Se_2^{2-} , Se_5^{2-} , and Se_7^{2-} Ligands in [NEt₄]₂[As₂Se₆], [enH][AsSe₆]·2.2.2-cryptand, [NEt₄][AsSe₈], and [(en)₂In(SeAs(Se)Se₂)]·en

Donna M. Smith, Michael A. Pell, and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Received September 18, 1997

The extraction in ethylenediamine (en) of "AsSe₄", "TlAsSe₄", and "InAsSe₄", followed by reaction with cation sources or 2.2.2-cryptand, has led to the isolation of $[NEt_4]_2[As_2Se_6]$ (1), $[enH][AsSe_6] \cdot 2.2.2$ -cryptand (2), $[NEt_4][AsSe_8]$ (3), and $[(en)_2In(SeAs(Se)Se_2)] \cdot en$ (4). These compounds contain AsSe⁺ units coordinated to Se₂²⁻, Se₅²⁻, and Se₇²⁻ ligands in 1 and 4, 2, and 3, respectively. The $[As_2Se_6]^{2-}$ anion features two AsSe⁺ units joined by Se₂²⁻ ligands; the resultant As₂Se₄ ring exhibits a chair conformation. The $[AsSe_6]^-$ anion features an AsSe⁺ unit coordinated in a bidentate fashion by a Se₅²⁻ ligand to create an AsSe₅ ring with a chair conformation. The $[AsSe_8]^-$ anion contains an AsSe⁺ unit coordinated by a bidentate Se₇²⁻ ligand; the resultant AsSe₇ ring has a crown conformation. [(en)₂In(SeAs(Se)Se₂)] features an octahedral In atom bridged by one Se²⁻ and one Se₂²⁻ ligand to an AsSe⁺ unit; two bidentate en ligands complete the coordination about the In center.

Introduction

Activity in main-group chalcogenide chemistry has resulted in the synthesis of several interesting selenoarsenates, including $[AsSe_4]^{3-,1} [As_2Se_6]^{2-,2-4} [As_3Se_6]^{3-,5} [As_4Se_6]^{2-,2} [As_7Se_4]^{-,6}$ and $[As_{10}Se_3]^{2-,7}$ Several of these species have been obtained by the extraction of binary arsenic selenides. The extraction of solid-state metal chalcogenide phases often affords interesting compounds unobtainable by means of other experimental techniques.^{3,8-21} We set out to investigate if yet more selenoarsenates could be isolated by means of extraction techniques.

- Krebs, B.; Hürter, H.-U.; Enax, J.; Fröhlich, R. Z. Anorg. Allg. Chem. 1990, 581, 141–152.
- (2) Ansari, M. A.; Ibers, J. A.; O'Neal, S. C.; Pennington, W. T.; Kolis, J. W. Polyhedron 1992, 11, 1877–1881.
- (3) Belin, C. H. E.; Charbonnel, M. M. Inorg. Chem. 1982, 21, 2504– 2506.
- (4) Smith, D. M. Work in progress.
- (5) Sheldrick, W. S.; Kaub, J. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1985, 40, 1020–1022.
- (6) Angilella, V.; Mercier, H.; Belin, C. J. Chem. Soc., Chem. Commun. 1989, 1654–1655.
- (7) Belin, C.; Angilella, V.; Mercier, H. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1991, 47, 61–63.
- (8) Adolphson, D. G.; Corbett, J. D.; Merryman, D. J. J. Am. Chem. Soc. 1976, 98, 7234–7239.
- (9) Edwards, P. A.; Corbett, J. D. Inorg. Chem. 1977, 16, 903-907.
- (10) Rudolph, R. W.; Wilson, W. L.; Taylor, R. C. J. Am. Chem. Soc. 1981, 103, 2480–2481.
- (11) Burns, R. C.; Corbett, J. D. J. Am. Chem. Soc. 1981, 103, 2627–2632.
- (12) Burns, R. C.; Corbett, J. D. Inorg. Chem. 1981, 20, 4433-4434.
- (13) König, T.; Eisenmann, B.; Schäfer, H. Z. Anorg. Allg. Chem. 1982, 488, 126–132.
- (14) Teller, R. G.; Krause, L. J.; Haushalter, R. C. Inorg. Chem. 1983, 22, 1809–1812.
- (15) Sheldrick, W. S.; Kaub, J. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1985, 40, 19–21.
- (16) Dhingra, S. S.; Haushalter, R. C. Inorg. Chem. 1994, 33, 2735-2737.
- (17) Dhingra, S. S.; Haushalter, R. C. J. Am. Chem. Soc. 1994, 116, 3651– 3652.
- (18) Dhingra, S. S.; Haushalter, R. C. Chem. Mater. 1994, 6, 2376-2381.
- (19) Dhingra, S. S.; Haushalter, R. C. Polyhedron 1994, 13, 2775-2779.
- (20) Campbell, J.; DiCiommo, D. P.; Mercier, H. P. A.; Pirani, A. M.; Schrobilgen, G. J.; Willuhn, M. *Inorg. Chem.* **1995**, *34*, 6265–6272.
- (21) Pell, M. A.; Ibers, J. A. Inorg. Chem. 1996, 35, 4559-4562.

