⁵¹V Chemical Shielding and Quadrupole Coupling in Ortho- and Metavanadates from ⁵¹V MAS NMR Spectroscopy

Jørgen Skibsted,[†] Claus J. H. Jacobsen,[‡] and Hans J. Jakobsen^{*,†}

Instrument Centre for Solid-State NMR Spectroscopy, Department of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark, and Haldor Topsøe Research Laboratories, DK-2800 Lyngby, Denmark

Received December 2, 1997

The combined effect from the ⁵¹V quadrupole coupling and chemical shielding anisotropy (CSA) has been characterized for five orthovanadates (Mg₃(VO₄)₂, Zn₃(VO₄)₂, BiVO₄, TaVO₅, NbVO₅) and two metavanadates (RbVO₃ and CsVO₃) employing ⁵¹V magic-angle spinning (MAS) NMR of the central and satellite transitions. Furthermore, five metavanadates studied earlier (MVO₃ where M = Li, Na, NH₄, Tl, K) have been reinvestigated using rotor-stabilized MAS NMR, which improves the reliability of the spinning sideband (ssb) intensities. The complete manifolds of ssbs from all seven single-quantum transitions, observed in the MAS NMR spectra, have been analyzed using least-squares fitting and numerical error analysis. The optimized data demonstrate that for the metavanadates the magnitudes of the quadrupole and shielding anisotropy tensors (i.e., C_Q , η_Q , δ_σ , η_σ) and of the Euler angle, which relates the principal element of the two tensors, can be determined with high precision. Somewhat larger error limits are observed for the two other Euler angles. The orthovanadates generally possess small shielding anisotropies which lead to a reduced precision of the CSA asymmetry parameter (η_σ). Relationships between the ⁵¹V NMR data and structural parameters, crystal symmetries, and earlier reported correlations are discussed. Furthermore, linear correlations between the experimental principal elements of the ⁵¹V quadrupole coupling tensors and estimated electric-field gradient tensor elements from point-monopole calculations are reported for both the ortho- and metavanadates.

Introduction

Solid-state NMR spectroscopy represents a valuable, often unique, technique in studies of catalytic support materials, surfaces, impregnated ions on these materials, and absorbed species on heterogeneous systems employing a range of different NMR nuclei (e.g. ¹H, ¹³C, ²⁷Al, ²⁹Si, ³¹P, ⁵¹V, and ⁹⁵Mo) as structural probes.^{1,2} As opposed to standard X-ray diffraction methods, solid-state NMR experiments provide structural information on the local environments of the NMR nuclei, which make the techniques extremely useful in characterizing complex catalytic systems where long-range order is absent. Recent years have witnessed an increasing interest in the use of ⁵¹V NMR methods for studies of vanadates exhibiting catalytical properties^{3–8} and of supported vanadium oxide catalysts.^{7–14} Generally, these investigations aim at retrieving information on the

- [†] University of Aarhus.
- [‡] Haldor Topsøe Research Laboratories.
- (1) Duncan, T. M.; Dybowski, C. R. Surf. Sci. Rep. 1981, 1, 157.
- (2) NMR Techniques in Catalysis; Bell, A. T., Pines, A., Eds.; Marcel
- Dekker: New York, 1994. (3) Hardcastle, F. D.; Wachs I. E.; Eckert, H.; Jefferson, D. A. J. Solid State Chem. **1991**, 90, 194.
- (4) Davis, J.; Tinet, D.; Fripiat, J. J.; Amarilla, J. M.; Casal, B.; Ruiz-Hitzky, E. J. Mater. Res. 1991, 6, 393.
- (5) Crans, D. C.; Felty, R. A.; Chen, H.; Eckert, H.; Das, N. Inorg. Chem. 1994, 33, 2427.
- (6) Luan, Z.; Xu, J.; Klinowski, J.; Kevan, L. J. Phys. Chem. 1996, 100, 19595.
- (7) Eckert, H.; Wachs I. E. J. Phys. Chem. 1989, 93, 6796.
- (8) Lapina, O. B.; Mastikhin, V. M.; Shubin, A. A.; Krasilnikov, V. N.;
- Zamaraev, K. I. Prog. Nucl. Magn. Reson. Spectrosc. 1992, 24, 457.
 (9) Taouk, B.; Guelton, M.; Grimblot, J.; Bonnelle, J. P. J. Phys. Chem. 1988, 92, 6700.

