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A general, computationally easy method for minimizing the steric energy of a molecule, polymer, surface, or net
within the field of a fixed, or periodically updated, crystal lattice has been devised. The goal has been obtained
by coupling molecular mechanics (MM) to Kitaigorodsky’s atom-atom pairwise potential (AAPP). The primary
outcomes of such MMAAPP computations are the “solid state” conformation of the molecule, its intramolecular
steric energy and its interaction energy with the surrounding lattice. These computations are ideally suited for
studying relative stabilities of different polymorphs, plastic deformations of a whole crystal lattice, and molecular
motions of flexible guest molecules in host crystal lattices. The proposed approach can help in understanding
solid-state dynamics, factors controlling reactivity in crystal lattices, and crystals as “supramolecular entities”.
In addition, the capability of building “hypothetical” crystals with sterically reasonable geometries can be exploited
in the process of solving crystal structures from partial diffraction data.

We have been driven to molecular mechanics by our interests
in the ligand stereochemistry of metal carbonyl clusters. Since
these systems are characterized by a certain freedom for
carbonyls to float about the metal cage (or, alternatively, by
the freedom of the metal cage to librate within the ligand
envelope),1 we adopted Lauher’s equal potential surface (EPS)
concept2 and showed that an EPS can be derived by maintaining
a weakened concept of connectivity in the so-called local
connectivity approach.3 However, the lack of a definite M-CO
connectivity, which is intrinsic to the EPS approach, may result
in sterically allowed but electronically unreasonable structures.4

As a consequence, we have limited the freedom of the carbonyl
ligands about the metal cage by introducing a new component
of the force field which addresses the fulfillments of the local
electron bookkeeping and favors the conformations associated
with a better spread of the total charge.5 Recently, we extended
our force field toπ ligands bonded to vertexes, edges, or faces
of metal clusters using the “dummy” atom formalism.6

Since we have found many discrepancies between “theoreti-
cal” (ideally referring to the gas phase) and experimental
stereochemistries (often referring to the solid state), we have
developed a strong interest in ascertaining the role of the crystal
lattice (i.e. of packing interactions) in addressing the actual
stereochemistry of such flexible molecules. Accordingly, we
decided to implement into a local version of Allinger’s MM3
program,7 previously used for the above quoted computations,
the possibility to optimize the conformation of a molecule within

the field of a fixed, or periodically updated, crystal lattice. A
similar task was pursued by Osawa but never described in
detail.8

The possibility of success of the present approach, hereafter
MMAAPP, from coupling of molecular mechanics (MM) and
Kitaigorodsky’s atom-atom pairwise potential (AAPP)9 meth-
ods, in interpreting the solid-state dynamics offlexiblemolecules
stands on the good parametrization of intra- and intermolecular
interactions. Indeed, MM3 van der Waals (vdW) parameters
have been shown to reasonably describe bothintra- and
intermolecularinteractions.7c Given the great successes of the
AAPP method in rationalizing the dynamics ofsubstantially
rigid molecules,9-11 and the well-known capabilities of MM3
in dealing with organic systems at the molecular level we think
that the present approach could be used quite safely to study
the solid-state dynamics of flexible molecules and/or to evaluate
the effects of a (rigid) host crystal lattice on a (flexible) guest
molecule.
In the following, we will describe the proposed MMAAPP

methodology using a few simple examples taken from the
literature; however, the power of this approach has been
previously proved in the cluster realm by rationalizing the solid-
state dynamics of Fe3(CO)12.12

The Program

All the computations have been done employing a local version of
MM3 upgraded to deal with (i) carbonyl ligands in the local connectivity
approach;3 (ii) formal local charge distributions;5 (iii) “dummy” atoms;6

and (iv) crystal lattices.12

The latter task is achieved by the combined usage of the two
programs PACKMM, which builds up the model of the crystal and the
whole input deck for MM3, and MM3, the actual molecular mechanics
program. However, as we will see in the following, the approach is
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(3) Sironi, A. Inorg. Chem.1992, 31, 2467.
(4) In a conventional MM study, the connectivity of the atoms is exactly

defined (and is not allowed to change during the minimization), and,
as a consequence, the number of valence electrons of each atom is
also strictly controlled. However, within the EPS formalism, which
allows variable connectivity of the metals, we lose control of the local
number of valence electrons on each metal center.
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(7) (a) Allinger, N. L.; Yuh, Y. H.; Lii, J.-H.J. Am. Chem. Soc.1989,
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quite general, and once the proper model of the crystal has been
generated by PACKMM, every MM program can be easily upgraded
to deal with crystals.
Molecular Systems. Space group labels, cell parameters, atom