Here we report the syntheses and characterization of [NEt₄]₂[As₂-Se₆] (1), [enH][AsSe₆]·2.2.2-cryptand (2), [NEt₄][AsSe₈] (3), and [(en)₂In(SeAs(Se)Se₂)]·en (4) formed from the extractions of AsSe₄, TlAsSe₄, and InAsSe₄, followed by reaction with cation sources or 2.2.2-cryptand. We also report some ⁷⁷Se NMR spectroscopic results that bear on what species are present in solution.

Experimental Section

All solvents were dried and degassed before use. Ethylenediamine (en) was distilled over CaH₂; NEt₄Br and 4,7,13,16,21,24-hexaoxa-1,-10-diazabicyclo[8.8.8]hexacosane (2.2.2-cryptand) were recrystallized from CH₃CN. ⁷⁷Se NMR spectra were obtained with a Varian 400 MHz Unity Plus spectrometer equipped with a deuterium lock, 10 mm tunable broad band probe, and a variable temperature apparatus. All ⁷⁷Se NMR resonances are referenced to the external standard (CH₃)₂-Se at $\delta = 0$ ppm. A sample was prepared for NMR measurements by filtering a fresh reaction mixture into an air-free 10 mm NMR tube or by performing the extraction directly in the NMR tube.

"AsSe₄", "TIAsSe₄", and "InAsSe₄" were synthesized from stoichiometric amounts of the constituent elements (Tl (Aldrich, pellets, 99.9%), In (Aesar, 325 mesh, 99.99%), As (Johnson Matthey, 200 mesh, 99.99%), and Se (Aldrich, 100 mesh, 99.5%)) under an N₂ atmosphere by rapid heating with a hydrogen/oxygen flame followed by rapid cooling. X-ray diffraction powder patterns of these materials were obtained with a Rigaku diffractometer. TIAsSe₄ and AsSe₄ are amorphous whereas InAsSe₄, though crystalline, has a powder pattern that does not match any calculated for reported ternary or binary indium–arsenic–selenide phases. The starting materials are stable in air, although most of the final products are air and moisture sensitive.

Synthesis of [NEt₄]₂[As₂Se₆] (1). Compound 1 can be formed from the extraction of any of the three starting materials under similar conditions. The following is a representative example of the synthesis: en (30 mL) was added to a flask charged with AsSe₄ (0.30 g). The flask was sonicated for 8 h (t = 60 °C). The resulting dark red solution was filtered and layered with 6.0 mL of en saturated with NEt₄-Br. The solution was then layered with toluene (20 mL), and large yellow crystals of 1 and small red needles of 3 formed after 2 days. The 170 mg of product is estimated to be about 100 mg of 1 and 70 mg of 3; the corresponding yields of 1 and 3 (based on As) are then 59% and 22%, respectively. Separation of crystals of 1 from crystals

 $\label{eq:table_1} \begin{array}{l} \mbox{Table 1. Crystal Data and Structure Refinement for $[NEt_4]_2[As_2Se_6]$ (1), $[enH][AsSe_6]$-2.2.2-cryptand (2), $[NEt_4][AsSe_8]$ (3), and $[(en)_2In(SeAs(Se)Se_2)]$-en (4)$ \\ \end{array}$