vanadium environments from the isotropic ⁵¹V chemical shifts (δ_{iso}) and/or the principal elements of the CSA tensors $(\delta_{xx}, \delta_{yy})$, and δ_{zz}). These parameters have been determined from either static-powder or magic-angle spinning (MAS) ⁵¹V ($I = \frac{7}{2}$) NMR spectra of the central ($m = \frac{1}{2} \Leftrightarrow m = -\frac{1}{2}$) transition, utilizing the experimental fact that this transition is usually dominated by the CSA interaction at high magnetic fields.

Earlier we have shown that enhanced information on the local environments of the ⁵¹V nuclei can be obtained from ⁵¹V MAS NMR spectra by determination of the combined effect of the ⁵¹V quadrupole coupling and CSA interactions from the complete manifold of spinning sidebands (ssbs) observed for the central and satellite transitions.^{15,16} In addition to the magnitudes for the two interactions, i.e. the quadrupole coupling (C_Q and η_Q) and CSA (δ_{σ} and η_{σ}) parameters, the ssb intensities of the MAS NMR spectra also reflect the relative orientation of the quadrupole coupling and CSA tensors (i.e. the Euler angles ψ , χ , ξ). In certain cases these Euler angles may provide information about the orientation for some of the tensor components within the crystal structure. The first observation of noncoincident quadrupole coupling and CSA tensors was

- (10) Le Coustumer, L. R.; Taouk, B.; Le Meur, M.; Payen, E.; Guelton, M.; Grimblot, J. J. Phys. Chem. 1988, 92, 1230.
- (11) Chary, K. V. R.; Rao, V. V.; Mastikhin, V. M. J. Chem. Soc., Chem. Commun. 1989, 202.
- (12) Das, N.; Eckert, H.; Hu, H.; Wachs, I. E.; Walzer, J. F.; Feher, F. J. J. Phys. Chem. 1993, 97, 8240.
- (13) Chary, K. V. R.; Kishan, G. J. Phys. Chem. 1995, 99, 14424.
- (14) Mastikhin, V. M.; Terskikh, V. V.; Lapina, O. B.; Filimonova, S. V.; Seidl, M.; Knözinger, H. Solid State Nucl. Magn. Reson. 1995, 4, 369.
- (15) Skibsted, J.; Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J. Chem. Phys. Lett. 1992, 188, 405.
- (16) Skibsted, J.; Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J. J. Am. Chem. Soc. 1993, 115, 5, 7351.

S0020-1669(97)01503-6 CCC: \$15.00 © 1998 American Chemical Society Published on Web 05/21/1998

^{*} To whom correspondence should be addressed. Phone: +45 8942 3842. Fax: +45 8616 6199. E-mail: hja@kemi.aau.dk.

reported in a ⁵¹V single-crystal NMR study of V₂O₅.¹⁷ The combined effect of the two ⁵¹V tensor interactions has also been investigated by ⁵¹V static-powder NMR for V₂O₅^{8,18} and some metavanadates.¹⁹ In the latter study, however, coincidence of the principal axis systems for the two tensors was assumed.¹⁹ Most recently, ⁵¹V off-MAS NMR has been used to describe the two tensor interactions for NH_4VO_3 and a vanadium nitrilotriacetate complex.²⁰ We also note that accurate determination of the isotropic chemical shift requires a preknowledge of quadrupole coupling parameters (or at least the product C_0 - $(1 + \eta_0^2)^{1/2}$), since the second-order quadrupolar shift of the central transition may result in nonnegligible low-frequency shifts of the resonances (e.g. shifts up ca. 6 ppm for ⁵¹V at 9.4 T have been observed¹⁶). Although this fact has been ignored in several ⁵¹V NMR studies, the second-order quadrupolarinduced shift should be considered when the isotropic chemical shifts are used quantitatively in correlations with structural parameters.