types, and crystallographic coordinates for all the atoms within the
asymmetric unit (AU) are fed to the program PACKMM which builds
up (i) the reference molecule (RM) (which can extend over several
symmetry-related AUs, since we always “complete” an isolated
molecule); (ii) the list of surrounding molecules (SMs) (i.e. those having
at least one atom within a sphere of given radius from the RM); and
(iii) the complete MM3 input file containing the usual topological
description of the RM and all the (encoded) relevant information for
generating its SMs. The transformations relating crystallographic to
orthonormal coordinates (and symmetry operations)13 together with
details on the coding procedure, which allows us to periodically update
the crystal lattice,14 are reported in the Appendix.
Our model of the crystal is constituted by the ensemble of the RM

and its SMs, i.e. by a cluster of molecules partially obeying (being
finite) the space group symmetry of the crystal. The steric energy (Es)
per RM in the crystal, will be

whereEintra is the conventional (intramolecular) steric energy of the
RM while Einter (known as the potential packing energy,PPE, when
dealing with rigid molecules) is the sum of all nonbonded interactions,
van der Waals (vdW) and Coulombic, between the RM and SMs atoms.
Note that the need for a detailed description of molecular topology
(and force field) applies only to the RM while the SMs are nothing
but a collection of individual atoms.15 Accordingly, once the proper
atom list has been generated by PACKMM, every MM program can
be upgraded (in order to deal with crystals) by extending the
computation of nonbonded interactions (both for forces and energies)
to these “isolated” atoms.
Polymeric Systems.Polymers are more difficult to deal with since

intramolecular interactions extend all over the crystal. However, to
compute the forces acting on the RM (which is not any more an
individual molecule) only a relatively small subset of “connected” atoms
is needed while theEs perRM in the crystal can be properly computed
by weighting the bonding (intramolecular) interactions. Accordingly,
PACKMM builds up a model of the polymeric crystal partitioned in
four non-overlapping parts (see Figure 1); namely, (i) the RM (which
always reduces to the AU in the case of polymers); (ii) the connected
environment (CE) (which is constituted by all the atoms which are
needed to compute the valence forces acting on the RM atoms); (iii)
the intramolecular environment (IntraE) (which is constituted by the
atoms, within a sphere of given radius from the RM, belonging to the
same chain or net of the RM); and (iv) the intermolecular environment
(InterE) (which is constituted by the surrounding “molecules” having
at least one atom within a sphere of given radius from the RM but not
belonging to the same chain or net of the RM). To ensure an overall
charge of zero, (CE∪ IntraE) andInterE are always constituted by an
integral number of (symmetry-related) AUs.
To refine the conformation of the whole polymeric crystal, it is

enough to compute the forces acting on the RM only. This requires a

full topological description of RM and CE but not ofIntraE andInterE
which, contributing only to the nonbonded energy, can be seen as a
collection of individual atoms. Note that, since conventional force fields
include at most 1,4 valence interactions the CE has to contain all the
atoms having a 1,4 relationship with some RM atom at most. Moreover,
the fact that some “external” CE atoms have some missing valences
(being also connected to someIntraE atoms) has no relevance since
we compute the forces on the RM atoms only.

Once the RM and CE have been properly defined and the computa-
tion of nonbonded interactions has been extended toIntraE andInterE,
every MM program can handle polymeric crystals. However, to
compute a correctEs per RM we must partition the intramolecular
interaction energies (i.e. those involving RM and (CE∪ IntraE).16 In
particular for ann atoms interactionE(i1,...,in) (n ) 4 at most for
torsional terms) the fraction of the energy belonging to the RM will be

where mult(i j) is the normalized17 crystallographic site occupancy for
the i j atom andδ(i j,RM), Kronecker’s delta, will be 1 or 0 depending
if i j belongs to the RM or not.

The (weighted) steric energyper RM will be

whereEw,intra ) Σw(i1,...,in)E(i1,...,in), is theweightedintramolecular
energy, and the summation runs over the usualn-body bonding (within
RM ∪ CE) and nonbonding interactions (between RM and RM∪ CE

(13) Note that, to deal with space group symmetry, the usual MM3
symmetry operation has been augmented with a translational compo-
nent.

(14) Actually, PACKMM encodes all the symmetry information needed
to obtain the SMs atoms from the RM ones as a list of integers (one
for each atom). This allows, using the proper decoding routine, to
periodically update (during the minimization process) the SMs on the
base of the actual RM. The underlying assumption for these procedure
is that relatively small deformations of the RM do not lead any “new”
molecule to join or any “old” one to leave the actual SMs cluster.
This assumption can be checked by verifying that the minimized
coordinates fed into PACKMM afford the same SMs cluster (in term
of symmetry operator) of the starting coordinates.