	$[NEt_4]_2[As_2Se_6]$	[enH][AsSe ₆]•2.2.2-cryptand	[NEt ₄][AsSe ₈]	$[(en)_2In(SeAs(Se)Se_2)]$ •en
chemical formula	C ₈ H ₂₀ AsNSe ₃	$C_{20}H_{46}AsN_4O_6Se_6$	C ₈ H ₂₀ AsNSe ₈	C ₆ H ₂₀ AsInN ₆ Se ₄
fw	442.05	987.29	836.85	681.86
a, Å	7.465(5)	10.993(2)	9.153(4)	9.032(8)
b, Å	8.418(4)	19.660(10)	11.333(1)	11.290(8)
<i>c</i> , Å	12.873(4)	15.145(7)	10.407(2)	17.329(10)
α, deg	99.46(3)	90	90	90
β , deg	96.61(4)	95.66(6)	113.05(2)	90
γ , deg	114.67(5)	90	90	90
$V, Å^3$	709.7(6)	3257(2)	993.3(5)	1767(2)
λ, Å	1.54056	1.54056	1.54056	0.7093
space group	$C_i^1 - P\overline{1}$	$C_2^2 - P2_1$	$C_{2h}^2 - P_{2_1}/m$	D_2^4 - $P2_12_12_1$
Z	2	4	2	4
$D(\text{calcd}), \text{g cm}^{-3}$	2.069	2.013	2.798	2.563
t, °C	-160(2)	-160(2)	-160(2)	-160(2)
μ , cm ⁻¹	118	94	190	114
transm factors	0.178/0.616	0.395/0.571	0.517/0.706	0.402/0.504
$R_1(F)^a$	0.0581	0.0490	0.0879	0.0712
$R_{ m w}(F^2)^{ m b}$	0.1428	0.1361	0.1988	0.1470

 ${}^{a}R_{1}(F_{o}) = \Sigma||F_{o}| - |F_{c}||\Sigma|F_{o}|; F_{o}^{2} > 2\sigma(F_{o}^{2}). {}^{b}R_{w}(F_{o}^{2}) = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma wF_{o}^{4}\}^{1/2}; w^{-1} = \sigma^{2}(F_{o}^{2}) + (0.04F_{o}^{2})^{2}, F_{o}^{2} > 0; w^{-1} = \sigma^{2}(F_{o}^{2}), F_{o}^{2} < 0.$

of **3** must be performed by hand, and hence accurate elemental analyses cannot be obtained. Semiquantitative analysis of single crystals of **1** by EDX gave consistent As/Se ratios of 1:3. ⁷⁷Se NMR: (manually separated crystals, 25 °C, CH₃CN) δ 461, 167 ppm (2:1 intensity); (manually separated crystals, 25 °C, en) δ 468, 144 ppm (2:1 intensity).

Synthesis of [enH][AsSe₆]·2.2.2-cryptand (2). Crystals of 2 have only been isolated from the extraction of TlAsSe₄. Ethylenediamine (10 mL) was added to a flask charged with TlAsSe₄ (0.10 g). The flask was left overnight in a sonicator (t = 60 °C). The resulting orange-red solution was filtered, and 2.2.2-cryptand (5 mL of a saturated en solution) was added. The black powder (0.05 g) remaining in the reaction vessel was identified as Tl₂Se₂ from its X-ray diffraction powder pattern. The solution was layered with toluene (15 mL); a dark red oil resulted. The volume of the solution was subsequently reduced to ca. 1 mL, and the remaining residue was redissolved in CH₃CN (15 mL). This solution was layered with ether (60 mL) to produce large red needles of **2**. Yield: 38 mg, 18% (based on Se). ⁷⁷Se NMR (25 °C, CH₃CN): δ 779, 569, 418, 366 ppm (1:2:1:2 intensity).

Synthesis of [NEt₄][AsSe₈] (3). Crystals of **3** can be obtained from extractions of any of the starting materials under similar conditions, but they are always mixed with **1**, as noted above EDX analysis of several crystals of **3** gave consistent As/Se ratios of 1:8. ⁷⁷Se NMR (mixture of crystals of **1** and **3**, 25 °C, en): δ 466, 150 ppm (2:1) corresponding to **1**; 656, 591, 476, 335, 327, 319, 275, 182 ppm.