This work reports the determination of the magnitudes and relative orientations of ⁵¹V quadrupole coupling and CSA tensors by MAS NMR for a series of orthovanadates (Mg₃(VO₄)₂, Zn₃-(VO₄)₂, BiVO₄, NbVO₅, TaVO₅) and for the metavanadates RbVO₃ and CsVO₃. The latter two vanadates belong to the isostructural series of metavanadates MVO₃, where M = K, NH₄, Tl, Rb, Cs, and refined ⁵¹V NMR data for the other members of this series (MVO₃, M = K, NH₄, Tl) studied earlier¹⁶ and for LiVO₃ and α -NaVO₃ are also reported.

A preknowledge of accurate parameters for the ⁵¹V quadrupole and CSA tensors in different types of vanadium species is important for unambiguously characterizing specific vanadium environments in vanadates and in supported vanadium oxide catalysts using ⁵¹V NMR methods. Furthermore, improved information about the local electronic ⁵¹V environments in these materials may be obtained, when relationships between NMR data and structural parameters (e.g. coordination states, polymerization degrees, electronegativities, bond angles and lengths) are established. For vanadates with V5+ in tetrahedral coordination Eckert and Wachs7 have shown that the 51V CSA increases with increasing degree of polymerization for ortho-, pyro-, and metavanadates. Moreover, Hayakawa et al.^{21,22} have suggested that the state of coordination and degree of polymerization for VO_n polyhedra can be predicted on basis of the CSA parameters $(\delta_{\sigma} \text{ and } \eta_{\sigma})$. Thus, these authors reported correlations between δ_{iso} and the average V–O bond length²¹ and between δ_{iso} and the electronegativity of the metal ion adjacent to the VO₄ tetrahedron.²² The present work also includes a reinvestigation of these and related correlations^{8,21,22} using the ⁵¹V data determined for the ortho- and metavanadates in this work. Furthermore, relationships between ⁵¹V quadrupole coupling parameters and structural data, reported from X-ray diffraction analysis, are investigated using point-monopole calculations which model the electronic structure at the nuclear site.

Experimental Section

NMR Measurements. Solid-state ⁵¹V MAS NMR experiments were performed at 105.2 MHz (9.4 T) and 131.5 MHz (11.7 T) on Varian UNITY-400 and UNITY-500 spectrometers using home-built MAS

(17) Gornostansky, S. D.; Stager, C. V. J. Chem. Phys. 1967, 46, 4959.

- (19) Baugher, J. F.; Taylor, P. C.; Oja, T.; Bray, J. P. J. Chem. Phys. 1969, 50, 4914.
- (20) Hayashi, S. Magn. Reson. Chem. 1996, 34, 791.
- (21) Hayakawa, S.; Yoko, T.; Sakka, S. J. Solid State Chem. **1994**, 112, 329.
- (22) Hayakawa, S.; Yoko, T.; Sakka, S. Bull. Chem. Soc. Jpn. 1993, 66, 3393.