(15) This is not true if the electrostatic energy is approximated by the dipole
interaction energy computed throughout bond dipoles (since we would
also need to memorize the bonding pattern of the SMs). For this reason
we have restored an older option (available in MM2), and we compute
the charge interaction energy instead.

(16) Note that this weighting scheme must be used only to compute the
weightedintramolecular energy butnot to compute the forces acting
on each atom. Indeed, it is possible to demonstrate that these
unweightedforces are the derivatives of theweightedintramolecular
energy.

(17) To obtain the energyperRM, the normalization factor is the reciprocal
of the maximum crystallographic site occupancy (CSO) within the
RM. For instance, in the following example of cubic diamond, where
the RM is constituted by just one C atom with CSO) 1/24, the
normalization factor will be 24 and mult(C) will be 1.

Es ) Eintra + Einter

Figure 1. Our model of the crystal is constituted by the ensemble of
the RM and its SMs, i.e. by a cluster of molecules partially (being
finite) obeying the space group symmetry of the crystal. When dealing
with polymers the partition between RM and SMs is not enough and
in addition to (i) the RM (closed circles), which always reduces to the
AU in the case of polymers, we must consider: (ii) the connected
environment (CE, dashed circles), which is constituted by all the atoms
which are needed to compute the valence forces acting on the RM
atoms; (iii) the intramolecular environment (IntraE, open circles), which
is constituted by the atoms belonging to the same chain or net of the
RM; and (iv) the intermolecular environment (InterE, dashed line),
which is constituted by the surrounding “molecules” having at least
one atom within a sphere of given radius from the RM but not belonging
to the same chain or net of the RM. In the case of molecular system
obviously (RM∪ CE ∪ IntraE) reduces to RM whileInterE reduces
to SMs.

w(i1,...,in) ) (1/n)∑
j)1

n

mult(i j) × δ(ij,RM)

Es ) Ew,intra+ Einter
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∪ IntraE), while Einter is the nonbonding interaction energy between
RM and InterE.18

Minimization Strategies. Es can be minimized essentially within
two different assumptions depending on whether the crystal lattice is
periodically updated on the base of the actual RM conformation. The
former assumption allows us to reach the closest minimum on the
(crystal) potential energy surface and/or to study correlated motions,
i.e. plastic deformations of the whole crystal lattice. On the contrary,
the latter assumption allows to study uncorrelated processes occurring
(randomly) to individual molecules within the (fixed) crystal lattice
field.
Note that, after a minimization step under the latter assumption the

conformation of the SMs is not anymore similar to that of the RM.
Thus, to sample the energy profile of a relevant reaction coordinate
(i.e. in order to minimize the RM under the constraints of the particular
reaction path and of the fixed crystal lattice, normally starting from
the RM conformation computed for the previous point in the energy
profile), we must allow in general for a difference between the RM
and SM conformations. More generally, we allow even for a different
molecular nature of the RM and the SMs, thus studying the conforma-
tion and/or the dynamics of a guest molecule (GM) in a host crystal
lattice.
Conventional AAPP methods can easily afford energy barriers

against reorientation of a single rigid molecule in a rigid crystal
environment.19 Since we deal with flexible RMs we should be able to
study more elaborated molecular motions. However, for sake of
generality, we also allow for some cooperation between the RM and a
shell of nearest neighbors, the enclosure shell (ES), provided that the
set of SMs is large enough to contain a second shell of rigid next-
nearest-neighbors to ensure that the ES is not allowed undue freedom
of motion. This task is easily fulfilled for molecular systems (no GM)
since the RM and the ES molecules, despite having different conforma-
tions, share the same topological description. Thus it is enough to
periodically swap the coordinates of the RM and the ES molecules to
allow for cooperative motions and/or deformations of the ES mol-
ecules.20

A few words about the meaning of the steric energies computed
here may be in order. TheEs directly refers to alocal property of the
RM (or GM) molecule and must be used to compute potential energy
profiles for their reorientation and/or deformation. However, to
compare computed steric energies withglobalproperties of the crystal,
the correct value to be considered is

For instance,Es* is related to sublimation enthalpies by the following
relation:

whereEg is the steric energy of an isolated RM in the gas phase
conformation. This expression is not quite correct, since the calculation
(which ideally refers to RT) yields in principle the sublimation internal
energy, that is the energy difference between a molecule in the crystal
and a molecule in the vapor, both at rest. A detailed analysis of the
energetic aspects of crystal packing has been reported by Gavezzotti
and Filippini.21 Noteworthy,Es* values are meaningful only when the
RM is representative of the global structure, for instance, in the case
of plastic deformation of the crystal.
Dealing with polymers, even if it is impractical to speak of or to

measure∆Hs, it is still useful to defineEs* as

since it can be used to compare different polymorphs.

