NH₄VOPO₄·H₂O, a New One-Dimensional Ammonium Vanadium(IV) Phosphate Hydrate

Zsolt Bircsk and William T. A. Harrison*

Department of Chemistry, University of Western Australia, Nedlands, WA 6907, Australia

Received November 21, 1997

Introduction

Vanadium phosphates (VPOs) and related phases are of significant current interest as potential catalysts, ion exchangers, and molecular sieves¹⁻⁴ as well as in bioinorganic chemistry.⁵ A number of ammonium VPOs have been structurally characterized, including α -NH₄V^{III}(HPO₄)₂,⁶ β -NH₄V^{III}(HPO₄)₂,⁷ NH₄V^{IV}OPO₄,⁸ α -NH₄V^{VO}2HPO₄,⁹ β -NH₄V^{VO}2HPO₄,¹⁰ NH₄-V^{III}P₂O₇,¹¹ (NH₄)₂V^{IV}OP₂O₇,¹¹ α -(NH₄)₂(V^{IV}O)₃(P₂O₇)₂,¹¹ and the novel peroxo-phase (NH₄)₅(V^VO)₂(O₂)₄PO₄•H₂O.¹² In this note, we report the synthesis and characterization of NH₄-VOPO₄•H₂O, a new ammonium vanadium(IV) phosphate hydrate with strong one-dimensional character.

Experimental Section

Synthesis. NH₄VOPO₄•H₂O was prepared from a mixture of VCl₃ (0.22 g), ZnO (0.23 g), 85% H₃PO₄ (0.64 g), and 28% NH₄OH solution (5.11 g) (starting molar ratio N:V:P = 3:1:4). The components were mixed, sealed in a 23-mL Parr Teflon-lined hydrothermal bomb, and heated to 180 °C for 96 h. After slow cooling, the bomb was opened to reveal aqua blue rods of NH₄VOPO₄•H₂O and a white solid, each in \sim 50% yield. The white product, presumably a zinc phosphate, could not be identified on the basis of X-ray powder diffraction measurements.

Characterization. The infrared spectrum of NH₄VOPO₄•H₂O (KBr disk method) is shown in Figure 1.¹³ TGA (Rigaku Thermoflex instrument, heating rate: 5 °C/min under N₂) showed a 17.5% weight loss over a broad range (160–420 °C) possibly corresponding to loss of NH₃ and H₂O (calc 17.7%). X-ray powder data¹⁴ for well-ground, pale blue NH₄VOPO₄•H₂O [Siemens D5000 automated powder diffractometer, Cu K α (radiation, $\lambda = 1.54178$ Å, T = 25(2) °C] are presented in Table 1. Magnetic susceptibility data were collected on a Quantum Design MPMS-7 SQUID magnetometer over the temper-

* Corresponding author. E-mail: wtah@chem.uwa.edu.au.

- Centi, G.; Trifiro, F.; Ebner, J. R.; Franchetti, V. M. Chem. Rev. 1988, 88, 55.
- (2) Clearfield, A. Chem. Rev. 1988, 88, 125.
- (3) Jacobson, A. J.; Johnson, J. W.; Brody, J. F.; Scanlon, J. C.; Lewandowski, J. T. Inorg. Chem. 1985, 24, 1782.
- (4) Khan, M. I.; Meyer, L. M.; Haushalter, R. C.; Schweizer, A. L.; Zubieta, J.; Dye, J. L. Chem. Mater. 1996, 8, 43.
- (5) Toney, J. H.; Brock, C. P.; Marks, T. J. J. Am. Chem. Soc. 1986, 108, 7263.
- (6) Bircsak, Z.; Harrison, W. T. A. Acta Crystallogr. 1998, C54, 1195.
- (7) Haushalter, R. C.; Wang, Z.; Thompson, M. E.; Zubieta, J. *Inorg. Chim. Acta* **1995**, *232*, 83.
- (8) Haushalter, R. C.; Chen, Q.; Soghomonian, V.; Zubieta, J.; O'Connor, C. J. Solid State Chem. 1994, 108, 128.
- (9) Amorós, P.; Le Bail, A. J. Solid State Chem. 1992, 97, 283.
- (10) Amorós, P.; Beltran-Porter, D.; Le Bail, A.; Férey, G.; Villeneuve,
- G. Eur. J. Solid State Inorg. Chem. 1988, 25, 599.
 (11) Trommer, J.; Worzala, H.; Rabe, S.; Schneider, M. J. Solid State Chem. 1998, 136, 181.
- (12) Schwendt, P.; Tyrselova, J.; Pavelcik, F. *Inorg. Chem.* **1995**, *34*, 1964.
- (13) Infrared data (cm⁻¹): 970 (vs), 1380 (m), 1490 (m), 1680 (m), 2800–3500 (b, s). This last region is attributable to N-H and bound H₂O modes.
- (14) Refined cell parameters: a = 6.776(2) Å, b = 4.913(2) Å, c = 8.452(3), and $\beta = 91.05(2)^{\circ}$ (V = 281.3 Å³), based on peak positions established relative to the Cu $K\alpha_1$ wavelength ($\lambda = 1.540$ 56 Å).