probes²³ for 7 mm o.d. ceramic rotors allowing spinning speeds in the range 0.5–10 kHz with a stability of ±5 Hz to be employed. Improved stability (±1 Hz) of the spinning speed was achieved using a modified Varian Assoc. rotor-speed controller as described elsewhere.²⁴ All experiments were performed using exact magic-angle setting, spectral widths of 0.5–2.0 MHz, single-pulse excitation with a pulse width of 0.5–1.0 μ s (for $\gamma H_1/2\pi \approx 50$ kHz), and a relaxation delay of 1 s. Baseline distortions were suppressed by linear prediction of the first few (5 to 15) data points of the FID followed by baseline correction using the routine of the Varian VNMR software. Isotropic chemical shifts (ppm) are reported relative to neat VOCl₃ using an external aqueous solution of 0.16 M NaVO₃ ($\delta_{iso} = -574.38$ ppm)¹⁶ as secondary reference. However, for the ⁵¹V MAS NMR spectra shown in the figures, the kHz scale is given relative to the isotropic peak in order to appreciate the asymmetry of the ssb manifolds.

Simulation Software. Simulations, least-squares fittings, and error analyses of the experimental MAS NMR spectra were performed on the SUN Sparc 10/51 workstation of the UNITY-400 spectrometer using the solid-state NMR software package STARS (SpecTrum Analysis of Rotating Solids) developed in our laboratory^{15,16,24-26} and incorporated into the Varian VNMR software. The parameters characterizing the anisotropic parts and the relative orientation of the quadrupole coupling and CSA tensors (i.e. C_Q , η_Q , δ_σ , η_σ , ψ , χ , ξ) are obtained from least-squares optimizations of simulated to integrated ssb intensities for all seven ⁵¹V single-quantum transitions observed in the experimental MAS spectra. The simulation program calculates the contributions from the first- and second-order quadrupolar and firstorder CSA interactions in the secular approximation. However, for the actual spin systems (e.g. 51 V at 9.4 T) we find that the contribution from the second-order quadrupolar interaction can be neglected in the calculations used for optimizations to integrated ssb intensities. The effect from nonuniform detection (i.e. the quality factor Q of the probe circuitry)²⁵ has been included in the simulations while the intensity distortions caused by nonideal excitation²⁵ are negligible for the spin systems considered here, when small radio frequency pulse widths and strong radio frequency field strengths are employed. The quadrupole coupling and CSA parameters are given by

$$C_{\rm Q} = eQV_{zz}, \quad \eta_{\rm Q} = (V_{yy} - V_{xx})/V_{zz}, \quad \delta_{\sigma} = \delta_{\rm iso} - \delta_{zz}, \\ \eta_{\sigma} = (\delta_{xx} - \delta_{yy})/\delta_{\sigma}$$
(1)

where $\delta_{iso} = \frac{1}{3}(\delta_{xx} + \delta_{yy} + \delta_{zz})$ and the principal elements of the CSA (δ) and electric field-gradient (V) tensors are defined using the convention²⁷ $|\lambda_{zz} - \frac{1}{3} \operatorname{Tr}(\lambda)| \ge |\lambda_{xx} - \frac{1}{3} \operatorname{Tr}(\lambda)| \ge |\lambda_{yy} - \frac{1}{3} \operatorname{Tr}(\lambda)|$ for λ $=\delta$, V. The Euler angles (ψ , χ , ξ), relating the principal axis system of the quadrupole coupling and CSA tensors, correspond to positive rotations around the z axis (ψ), the new y axis (χ), and the final z axis (ξ). ψ , χ , and ξ are given in the reduced ranges $0 \le \psi \le \pi$ and $0 \le$ $\chi, \xi \leq \pi/2$, caused by the symmetry of the first-order Hamiltonians for the quadrupole and CSA interactions and by the powder averaging of these expressions over all crystallite orientations. Expressions for the orientations that cannot be distinguished are given elsewhere.¹⁶ The error limits for the optimized NMR parameters have been obtained by the method for numerical error analysis described in ref (24), which calculates the 95% confidence interval for a parameter from the curvature of a one-dimensional projection of the χ^2 surface in the direction of the parameter.

Materials. In all syntheses of vanadates reagents of analytical purity grade were employed without further purification. The basic structure and purity of all samples were checked by powder X-ray diffraction using the JCPDS diffraction files as reference.