Synthesis of [(en)₂In(SeAs(Se)Se₂)]·en (4). En (10 mL) was added to a flask charged with dark gray $InAsSe_4$ (0.13 g). The mixture was sonicated for 8 h, and the resulting red-brown solution was separated from a yellow powder by filtration. The solution was layered with 2.2.2-cryptand (yield: 35 mg, 20% (based on In)). EDX analysis of 4 gave an In/As/Se ratio of 1:1:4. Compound 4 is moderately air stable. Since it is insoluble in all the common solvents analysis by ⁷⁷Se NMR spectroscopy was precluded.

Crystal Structure Determinations. Details are presented in Table 1. The refinement of the structure of **1** was straightforward. Crystals of **2** are of marginal quality for data collection. Only 5167 unique reflections were obtained from the chosen crystal. No solution could be found in space group C_{2h}^2 - $P2_1/m$; averaging among Friedel pairs is significantly better in $P2_1$ ($R_{int} = 0.029$) than in $P2_1/m$ ($R_{int} = 0.060$). The final refinement of 496 variables in space group $P2_1$ involves anisotropic displacement parameters for As and Se atoms only. The structure contains two unique [enH]⁺ cations, two unique [AsSe₆]⁻ anions, and two unique 2.2.2-cryptand adducts. The MISSYM algorithm²² in the PLATON suite of programs²³ did not detect any additional symmetry relating the unique structural units. Each [AsSe₆]⁻

Figure 1. Structure of the $[As_2Se_6]^{2-}$ anion in $[NEt_4]_2[As_2Se_6]$ (1). The anion has an imposed center of symmetry. Here and in succeeding figures, the 50% probability displacement ellipsoids are shown.

anion is disordered over two sites, the distributions being 0.631(5): 0.369(5) and 0.679(6):0.321(6). In the penultimate cycle of refinement, the value of the Flack parameter was 0.76(5). Accordingly, the structure was refined as a twin, the final ratio of the two components being 0.76-(5):0.24(5). In **3** the [NEt₄]⁺ cation is disordered over the crystallographically imposed mirror plane. In **4** all atoms were refined with anisotropic displacement parameters except for atoms N(1), N(2), C(1), and C(3) which failed to remain positive definite

Further details of the crystal structure determinations are given in the Supporting Information.

Results

The structure of the $[As_2Se_6]^{2-}$ anion of **1**, which has a crystallographically imposed center of symmetry, contains two As^{3+} centers, each coordinated by a terminal Se^{2-} anion and joined together by bridging Se_2^{2-} units. Alternatively, the anion may be described as two trigonal-pyramidal $AsSe_3$ units joined through Se-Se bonds (Figure 1). The As_2Se_4 ring exhibits a chair conformation. The $[As_2Se_6]^{2-}$ anion has been previously characterized as the $[PPh_4]^{+2}$ and $[A(2.2.2\text{-cryptand})]^+$ salts $(A = Na, {}^3 \text{ K}^4)$. The metrical details (Table 2) for the anion of **1** are consistent with those reported for the other salts of $[As_2Se_6]^{2-}$.

The structure of the $[AsSe_6]^-$ anion in compound **2** comprises a trigonal-pyramidal As^{3+} center coordinated by a terminal Se^{2-} ligand and a bidentate Se_5^{2-} ligand (Figure 2). The $AsSe_5$ ring has a chair conformation with annular angles (ranging from 94.3(2) to 107.9(8)°) similar to those of the As_2Se_4 ring of **1**.

⁽²³⁾ Spek, A. L. Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, C34.