Figure 1. Infrared spectrum of NH₄VOPO₄·H₂O.

Table 1. Powder X-ray Diffraction Data for NH₄VOPO₄•H₂O

h	k	l	$d_{\rm obs}({ m \AA})$	$d_{\text{calc}}(\text{\AA})$	Δd	$I_{\rm rel}$
0	0	1	8.446	8.450	-0.004	12
1	0	0	6.769	6.775	-0.006	100
1	0	-1	5.330	5.334	-0.004	10
1	0	1	5.236	5.239	-0.003	8
0	0	2	4.228	4.225	0.003	10
1	1	0	3.981	3.977	0.003	12
1	0	-2	3.616	3.615	0.001	21
2	0	0	3.387	3.387	0.000	5
0	1	2	3.202	3.203	-0.002	2
1	1	-2	2.911	2.912	0.000	3
1	1	2	2.882	2.881	0.002	10
2	1	0	2.790	2.789	0.001	10
2	1	-1	2.658	2.660	-0.002	3
2	1	1	2.636	2.636	0.000	4
0	2	0	2.457	2.457	0.001	2
2	1	-2	2.345	2.344	0.001	3
1	1	3	2.287	2.287	0.000	1
3	0	-1	2.192	2.192	0.001	2
3	0	1	2.172	2.172	0.000	3
3	1	0	2.052	2.052	0.000	1
0	1	4	1.941	1.941	0.001	2
3	1	-2	1.858	1.858	0.000	2
3	0	3	1.746	1.746	0.000	2
4	0	0	1.694	1.694	0.000	4
4	0	1	1.655	1.655	0.000	2
0	2	4	1.601	1.602	-0.001	1

ature range 5–300 K, using an applied field of 1.2 kG. NH_4VOPO_4 · H_2O displays Curie–Weiss paramagnetism between 4 and 300 K, with no evidence for any cooperative magnetic phenomena.

Structure Determination. Single-crystal diffraction [Siemens P4 diffractometer, Mo K α radiation, $\lambda = 0.710$ 73 Å, T = 25(2) °C] was carried out on an aqua blue rod of NH₄VOPO₄·H₂O. After data reduction [3297 measured intensities merged to 1649 unique observations, with 1590 of these with $I \ge 3\sigma(I)$ considered observed], the systematic absence condition (0*k*0, *k*) indicated space group *P*2₁ or *P*2₁/*m*. The structure was solved in space group *P*2₁ (No. 4) by direct methods¹⁵ and refined to convergence.¹⁶ No model could be established in *P*2₁/*m*. Five H atoms were located from Fourier difference maps, and one ammonium H atom was placed by geometrical means. H atoms were refined by riding on their respective N or O atoms. Crystallographic data are summarized in Table 2.

Results and Discussion

A fundamental step in the formation of $NH_4VOPO_4 \cdot H_2O$ is the oxidation of vanadium(III) to vanadium(IV) during the

- (15) Sheldrick, G. M. SHELXS86 User Guide; University of Göttingen: Göttingen, Germany, 1985.
- (16) Watkin, D. J.; Carruthers, J. R.; Betteridge, P. W. CRYSTALS User Guide; Chemical Crystallography Laboratory, University of Oxford: Oxford, U.K., 1997.