- (23) Jakobsen, H. J.; Daugaard, P.; Langer, V. J. Magn. Reson. 1988, 76, 162; U.S. Patent 4,739,270, April 19, 1988.
- (24) Skibsted, J.; Vosegaard, T.; Bildsøe, H.; Jakobsen, H. J. J. Phys. Chem. 1996, 100, 14872.
- (25) Skibsted, J.; Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J. J. Magn. Reson. 1991, 95, 88.
- (26) Vosegaard, T.; Skibsted, J.; Bildsøe, H.; Jakobsen, H. J. J. Phys. Chem. 1995, 99, 10731.
- (27) Spiess, H. W. In NMR Basic Principles and Progress; Diehl, P., Fluck, E., Kosfeld, E., Eds.; Springer: Berlin, 1978; Vol. 15.

⁽¹⁸⁾ France, P. W. J. Magn. Reson. 1991, 92, 30.

 $Mg_3(VO_4)_2$. A 5.385 g (21 mmol) amount of magnesium nitrate hexahydrate (Mg(NO₃)₂·6H₂O) was mixed with 1.273 g (7 mmol) of V₂O₅ in a platinum crucible. A 5 mL amount of concentrated nitric acid was added, and the suspension was stirred for 1 h and subsequently dried at 110 °C for 24 h. The resulting powder was calcined at 800 °C for 3 days.

Zn₃(VO₄)₂. A 6.247 g (21 mmol) amount of zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O) was mixed with 1.276 g (7 mmol) of V₂O₅ in a platinum crucible. A 5 mL aliquot of concentrated nitric acid was added, and the suspension was stirred for 1 h and dried at 110 °C for 24 h. The yellowish powder was calcined at 600 °C for 5 days. ⁵¹V MAS NMR showed that the sample contained a mixture of Zn₃(VO₄)₂ and α -Zn₂V₂O₇ in a molar ratio of ca. 1.0:0.5 (vide infra).

BiVO₄. A 3.881 g (8.0 mmol) amount of bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O) was mixed with 0.728 g (4.0 mmol) of V₂O₅ in a platinum crucible. A 5 mL aliquot of concentrated nitric acid was added, and the suspension was stirred for 1 h and subsequently dried at 110 °C for 24 h. The orange powder was calcined at 800 °C for 3 days.

NbVO₅. The preparation of NbVO₅ was based on a modification of the sol–gel synthesis developed by Maurer and Ko²⁸ for the preparation of high-surface area niobium(V) oxide. Amounts of 1.70 g (7.02 mmol) of VO(C₃H₇O)₃ and 2.23 g (7.02 mmol) of Nb(OCH₂-CH₃)₅ were mixed by stirring in a 25 mL beaker containing 12.5 mL of 2-butanol. This solution was added with thorough stirring to a 50 mL beaker containing 12.5 mL of 2-butanol, 2.24 g (0.124 mmol) of water, and 0.60 mL concentrated nitric acid. Within half a minute a yellow gel formed, which was allowed to age for half an hour before evaporation to dryness in a rotatory evaporator at ca. 16 mmHg and 50 °C. This gave an olive green powder, which was calcined in flowing air at 550 °C for 6 h leaving a yellow product Isolated yield of NbVO₅: 1.47 g (94%).

TaVO₅. TaVO₅ was prepared by a method analogous to the synthesis of NbVO₅ with the difference that 2.85 g (7.02 mmol) of tantalum(V) ethoxide was used instead of niobium(V) ethoxide. The dried gel was calcined at 600 °C in flowing air for 8 h leaving a bright-yellow product. Isolated yield of TaVO₅: 2.12 g (97%).