Table 2. Selected Bond Distances (Å) and Angles (deg) for the $[As_2Se_6]^{2-}$ Anion in Various Salts

	[NEt ₄] ^{+ a}	[PPh ₄] ^{+ b}	[Na(2.2.2-crypt)] ^{+ c}	[K(2.2.2-crypt)] ⁺ d
As(1)-Se(3)	2.293(1)	2.271(2)	2.276(2)	2.268(4)
As(1)-Se(2)	2.415(2)	2.411(2)	2.412(2)	2.438(3)
As(1)-Se(1)	2.415(2)	2.421(2)	2.416(2)	2.417(3)
Se(1)-Se(2)	2.352(1)	2.353(2)	2.345(2)	2.350(3)
Se(3) - As(1) - Se(2)	95.07(4)	97.4(1)	95.10(8)	96.39(12)
Se(3) - As(1) - Se(1)	98.88(6)	99.2(1)	96.51(8)	93.81(12)
Se(2) - As(1) - Se(1)	101.48(6)	100.3(1)	101.32(7)	102.87(11)
Se(2) - Se(1) - As(1)	97.62(6)	100.9(1)	101.09(7)	100.21(11)
Se(1)- $Se(2)$ - $As(1)$	100.59(4)	101.7(1)	101.04(8)	100.89(11)

^a Present work. ^b Reference 2. ^c Reference 3. ^d Reference 4.

Figure 2. Structure of one of the $[AsSe_6]^-$ anions in $[enH][AsSe_6] \cdot 2.2.2$ -cryptand (2).

Bidentate $\text{Se}_5^{2^-}$ species have been previously observed chelating C,²⁴ Ti,^{25,26} Fe,^{27,28} Cu,²⁹ Zn,³⁰ Se,^{31–33} Zr,²⁶ Pd,³⁴ Te,³⁵ and Hf ²⁶ centers. Of these structures, only [PPh₄]₄[Cu₂Se₁₄] features a Se₅²⁻ ligand attached to a three-coordinate center.²⁹ The unit cell of **2** contains two unique [AsSe₆]⁻ anions, two unique 2.2.2-cryptand adducts, and two unique [enH]⁺ cations. To achieve charge balance it is necessary that the en be monoprotonated. The [enH]⁺ species has been observed in several other chalcogenide compounds.^{36–38}

The [AsSe₈]⁻ anion of **3** contains a trigonal-pyramidal As³⁺ center coordinated by a terminal Se²⁻ ligand and a bidentate Se₇²⁻ ligand (Figure 3). The [AsSe₈]⁻ anion has crystallographically imposed *m* symmetry. The anion is very similar to the [SAsS₇]⁻ anion in [PPh₄][AsS₈].³⁹ However, the sulfide compound was made from the reaction of [PPh₄][As₂SCl₅] with K₂S₅ in CH₃CN. The [AsSe₈]⁻ anion contains the first example of a bidentate Se₇²⁻ chain. Structures containing tridentate⁴⁰ and bidentate⁴¹ S₇²⁻ ligands, in addition to the [AsS₈]⁻ anion,

- (24) Chivers, T.; Parvez, M.; Peach, M.; Vollmerhaus, R. J. Chem. Soc., Chem. Commun. 1992, 21, 1539–1540.
- (25) Fenske, D.; Adel, J.; Dehnicke, K. Z. Naturforsch. B: Chem. Sci. 1987, 42b, 931–933.
- (26) Albrecht, N.; Weiss, E. J. Organomet. Chem. 1988, 355, 89-98.
- (27) Strasdeit, H.; Krebs, B.; Henkel, G. Inorg. Chim. Acta 1984, 89, L11-L13.
- (28) Müller, U.; Ha-Eierdanz, M.-L.; Kräuter, G.; Dehnicke, K. Z. Naturforsch. B: Chem. Sci. 1991, 46, 175–182.
- (29) Müller, U.; Ha-Eierdanz, M.-L.; Kräuter, G.; Dehnicke, K. Z. Naturforsch. B: Chem. Sci. 1990, 45, 1128–1132.
- (30) Fenske, D.; Magull, S.; Dehnicke, K. Z. Naturforsch. B: Chem. Sci. 1991, 46, 1011–1014.
- (31) Kanatzidis, M. G.; Huang, S.-P. Inorg. Chem. 1989, 28, 4667-4669.
- (32) Huang, S.-P.; Dhingra, S.; Kanatzidis, M. G. Polyhedron 1992, 11, 1869–1875.
- (33) Krebs, B.; Lührs, E.; Willmer, R.; Ahlers, F.-P. Z. Anorg. Allg. Chem. 1991, 592, 17–34.
- (34) McConnachie, J. M.; Ansari, M. A.; Ibers, J. A. Inorg. Chem. 1993, 32, 3250–3255.
- (35) Zagler, R.; Eisenmann, B. Z. Naturforsch. B: Chem. Sci. 1991, 46, 593-601.
- (36) Böttcher, P.; Buchkremer-Hermanns, H. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1987, 42, 267–271.
- (37) Böttcher, P.; Buchkremer-Hermanns, H. J. Less-Common Metals 1988, 137, 1–11.
- (38) Park, C.-W.; Pell, M. A.; Ibers, J. A. Inorg. Chem. 1996, 35, 4555– 4558.
- (39) Ketelaar, J. A. A.; t'Hart, W. H.; Moerel, M.; Polder, D. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 1939, 101, 396–405.