Results and Discussion

Molecular Mechanics of Carbon Lattices. Laqua et al.
recently reported some force field calculations (MM2) of carbon
lattices mimicked by carbon clusters of growing complexity.22

The individual computations were clearly biased by surface
effects; however, the authors, by extrapolating their results to
infinity, eventually reported extrapolated lattice strain energies.
In the following, to show the capabilities of our approach in
dealing with polymers, we will compute the “exact” (MM3)
lattice strain energies for the three sp3 carbon lattices considered
by Laqua et al., namely, cubic diamond (CD), hexagonal
diamond (HD), andγ-silicon diamond (BC-8) (see Figure 2).
Such an example is particularly well suited for our purposes

since it is both topologically complex (dealing with 3D nets)
and numerically simple (the RM being constituted by just one
atom), thus allowing even a paper and pencil check. Indeed, it
is straightforward to verify that, according to the proposed
partition of intramolecular interactions (there are no intermo-
lecular interactions in these carbon lattices), the program
eventually takes into account four stretching (each weighted1/2),
18 bending (each weighted1/3), 72 torsion (each weighted1/4),
and a large number23 of vdW interactions (each weighted1/2)
per carbon atom.
Dealing with isomeric lattices, we can make a direct

comparison between steric energies and we do not need to
compute strain energies which will follow the very same trend.
Obviously, within the cluster approximation (each cluster being
a different molecule) this is not true and Laqua et al. had to
resort to strain energies. Accordingly we will compare our steric
energies (Es in Table 1) with their (extrapolated) strain energies
(SE in Table 1).
As far as the geometrical aspects are concerned, our results

are very close to the experimental ones (CD and HD lattices)
and substantially similar to those reported by Laqua et al. (CD
and BC-8 lattices). However, while the CD and HD lattices
have similar extrapolated energies (within 0.5 kcal mol-1), they
differ for 2.5 kcal mol-1 in our “exact” computations. This
discrepancy cannot be attributed to either the different force
field used in the “exact” computations (MM3 vs MM2), since
it persists (and even increases to 3.6 kcal mol-1) when MM2
parameters are used,24 or to the extrapolation procedure (which
seems to be sound) but are attributed instead to the cluster
sampling technique. In particular, we feel that the HD lattice,
which contains two different kinds of cages,25 despite being

(18) Note that, when an atom of the RM lies on a special position even its
intermolecular interaction energy must be weighted with its normalized
crystallographic site occupancy.

(19) For instance, OPEC by A. Gavezzotti.
(20) If there is cooperation, however, we must also take into account the

ES reorganization energy.
(21) Gavezzotti, A.; Filippini, G. InTheoretical Aspects and Computer

Modeling of the Molecular Solid State; Gavezzotti, A., Ed.; Wiley:
Chichester, 1997; p 61.

(22) Laqua, G.; Musso, H.; Boland, W.; Ahlrichs, R.J. Am. Chem. Soc.
1990, 112, 7391.

(23) More than 5000 within the radius of 16 Å. As a matter of fact, even
the CD and HD lattices have a slightly different number of atoms in
the IntraE because of some automatism of PACKMM which does
not takes the minimum cluster of atoms containing a sphere of the
given radius but only checks that such a sphere is really contained in
the IntraE. However, this has no consequences since the vdW
interaction energies have converged to theirs actual values (within 0.05
kcal mol-1) for that radius. The problem would be more serious if
Coulombic interactions were also considered (but this is not the case
for carbon lattices) since they converge much slower.

(24) Note that the relative instability of the HD lattice with respect to the
CD one is due to 1,4 interactions, which are however differently
parametrized in MM2 and MM3. Indeed, with MM3 the instability
arises from torsional terms while with MM2 it arises from 1,4 vdW
interactions.

(25) Namely, iceane- and bicyclo[2.2.2]octane-like cages, in a 1:1 ratio,
the former being almost unstrained while the latter heavily strained.