S0020-1669(97)01481-X CCC: \$15.00 © 1998 American Chemical Society Published on Web 09/18/1998

Table 2. Crystallographic Parameters for NH₄VOPO₄·H₂O

formula VPO ₆ NH ₆	fw 197.97
cryst syst monoclinic	space group $P2_1$ (No. 4)
a = 6.7756(5) Å	b = 4.9147(7) Å
c = 8.4539(8) Å	$\beta = 91.092(7)^{\circ}$
$V = 281.46(5) \text{ Å}^3$	Z = 2
$\lambda = 0.710~73$ Å	$\rho_{\rm calc} = 2.34 \text{ g/cm}^3$
$\mu = 20.1 \text{ cm}^{-1}$	$R(F)^a = 0.0305$
$R_{\rm w}(F)^b = 0.0396$	

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. \ {}^{b}R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum w|F_{o}|^{2}]^{1/2}.$

Table 3. Atomic Positional/Thermal Parameters for $NH_4VOPO_4 \cdot H_2O$

atom	x	У	z	$U_{\rm eq}$ (Å ²)
N(1)	0.1765(4)	0.1741(5)	0.5110(3)	0.0181
V(1)	0.64041(7)	0.1106(1)	0.84025(5)	0.0115
P(1)	0.6332(1)	0.1585(2)	1.22278(8)	0.0100
O(1)	0.6264(3)	0.2792(4)	1.0517(2)	0.0162
O(2)	0.4191(3)	0.3559(4)	0.7777(2)	0.0156
O(3)	0.8331(4)	-0.1980(5)	0.9378(3)	0.0282
O(4)	0.5275(3)	-0.1698(4)	0.6947(2)	0.0150
O(5)	0.8167(3)	0.2486(5)	0.7475(3)	0.0225
O(6)	0.8339(3)	0.1950(4)	1.3015(2)	0.0165

hydrothermal reaction. Similar oxidation reactions¹⁷ have been ascribed to the O₂ present in the bomb, both in the void space and in solution. Reactions starting from vanadium(IV)-containing precursors were not successful in preparing NH₄VOPO₄. H₂O, resulting in VO(HPO₄)·¹/₂H₂O,¹⁸ NH₄VOPO₄,⁸ or unidentified phases. The presence of zinc oxide is required to form $NH_4VOPO_4 \cdot H_2O$. The role of this additive is obscure at present, although it has precedence in the hydrothermal syntheses of $Ba_2V^{IV}O(PO_4)_2 \cdot H_2O^{19}$ and $(CN_3H_6)_2(V^VO_2)_3(PO_4)(HPO_4)^{20}$ It may act to regulate pH by hydrolysis¹⁷ or control the quantity of phosphate anions in solution. A similar role¹⁷ has been suggested for "structure-directing" organic bases which are not incorporated into the final product.²¹ The synthesis reported here shares the problems of low yields/mixed products which plague many hydrothermal reactions,²² although a full analysis of the reacting species¹⁷ allows a much more systematic approach in this area of synthetic chemistry.

Atomic positional and thermal parameters for NH₄VOPO₄· H₂O are listed in Table 3. Pure vanadium(IV) character is strongly supported by its color and by crystallochemical considerations. The vanadium cation adopts a distorted square pyramidal coordination with respect to its O atom neighbors. Other vanadium(IV) phosphates show a similar VO₅ geometry,²³ although distorted octahedral coordination is more common.²⁴ In NH₄VOPO₄·H₂O, one of the basal V–O vertexes is to a water molecule, with this bond showing a slight lengthening, compared to the other three basal V–O–P bridges formed by this unit. The axial V=O vanadyl link is typically short, indicating strong multiple-bond character.²⁴ A bond valence sum (BVS) calcula-