Figure 3. $[AsSe_8]^-$ anion in $[NEt_4][AsSe_8]$ (3). The anion has imposed *m* symmetry.

Table 3. Selected Bond Distances (Å) and Angles (deg) for the Anion of $[NEt_4][AsSe_8]$ (3)^{*a*}

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Se(1)-As(1)-Se(2) Se(2)-As(1)-Se(2)' Se(3)-Se(2)-As(1) Se(2)-Se(3)-Se(4) Se(5)-Se(4)-Se(3) Se(4)-Se(5)-Se(4)'	88.85(16) 103.85(17) 108.52(18) 104.05(17) 105.78(19) 108.3(2)
--	---	---

^{*a*} The primed atoms are at x, $-y + \frac{1}{2}$, z.

have been reported. An uncoordinated Se₇²⁻ chain has been structurally characterized.⁴² The compound Re₂I₂(CO)₆(Se₇)· 0.5C₇H₁₆ features a Se₇ *ring* that bridges two Re centers.⁴³ The present AsSe₇ ring has a crown conformation similar to the Q₈ (Q = S, Se, Te) rings in S₈,⁴⁴⁻⁴⁶ α -Se,^{47,48} β -Se,^{49,50} Cs₃Te₂₂,⁵¹ and the BiS₇ rings in Bi₂S₃₄ [(S₇)₂Bi(S₆)Bi(S₇)₂].⁴¹ Metrical details are given in Table 3.

Compound 4, $[(en)_2In(SeAs(Se)Se_2]$ •en, features an octahedral In atom bridged by one Se²⁻ and one Se₂²⁻ ligand to an AsSe⁺ unit; two bidentate en ligands complete the coordination about the In center (Figure 4). For the crystal chosen the conformation of the In-containing molecule is $\Delta\lambda\lambda\delta$. Because of the en solvate, ambiguity exists in assigning formal charges to the metal atoms: $[(en)_2In^{II}(SeAs^{II}(Se)Se_2)]$ •en, $[(en)_2In^I(SeAs^V(Se)Se_2)]$ •en, and $[enH_2][(en)_2In^I(SeAs^{III}(Se)Se_2)]$ are all possible descriptions, with the first seeming to us to be the most reasonable. Thus,

- (40) Gotzig, J.; Rheingold, A. L.; Werner, H. Angew. Chem., Int. Ed. Engl. 1984, 23, 814–815.
- (41) Müller, A.; Zimmermann, M.; Bögge, H. Angew. Chem., Int. Ed. Engl. 1986, 25, 273.
- (42) Müller, V.; Dehnicke, K.; Fenske, D.; Baum, G. Z. Naturforsch. B: Chem. Sci. 1991, 46, 63–67.
- (43) Bacchi, A.; Baratta, W.; Calderazzo, F.; Marchetti, F.; Pelizzi, G. Angew. Chem., Int. Ed. Engl. 1994, 33, 193–195.
- (44) Mark, H.; Wigner, E. Z. Phys. Chem., Abt. A 1924, 111, 398-414.
- (45) Warren, B. E.; Burwell, J. T. J. Chem. Phys. 1935, 3, 6-8.
- (46) Abrahams, S. C. Acta Crystallogr. 1955, 8, 661-671.
- (47) Halla, F.; Bosch, F. X.; Mehl, E. Z. Phys. Chem., Abt. B 1930, 11, 455-463.
- (48) Burbank, R. D. Acta Crystallogr. 1951, 4, 140-148.
- (49) Klug, H. P. Z. Kristallogr. 1934, 88, 128-135.
- (50) Marsh, R. E.; Pauling, L.; McCullough, J. D. Acta Crystallogr. 1953, 6, 71–75.
- (51) Sheldrick, W. S.; Wachhold, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 450-451.