Es* ) Eintra + (1/2)Einter

∆Hs ) Es* - Eg

Es* ) Ew,intra+ (1/2)Einter
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assembled from topologically equivalent C atoms, was perhaps
sampled without taking into account the correct ratio (1:1)
between these differently strained cages, thus affecting the
extrapolation procedure with a systematic error.
Note that Laqua et al. have obtained their “optimal” lattice

parameters from the inner shell geometry of their clusters which,
for reasonably large clusters, is insensitive to surface effects,
extrapolation procedures and sampling techniques. Thus it is
not surprising that their “optimal” geometries were substantially
correct despite the errors in the extrapolated energies. In
particular, even if Laqua et al. have underestimated the strain
energy of the BC-8 lattice by ca. 10 kcal mol-1,26 they have
obtained an “optimal” geometry which is substantially identical
with ours.27

The above computations on carbon lattices probably have
little value from a theoretical viewpoint since “molecular” MM3
parameters were not thought for covalent 3D nets. Indeed, we
probably overestimate the relative energy (2.5 kcal mol-1) of
lonsdaleite (HD) with respect to diamond (CD), given that Fahy
and Louie,28 using plane-wave pseudopotentials with Hedin-
Lundquist exchange correlation, computed a much smaller value
(0.7 kcal mol-1, this value being only by chance similar to that
obtained within the “cluster” approach). However, indepen-
dently from their possible contribution to chemical physics of
carbon lattices, our computations clearly convey the information
that our approach to polymers (surfaces and nets) is faster and
easier to use than the more usual “cluster” methodology, since
it straightforwardly affords, without the need to extrapolate
results, geometries and energies which are unaffected by
“surface” effects.

Supramolecular Interactions. The major pitfall of any
AAPP approach is the assumption of spherically symmetric
nonbonded potentials about each atom. Indeed, there is an
abundance of evidence showing that intermolecular atom-atom
nonbonded interactions are highly directional or, according to
Bondi,29 that many atoms are “pear-shaped”. For instance, it
is well-known that the A-H‚‚‚B angle tends to be close to 180°
in intermolecular hydrogen bonds and that the approach of a
proton to a base B is preferentially along a lone pair direction.
More generally, for most donor‚‚‚acceptor intermolecular
interactions, the electron acceptors accept preferentially along
the extension of an (the) existingσ bond while electron donors
donate along their lone pair directions.30 These directional
intermolecular interactions could however be handled in our
MMAAPP approach by explicitely considering them in the
definition of the atom-atom connectivity. Depending on the
actual topology of these “new” bonds, the original molecular
crystal transforms either into a molecular crystal with a more
complex RM (like in most “dimeric” carboxylic acids) or into
a 1-3D polymer.31 These directional intermolecular interac-
tions obviously require to be parametrized for MM3 but this
task, even if achievable, is outside of our actual aims. However,
given that the number of directional intermolecular interactions
perRM is normally small, the CEs should be reasonably simple
and the pertinent steric energies are expected to be quickly
computed and easily interpretable.
Molecular Motion in ansa-Titanocenes. Edwards et al.

recently elucidated structures and dynamics of a family of
crystallineansa-metallocenes, [(C5H4)2C2Me4]TiX 2 (X ) F, Cl,
Br, I), by the joint application of solid-state NMR and single-
crystal X-ray diffraction.32 They showed that the solid-state

(26) Possibly for reasons analogous to those discussed above, but now the
correct sampling does not refer any more to cages (which are all
equivalent in BC-8) but to rings. Indeed, in the BC-8 structure there
are two differently strained kind of rings: one moderately unstrained,
a six-membered twist-boat, the other heavily strained, an eight-
membered chair with a very short next-nearest-neighbor contact.

(27) MM2 is substantially similar to MM3 whenever the geometrical aspects
alone are concerned.

(28) Fahy, S.; Louie, S. G.Phys. ReV. 1987, B36, 3373.

(29) Bondi, A.J. Phys. Chem.1964, 68, 441.
(30) Dunitz, J. D.The Crystal as a Supramolecular Entity. PerspectiVes

in Supramolecular Chemistry; Wiley: Chichester, 1996; Vol. 2, p 1.
(31) The recognition of these weak, directional, intermolecular forces has,

indeed, greatly contributed to the thought of crystals as supramolecular
entities.

(32) Edwards, A. J.; Burke, N. J.; Dobson, C. M.; Prout, K.; Heyes, S. J.
J. Am. Chem. Soc.1995, 117, 4637.

Figure 2. Fragments of the (a) cubic diamond, (b) hexagonal diamond and (c) BC-8 carbon lattices. Letters A, B, and C address different C-C
bond distances whose actual values are reported in Table 1.