Metavanadates. The preparation of the samples LiVO₃, NH₄VO₃, α -NaVO₃, KVO₃, and TIVO₃ has been described elsewhere,¹⁶ while samples of CsVO₃ and RbVO₃ were prepared by reaction of cesium and rubidium carbonate with V₂O₅ using an earlier reported procedure.²⁹

Results and Discussion

Determination of parameters for the ⁵¹V quadrupole coupling and CSA interactions from ⁵¹V MAS NMR spectra of the series of ortho- and metavanadates is described below for the individual samples. Where possible, the optimized parameters are compared with earlier reported values and relations between the NMR data and the ⁵¹V point symmetries of the crystal structures are discussed. Furthermore, correlations between the NMR data and structural parameters, derived from the crystal structures reported from X-ray diffraction, are investigated.

Mg₃(VO₄)₂. The ⁵¹V MAS NMR spectrum ($\nu_r = 4.0$ kHz) showing the complete manifold of ssbs from the central and satellite transitions for Mg₃(VO₄)₂ is illustrated in Figure 1a. The slight asymmetric features of the ssb envelope reflect the combined effect from the quadrupole coupling and CSA interaction while the ca. 5-fold larger intensity of the centerband relative to the first-order ssbs (*cf.* inset of Figure 1a) indicates that the central transition is only influenced by a relatively small ⁵¹V CSA. Seven-parameter fits and error analyses of simulated to experimental ssb intensities for the spectrum in Figure 1a and additional spectra recorded at spinning speeds of 3.0 and 5.5 kHz (not shown) reveal that reliable values for the three

Figure 1. Experimental (a) and simulated (b) ⁵¹V MAS NMR spectrum (9.4 T, $v_r = 4.0$ kHz) of the central and satellite transitions for Mg₃- $(VO_4)_2$. The inset in (a) illustrates the ⁵¹V central transition for Mg₃- $(VO_4)_2$ on a full intensity scale and with a ppm scale given relative to neat VOCl₃, while the asterisk indicates the central transition from a minor impurity of β -Mg₂V₂O₇ in the sample. The simulation in (b) employs the optimized parameters for Mg₃(VO₄)₂ listed in Table 1 and a combination of Lorentzian and Gaussian line broadening, which results in ssb line widths of 520 Hz in agreement with those observed in the experimental spectrum. (c) Stick plot of experimental, integrated centerband, and ssb intensities for Zn₃(VO₄)₂ observed in the ⁵¹V MAS NMR spectrum ($\nu_r = 7.0 \text{ kHz}$) of the Zn₃(VO₄)₂ sample shown in Figure 2a. (d) Optimized simulation of the centerband and ssb intensities in (c) corresponding to the ⁵¹V parameters for Zn₃(VO₄)₂ listed in Table 1. The central transition is cutoff at $\frac{1}{4}$ of its total height in (a and b) and at $\frac{1}{3}$ in (c and d).

Euler angles cannot be obtained from any of the spectra, an effect that may result from the small CSA. Thus, it is utilized in the optimizations that the unique VO₄ tetrahedron in the orthorhombic crystal structure of Mg₃(VO₄)₂ (space group Cmca)³⁰ exhibits a crystallographic mirror plane, which implies that one axis for each of the interaction tensors is perpendicular to this plane. This constraint is fulfilled when two of the Euler angles (ψ , χ , ξ) equal 0° modulo 90°. Using different combinations of the values for two of the Euler angles in least-squares optimizations give the lowest root mean square (rms) deviation between simulated and experimental ssb intensities

⁽²⁸⁾ Maurer, S. M.; Ko, E. J. Catal. 1992, 135, 125.

⁽²⁹⁾ Feigelson, R. S.; Martin, G. W.; Johnson, B. C. J. Cryst. Growth 1972, 13/14, 686.

⁽³⁰⁾ Krishnamachari, N.; Calvo, C. Can. J. Chem. 1971, 49, 1629.