Figure 4. Structure of [(en)₂In(SeAs(Se)Se₂)] in (4).

Table 4.	Bond I	Distances	(Å)	and	Angles	(deg)	fo
$[(en)_2In(S)]$	SeAs(Se)Se ₂)]•en	(4)				

In(1)-N(2)	2.268(16)	N(1) - In(1) - N(3)	82.3(6)
In(1) - N(4)	2.297(15)	N(2) - In(1) - Se(4)	93.7(4)
In(1) - N(1)	2.315(16)	N(4) - In(1) - Se(4)	96.2(4)
In(1) - N(3)	2.337(16)	N(1) - In(1) - Se(4)	165.7(4)
In(1)-Se(4)	2.631(3)	N(3) - In(1) - Se(4)	88.6(5)
In(1)-Se(3)	2.661(3)	N(2) - In(1) - Se(3)	100.6(4)
As(1)-Se(1)	2.302(3)	N(4) - In(1) - Se(3)	88.4(4)
As(1)-Se(4)	2.357(3)	N(1) - In(1) - Se(3)	88.4(4)
As(1)-Se(2)	2.425(3)	N(3) - In(1) - Se(3)	162.5(4)
Se(2)-Se(3)	2.330(3)	Se(4)-In(1)-Se(3)	103.04(9)
		Se(1)-As(1)-Se(4)	107.30(11)
N(2)-In(1)-N(4)	164.8(6)	Se(1)-As(1)-Se(2)	104.41(12)
N(2)-In(1)-N(1)	75.7(6)	Se(4)-As(1)-Se(2)	101.39(11)
N(4) - In(1) - N(1)	92.5(6)	Se(3)-Se(2)-As(1)	104.19(11)
N(2)-In(1)-N(3)	91.5(6)	Se(2) - Se(3) - In(1)	98.26(11)
N(4) - In(1) - N(3)	77.2(6)	As(1)-Se(4)-In(1)	101.47(10)

the In–Se distances (Table 4) in **4** (μ_2 -Se, 2.631(3) Å; μ_2 -Se₂, 2.661(3) Å) are comparable to the distances (2.643(1)–2.657-(1) Å) observed for In(C₁₂H₁₅N₂OSe)₃,⁵² which also features octahedrally coordinated In^{III} atoms. Moreover, the As–Se distances (Se_t, 2.302(3) Å, μ_2 -Se: 2.357(3) Å, μ_2 -Se₂: 2.425-(3) Å) are comparable to those in other arsenic(III) selenide complexes.^{2,53}

Discussion

[NEt₄]₂[As₂Se₆] (**1**) and [NEt₄][AsSe₈] (**3**) can be isolated from the extraction of each of the three mixtures AsSe₄, TlAsSe₄, and InAsSe₄ in en by the addition of NEt₄Br and toluene. The inclusion of the second metal in the starting mixture may allow for the formation of other products, as [enH]-[AsSe₆]·2.2.2-cryptand (**2**) is not isolated from the extraction of AsSe₄. The extracted en solution of TlAsSe₄ ultimately leads to crystals of **2** whereas a similar treatment of the extracted en solution of AsSe₄ yields only crystals of [enH]₂[As₂Se₆].⁵⁴

Limited insight into the formation chemistry has been obtained from a series of ⁷⁷Se NMR experiments (Table 5) on both the final products and the en extractions. The absence of J_{As-Se} or J_{Se-Se} coupling makes direct peak assignment difficult; assignments are based on intensities and analogies to spectra for other selenoarsenates. The ⁷⁷Se NMR spectrum of crystals