Table 1. Comparison of Calculated Data for Carbon Lattices with Previous Works

structural parameters Af B C Estretchg Ebend Etors EvdW Es SEh

CDa a) 3.567b 1.545 0.24 0.00 3.20 0.96 4.40 0.00
HD a) 2.522;c) 4.119;z) 0.0625b 1.544 1.545 0.24 0.00 5.47 1.20 6.91 0.48
BC-8 a) 4.293;x) 0.1036c 1.54 1.54 2.18 0.15 10.75 8.35 7.71 26.96

a) 4.420;x) 0.0975d 1.60 1.49 2.34 2.46 8.07 8.23 4.89 23.65 11.23
a) 4.432;x) 0.0961e 1.608 1.475 2.363 3.21 7.53 8.23 4.55 23.52

aCD: Fd3hm 8b(1/8, 1/8, 1/8); HD: P63/mmc4f(1/3,2/3,z); BC-8: Ia3h 16c(x,x,x). bOwnby, P. D.; Yang, X.; Liu, J.J. Am. Ceram. Soc.1992, 75,
1876.c Johnston, R. L.; Hoffmann, R.J. Am. Chem. Soc.1989, 111, 810. dReference 22.eThis work. f C-C bond distancesA, B, andC (Å) are
defined in Figure 2.g All energy values are in kcal mol-1. h Strain energyper carbon atom, as reported in ref 22.
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dynamic processes detected for the Cl, Br, and I derivatives
are not the expected enantiomeric exchange process, which is
observed to be facile in solution (see Figure 3), but a 180°
reorientation about the pseudo-C2 axis, bisecting the X-Ti-X
interbond angle, combined with a small polytopal relaxation
about the metal center. However, it was impossible, with the
conventional AAPP approach,19 either to check if the enantio-
meric exchange process was really forbidden (because it implies
some internal molecular flexibility) or to “prove” the proposed
reaction path (given the lack of “real” cylindrical symmetry of
the complex rotating molecules). In the following we will show
that the MMAAPP approach allows for a deeper understanding
of the experimental results.
Our computations33 on the iodine derivative show that the

enantiomeric exchange process is indeed allowed even in the
solid phase, with a calculated enthalpy of activation of 9.5 kcal
mol-1, to be compared with a value of 4.8 kcal mol-1 in the
gas phase. In the crystal phase both theλ andδ conformers
are present in different enantiomeric sites (the crystals being
centrosymmetric) but oneach site, due to thelocally chiral
crystalline environment, theλ andδ conformers do not have
the same energy, and we compute a∆H of 2.9 kcal mol-1. This
difference, leading to an occupancy of only 0.7% for the minor
isomer at room temperature, is consistent with the observed
ordered X-ray structure.
The reorientation about the pseudo-C2 axis has been studied

using a “rotational driver” i.e. by applying a rotational driving
force (about the X-Ti-X bond angle bisector) to all the

atoms,34 and periodically relaxing the molecule to intermediate
conformations, by dropping the rotational force and constraining
the TiX2 moiety in its actual plane. The computed potential
energy profile and the molecular conformation in a few selected
points along the rotational path are reported in Figures 4 and 5,
respectively. The∆Hq value of 23 kcal mol-1, in good
agreement with the experimental value of 21 kcal mol-1, is
essentially determined by intermolecular interactions, while
intramolecular terms seem to be of minor importance. However,
the flexibility of the molecule is of extreme importance to the
mapping of the potential energy barrier; indeed, due to the lack
of C2 symmetry, if the molecule would have been rotated rigidly
the initial and final states would be different. Moreover, it is
only its flexibility which allows the molecule to fit into the
cavity during the rotational process thus lowering the computed
barrier.
To further check our approach we have also computed the

rotational barriers for the reorientation about the pseudo-C2 axis
of the fluorine and chlorine derivatives. For the fluorine
derivative the “rotational driver” method cannot follow the
whole path since the energy rises too much and the local
geometry about the metal atom becomes heavily distorted. This
is in good agreement with the observed lack of solid-state
dynamics.

(33) All the computations have been done employing the following
parameters: stretch Ti-DCp, k ) 1.529, r0 ) 2.00 Å; stretch
Ti-X, k ) 0.834,r0 ) 1.86, 2.24, and 2.74 Å for fluorine, chlorine,
and iodine, respectively; bend DCp-Ti-DCp, k ) 0.348,θ0 ) 120°;
bend DCp-Ti-X, k ) 0.278,θ0 ) 103°; bend X-Ti-X, k ) 1.320,
θ0 ) 99, 98, and 94° for fluorine, chlorine, and iodine, respectively;
bend Ti-DCp-CCp, k) 0.486; Cp bond order weakening constantkw
) 0.87. DCp and CCp refer to dummy centroid and carbon atoms of
the cyclopentadienyl ring, respectively; X refers to fluorine, chlorine,
or iodine atom. Units for the force constants: stretch mdyn Å-1, bend
mdyn Å rad-2. All the force constants have been taken from Doman,
T. N.; Hollis, T. K.; Bosnich, B.J. Am. Chem. Soc.1995, 117, 1352;
reference distances and angles have been optimized in order to
reproduce the observed solid-state molecular structures. Solid-state
computations have been done within a cutoff of 16 Å and employing
the following optimized cell constants, to maintain consistency with
MM3 van der Waals parameters:a ) 12.07 Å,b ) 8.52 Å, andc )
7.75 Å, R ) 108.9°, â ) 111.9°, and γ ) 91.2° for the fluorine
derivative (triclinic, P1h); a ) 13.22 Å, b ) 18.17 Å, andc )
14.37 Å,â ) 116.5° for the chlorine derivative (monoclinic,P21/a);
a) 24.70 Å andc) 14.37 Å for the iodine derivative (rhombohedral,
R3c).