- (17) (a) Roca, M.; Marcos, M. D.; Amorós, P.; Beltrán-Porter, A.; Edwards, A. J.; Beltrán-Porter, D. *Inorg. Chem.* **1996**, *35*, 5613. (b) Roca, M.; Marcos, M. D.; Amorós, P.; Alamo, J.; Beltrán-Porter, A.; Beltrán-Porter, D. *Inorg. Chem.* **1997**, *36*, 3414.
- (18) Torardi, C. C.; Calabrese, J. C. Inorg. Chem. 1984, 23, 1308.
- (19) Harrison, W. T. A.; Lim, S. C.; Vaughey, J. T.; Jacobson, A. J.; Goshorn, D. P.; Johnson, J. W. J. Solid State Chem. 1994, 113, 444.
- (20) Bircsak, Z.; Harrison, W. T. A. *Inorg. Chem.* 1998, *37*, 3204.
 (21) Zhang, Y.; Clearfield, A.; Haushalter, R. C. J. Solid State Chem. 1995,
- *117*, 157.
- (22) Zubieta, J. Comments Inorg. Chem. 1994, 16, 153.
- (23) Haushalter, R. C.; Soghomonian, V.; Chen, Q.; Zubieta, J. J. Solid State Chem. 1993, 105, 572.
- (24) Le Bail, A.; Férey, G.; Amorós, P.; Beltran-Porter, D.; Villeneuve, G. J. Solid State Chem. 1989, 79, 169.

Figure 2. Details of the [010] chain in $NH_4VOPO_4 \cdot H_2O$ showing the intrachain H bond as a thin line (50% thermal ellipsoids for the non-hydrogen atoms). Selected geometrical data (Å; deg) with esd's in parentheses: V(1)-O(1) 1.974(2), V(1)-O(2) 1.988(2), V(1)-O(3) 2.155(3), V(1)-O(4) 1.990(2), V(1)-O(5) 1.593(2), P(1)-O(1) 1.563(2), P(1)-O(2) 1.529(2), P(1)-O(4) 1.553(2), P(1)-O(6) 1.514(2); V(1)-O(1)-P(1) 132.7(1), V(1)-O(2)-P(1) 139.9(1), V(1)-O(4)-P(1) 111.3(1).

Figure 3. View down [010] of the NH_4VOPO_4 · H_2O structure, with hydrogen bonds indicated by dotted lines.

tion²⁵ for V yielded a value of 3.79 (expected 4.00). The phosphate group is a typical tetrahedron, with $d_{av}(P-O) = 1.540$ Å, and BVS(P) = 4.94 (expected 5.00). Three P-O-V links are formed by this group ($\theta_{av} = 128^\circ$). The terminal P-O(6) vertex is short [1.514(2) Å], indicating that this O atom is not protonated.

The polyhedral connectivity in NH₄VOPO₄•H₂O results in infinite anionic chains of stoichiometry [VOPO₄•H₂O]⁻ which propagate along the polar [010] direction. These chains (Figure 2) are built up from four rings (four nodal V/P atoms, or eight atoms in total) of alternating VO₅ and PO₄ moieties. These four rings are fused edgeways into infinite ladderlike chains. One of the water molecule H atoms is involved in an intrachain hydrogen bond, as V-O(3)-H(1)···O(1) [d(H···O) = 2.12 Å]. The [VOPO₄•H₂O]⁻ chains and NH₄⁺ cations form a layerlike arrangement in the *c* direction (Figure 3). The ammonium cation forms four N-H···O hydrogen bonds. Three of these H bonds are to terminal P-O(6) acceptors, and one is to a V-O(4)-P bridge.

⁽²⁵⁾ Brown, I. D. J. Appl. Crystallogr. 1996, 29, 479.

Notes

NH₄VOPO₄•H₂O bears essentially no relation to the burgundy red NH₄V^{IV}OPO₄,⁸ which consists of a three-dimensional network of VO₆ and PO₄ groups, connected via V–O–V and V–O–P bonds. NH₄VOPO₄•H₂O shows some resemblance to V^{IV}O(HPO₄)•4H₂O.²⁶ In this latter phase, ladderlike, edgeshared four-ring chains akin to those in NH₄VOPO₄•H₂O are formed from VO₄(OH₂)₂ octahedra and HPO₄ tetrahedra as the polyhedral building units. **Acknowledgment.** We thank the Australian Research Council for financial support.

Supporting Information Available: An X-ray crystallographic file, in CIF format, for NH_4VOPO_4 · H_2O is available on the Internet only. Access information is given on any current masthead page.

IC971481Z

⁽²⁶⁾ Leonowicz, M. E.; Johnson, J. W.; Brody, J. F.; Shannon, H. F.; Newsam, J. M. J. Solid State Chem. 1985, 56, 370.