- (52) Schuster, M.; Bensch, W. Z. Anorg. Allg. Chem. 1994, 620, 737-742.
- (53) Smith, D. M.; Park, C.-W.; Ibers, J. A. Inorg. Chem. 1996, 35, 6682– 6687.
- (54) Crystal data for [enH][As₂Se₆]: monoclinic, C_{2h}^5 - $P2_1/c$, Z = 2, a = 7.051(1) Å, b = 13.830(3) Å, c = 9.504(1) Å, $\beta = 111.10(3)^\circ$, V = 864.7(3) Å³; D(calcd) = 2.865; T = 113 K, $2\theta_{\text{max}} = 48.10^\circ$; Mo Ka $(\lambda = 0.7093)$; $\theta 2\theta$ scan; 5312 reflections measured, 1362 unique $(R_{\text{int}} = 0.117)$, $\mu = 164$ cm⁻¹; min/max transm = 0.404/0.589; 73 parameters, $R_1 = 0.0422$, $wR_2 = 0.097$.

Table 5. ⁷⁷Se NMR Chemical Shifts (ppm) for 1-3 and the Different Reaction Mixtures (25 °C)

chemical shift	solvent
468, 144	en
461, 167	CH ₃ CN
779, 569, 418, 366	en
656, 591, 476, 335,	en
327, 319, 275, 182	
466, 169	CH ₃ CN
278, 308	en
608, 321	en
468, 181, 140	en
462, 174, 135	en
470, 182, 142	en
444, ^c 181, 99 ^c	en
180	en
568, 422, 338, 205, 216	en
	chemical shift 468, 144 461, 167 779, 569, 418, 366 656, 591, 476, 335, 327, 319, 275, 182 466, 169 278, 308 608, 321 468, 181, 140 462, 174, 135 470, 182, 142 444, c 181, 99c 180 568, 422, 338, 205, 216

^{*a*} Reference 4. ^{*b*} Reference 55. ^{*c*} Broad resonance. ^{*d*} These were previously reported to occur at 465, 180, and 139 ppm (see ref 2); the reason for the discrepancy is not known.

of $[NEt_4]_2[As_2Se_6]$ (1) redissolved in en has two resonances at $\delta = 468$ and 144 ppm; when the crystals are redissolved in CH₃CN these resonances are at $\delta = 461$ and 167 ppm. Cation choice also appears to have little effect on the resonances, as these are found at $\delta = 466$, 169 ppm for $[K(18\text{-crown-}6)]_2$ - $[As_2Se_6]$ redissolved in CH₃CN.⁴

Crystals of [enH][AsSe₆] (2) dissolved in en display four ⁷⁷Se NMR resonances (δ = 779, 569, 418, 366 ppm), consistent with the four unique Se atom environments observed in the crystal structure. However, the 77Se NMR spectrum of a mixture of crystals of 1 and [NEt₄][AsSe₈] (3) dissolved in en shows six peaks ascribable to 3, whereas only five are expected. Either the anion does not retain its structure in solution or there is another product present. None of these resonances matches those observed for $\hat{S}e_n^{2-}$ species.^{55,56} At first glance, the absence of multiple resonances in the ⁷⁷Se NMR spectra along with the similarity of resonance locations for each reaction mixture (Table 5) suggests that the predominant soluble selenoarsenate species generated are the same for all the extractions. Isolation of a given product is then dependent on the choice of cation and layering solvent, as in the In/Sen²⁻ family of compounds.⁵⁷ If this were the case, one would expect to be able to isolate the same products from reaction mixtures treated in the same manner. For most of the extractions this is true; however, 2 is isolated only from the extraction of TlAsSe₄ and 3 is not isolated from the extraction of As₂Se₃. This suggests that while the predominant species are the same for each extraction, other polyselenide species, undetected by ⁷⁷Se NMR spectroscopy, are also present and have a bearing on which products are isolated from the reaction mixtures.

Acknowledgment. This research was sponsored by the U.S. National Science Foundation, Grants DMR 91-14934 and CHE 95-31232.

Supporting Information Available: Tables, in CIF format, of crystallographic details, atomic coordinates, displacement parameters, and bond distances and angles. Access information is given on any current masthead page.

IC971181H

- (56) Cusick, J.; Dance, I. Polyhedron 1991, 10, 2629-2640.
- (57) Dhingra, S. S.; Kanatzidis, M. G. Inorg. Chem. 1993, 32, 1350-1362.

⁽⁵⁵⁾ Björgvinsson, M.; Schrobilgen, G. J. Inorg. Chem. 1991, 30, 2540– 2547.