(34) The rotational driving force applied to atomi have been computed
according toFi ∝ r i × n, wheren is the versor of the rotation axis
and r i is the vector passing through the atomi and perpendicular to
n.

Figure 3. A sketch of the enantiomeric exchange foransa-titanocenes lacking ofC2 symmetry. In solution, the process involves four conformations
δ′ a λ′ which, due to the facile rotation of the bridging ligand framework around the metal to ring centroid axis (δ′ a δ andλ′ a λ), can easily
interconvert leading to an averagedC2V molecular symmetry which explains the solution13C NMR spectra. In the solid state, due to the very
different steric demand ofδ′/λ′ with respect toδ/λ conformations, only theδ a λ enantiomeric exchange occurs (see text).

Figure 4. Potential energy profiles for the rotation of [(C5H4)2C2Me4]-
TiI 2 about its pseudo-2-fold axis. The full, dashed and dotted lines are
polynomial fits toEs, Einter, andEintra, respectively.τ is the dihedral
angle between the actual and the starting TiI2 planes.
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The chlorine derivative has two distinct molecules A (gen-
erating a layer of equal molecules atz) 0) and B (generating
a layer of equal molecules atz) 0.5) in the asymmetric unit.
Solid-state NMR suggests the mobility of one of this molecules
and the rigidity of the other. We compute for the two
independent molecules very different potential energy barriers:
23 and 35 kcal mol-1 for A and B, respectively. It is noteworthy
that this result allows us to unambiguously label the identity of
the dynamic molecule in the structure of [(C5H4)2C2Me4]TiCl2,
a goal which was impossible to reach on grounds of qualitative
packing considerations only.
Our MMAAPP approach allows for a better modeling, hence

a deeper insight, of the solid state dynamics of flexible
molecules. This eventually can afford a clearer interpretation
of joint solid-state NMR and diffraction experiments on
crystalline media. In this context it is worth noting that a
dynamic process can be inferred by diffraction methods only if
it leaves a track in the atomic displacement parameters (ADPs)
and/or gives rise to some disorder. However, since a diffraction
experiment maps (according to Boltzmann’s statistics) only the
bottom of the local minima of potential energy profile many
possible sources of misunderstanding are present. Indeed, as
previously shown for the solid-state dynamics of Fe3(CO)12,12

the presence of a soft vibrational mode (determining the ADPs
shape) cannot exclude the occurrence of a more energetic, but
still allowed, process along a different reaction path (not leaving
tracks on the ADPs). Analogously, when Boltzmann statistic
assigns a negligible population to a reaction “intermediate”, as
for the λ (or δ, depending on which site has been considered)
enantiomer of [(C5H4)2C2Me4]TiI 2, the failure to observe it
cannot be used as an argument for excluding the occurrence of
the dynamic process under scrutiny.

Conclusions

In this paper we have shown that it is possible, in a quite
general (and computationally easy) way, to minimize the steric
energy of a molecule, polymer, surface, or net within the field
of a fixed, or periodically updated, crystal lattice. The primary
outcomes of such computations are the “solid state” conforma-
tion of the molecule, its intramolecular steric energy, and its
interaction energy with the surrounding lattice. These computa-
tions are ideally suited for studying relative stabilities of different
polymorphs, plastic deformations of whole crystal lattices, and
molecular motions of flexible guest molecules in host crystal
lattices. The proposed approach can help in understanding solid-
state dynamics as obtained from MAS and CPMAS NMR
experiments, factors that control reactivity in crystal lattices,35

and crystals as supramolecular entities.
Presently, we cannot make ab initio predictions of possible

molecular crystal structures because we need the previous
knowledge of an initial AU (to be fed to PACKMM) and we
lack a general strategy to foreseeing suitable AUs (which are
the real outcome of an ab initio prediction). Moreover, we are
forced to start from reasonably good AUs which, using a
pertinent set of radii to recognize “bonds”, eventually afford
single crystals with a sound atomic connectivity.36 However,

(35) Zimmerman, H. E.; Zhu, Z.J. Am. Chem. Soc.1994, 116, 9757.
(36) This request is not as stringent as it could appear at a first sight. Indeed,

since anomalous contacts normally arises from atoms on the surface
of the molecule (mainly hydrogens), it is often enough to drop all the
H-H “bonds” from the connectivity table generated on the base of
covalent radii, to lower thecriteria for a well-behaved AU. Accord-
ingly, it is possible to instruct PACKMM to refuse (or to accept)
anomalously short (or long) contacts between selected atoms or atom
types, to deal with rough AUs (or with supramolecular contacts).

