of a total of 6091 collected reflections, 5795 were independent ($R_{int} = 0.035$). The structure was solved (SIR92)¹⁶ by direct methods and refined by full-matrix least-squares on F^2 to final values of $R1(F > 4\sigma(F)) = 0.046$ and wR2 = 0.129 (all data) $[R1 = \Sigma||F_0| - |F_c||/\Sigma|F_0|$, w $R2 = \Sigma w (F_o^2 - F_c^2)^2 (\Sigma w (F_o^2)^2)^{0.5}$, $w = 1/[\sigma^2(F_o^2) + (0.0567P)^2]$, $P = F_o^2 + (2Fc^2/3)$];¹⁷ the largest peak and hole in the final difference map were 0.999 and -0.897 e Å⁻³, respectively. The H atoms attached to the MesN groups were located in the difference map.

PM3 Calculations on Models of 1. Calculations were performed on a Silicon Graphics R4400 workstation using VAMP 5.6 (Oxford Molecular) with no geometric constraints being employed during structural optimizations.¹³

Acknowledgment. We gratefully acknowledge the EPSRC (R.E.A., M.A.B., N.F., A.E.H.W.), The Royal Society (P.R.R., D.S.W.), the DGES of Spain (M.E.G.M.), and Glaxo-Wellcome (M.K.) for financial support. We also thank Oxford Molecular for the donation of VAMP 5.6 and Dr. J. Davies for X-ray structural work.

Supporting Information Available: For the crystal structure of **1**, tables of crystal data and structural refinements, anisotropic and isotropic thermal parameters, and full tables of bond distances angles and atomic coordinates (5 pages). An X-ray crystallographic file, in CIF format, is also available. Ordering and access information is given on any current masthead page.

IC971093X

- (15) Stalke, D.; Kottke, T. J. Appl. Crystallogr. 1993, 26, 615.
- (16) Altmore, A.; Cascarano, M.; Giacovazzo, C.; Guagiordi, A. J. Appl. Crystallogr. **1991**, 435.
- (17) Sheldrick, G. M. SHELXL-93, Structure refinement package; University of Göttingen: Göttingem, Germany, 1993.

⁽¹³⁾ Schriver, D. F.; Drezdon, M. A. *The Manipulation of Air-Sensitive Compounds*, 2nd ed.; Wiley: New York, 1986.

⁽¹⁴⁾ Olmstead, M. M.; Power, P. P. Inorg. Chem. 1984, 30, 413.