Figure 5. Molecular conformations along the reaction path described in Figure 4. (a)τ ) 0°, (b) τ ) 60°, (c) τ ) 100°, (d) τ ) 140°, (e)τ ) 180°.
I(1) is highlighted by partial shading.
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once one well-behaved AU (or a part of AU) has been found
or proposed, our MMAAPP approach becomes a powerful tool
for building “hypothetical” crystals with sterically reasonable
geometries (i.e. it becomes a powerful crystal builder), and this
capability can be exploited in the process of solving crystal
structures from partial diffraction data. Such as, in the
rationalization of the molecular disorder present in poorly
diffracting single crystals, in the interpretation of fiber diffraction
data or even in the ab initio crystal structure determination from
powder diffraction data.37 Noteworthy, these applications are
relatively free from the need of an extremely accurate force
field since, according to Gavezzotti and Filippini, while the
energy ordering of polymorphs depends on the force field, the
location of minima in the potential energy hypersurface does
not.38 Hence within the constraints of a given unit cell and/or
of a partial framework of atoms, only a few (if not one)
reasonable structural/conformational alternative are possible.
At last we would like to comment that our way to deal with

crystal is, from a computational point of view, superior to the
more usual cluster approach since (i) the burden of the whole
MM3 force field applies only to the RM (or RM∪ CE in the
case of polymers), which is far less complex than a cluster of
molecules; (ii) the computation of the vdW and Coulombic
interactions can be easily extended to large cutoff radii (15-
20 Å) at a moderate computational cost; and (iii) it straight-
forwardly affords, without the need to extrapolate results,
geometries and energies which are unaffected by “surface”
effects.
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Appendix

Transformations Relating Crystallographic to Orthonor-
mal Coordinates. Crystallographic fractional coordinates can
be orthonormalized to a Cartesian space in infinite ways.39 By
choosing, for example, theeyCartesian versor alongb, ez along
c*, andex perpendicular toey andez so as to complete a right-
handed reference frame, a given crystal vectorr can be
transformed into its corresponding Cartesian vectorr c (herein-
after a superscript “c” will indicate Cartesian space elements)
by means of the equation

where matrixD takes the form

Indicating with Oi and t i the rotational and translational
components (including lattice centering when required) of the
space group symmetry operatorSi, the symmetry related vector
r i can be expressed as

The same symmetry operation can be performed directly in
Cartesian space instead of transformingr i into its Cartesian
counterpartr ic. Indeed,

Remembering thatr ) D-1r c and substituting in the previous
equation,

Recognizing thatOi
c ) DOiD-1 andt ic ) Dt i, i.e. the symmetry

operator is now working in Cartesian space, one can write

Encoding of the Lattice Atoms. With reference to theorigin
unit cell (i.e. the cell havingx, y, z ∈ [0,1]), the symmetry
generation of atoms can be encoded within a 4-byte long integer
using the following algorithm:

where NOP is the symmetry operator number (less or equal to
48) referring to PACKMM internal list for the actual space
group; NAT is the current atom number of the RM (less or
equal to 2048); and ISHX is the number of translational steps
along [100] (comprising symmetry and lattice translations)
relative to the minimum translation observed along this crystal-
lographic direction (ISHX is scaled to fit the interval [0, 31]
with a maximum of 15 steps in the negative or positive
direction). The same holds for ISHY and ISHZ in the [010]
and [001] crystal directions, respectively.
Using the reverse decoding procedure MM3 is thus able to

quickly read in all information needed to build the SM’s from
the RM whenever requested by the energy minimization process.

IC9713339
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r c ) Dr

D ) [a sinγ 0 [c (cosâ - cosR cosγ)]/sin γ
a cosγ b ccosR
0 0 [c(1- cos2 R - cos2 â - cos2 γ +

2 cosR cosâ cosγ)1/2]/sin γ
]

r i ) Sir ) Oir + t i

r i
c ) Dr i ) D(Oir + t i)

r i
c ) D(OiD

-1r c + t i) ) (DOiD
-1)r c + Dt i

r i
c ) Oi

cr c + t i
c

ICODE) NAT × 221 + ISHX × 216 + ISHY × 211 +
ISHZ× 26 + NOP
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