Table 1. ⁵¹V Quadrupole Couplings (C_Q , η_Q), Chemical Shielding Anisotropies (δ_σ , η_σ), Relative Orientations (ψ , χ , ξ) for the Two Tensorial Interactions, and Isotropic Chemical Shifts for a Series of Orthovanadates and for the Pyrovanadate α -Zn₂V₂O₇^{*a*}

compound	$C_{\rm Q}({ m MHz})$	$\eta_{ m Q}$	$\delta_{\sigma}(\text{ppm})$	η_{σ}	ψ (deg)	χ (deg)	ξ (deg)	$\delta_{ m iso}{}^{b}$ (ppm)
$Mg_3(VO_4)_2$	1.05 ± 0.02	0.56 ± 0.02	31 ± 3	0.53 ± 0.23	0^c	64 ± 10	85 ± 23	-557.3 ± 0.3
$Zn_3(VO_4)_2$	1.04 ± 0.02	0.99 ± 0.02	41 ± 4	0.68 ± 0.41	0^c	61 ± 15	67 ± 25	-522.5 ± 0.5
BiVO ₄	4.94 ± 0.02	0.36 ± 0.02	94 ± 3	0.32 ± 0.09	2 ± 41	90 ± 9	30 ± 7	-421.1 ± 0.5
TaVO ₅	0.85 ± 0.02	0.28 ± 0.02	53 ± 4	0.24 ± 0.22	90 ^c	37 ± 19	90 ^c	-773.2 ± 0.3
NbVO ₅	1.20 ± 0.05	0.39 ± 0.04	70 ± 4	0.17 ± 0.15	90 ^c	25 ± 19	90 ^c	-791.4 ± 0.5
α -Zn ₂ V ₂ O ₇	3.97 ± 0.03	0.54 ± 0.02	-119 ± 3	0.69 ± 0.04	71 ± 60	10 ± 12	77 ± 24	-615.9 ± 0.5

^{*a*} Optimized data from least-squares fits to the ssb intensities observed in ⁵¹V MAS NMR spectra at 9.4 T. The error estimates are 95% confidence limits calculated for each parameter from the rms deviation between simulated and experimental ssb intensities using the procedure given in ref 24. ^{*b*} Isotropic chemical shift referenced to liquid VOCl₃. ^{*c*} Parameter fixed during optimization (see text).

for $\psi = 0^{\circ}$. Thus, the parameters listed in Table 1 for Mg₃- $(VO_4)_2$ result from six-parameter fits to the experimental ssb intensities using $\psi = 0^{\circ}$ as a fixed value. The optimized data and error limits show that $\xi = 90^{\circ}$ is within the experimental error and thereby the constraint indicated above for two of the Euler angles is fulfilled. The isotropic chemical shift determined for $Mg_3(VO_4)_2$ (Table 1) is in good agreement with earlier reported δ -values from ⁵¹V MAS NMR of the central transition,^{7,8,22} while some discrepancy is observed between the CSA parameters in Table 1 and those reported by Hayakawa et al. $(\delta_{\sigma} = 15 \text{ ppm}, \eta_{\sigma} = 1.0)^{22}$ from static-powder ⁵¹V NMR of the central transition at 9.4 T. We note that the inset of Figure 1a also illustrates the presence of a minor impurity with the isotropic peak at approximately -645 ppm, which is assigned to β -Mg₂V₂O₇ using the chemical shift reported earlier for this vanadate.8

Zn₃(VO₄)₂. The ⁵¹V MAS NMR spectrum ($\nu_r = 7.0$ kHz) of the synthesized sample of $Zn_3(VO_4)_2$ is shown in Figure 2a and illustrates two overlapping manifolds of ssbs with centerbands at -526 and -623 ppm and approximate total intensities in a ratio of 1:0.5. Single-crystal XRD has shown that Zn₃- $(VO_4)_2$ and $Mg_3(VO_4)_2$ are isostructural compounds.³¹ Thus all VO₄ tetrahedra in $Zn_3(VO_4)_2$ are crystallographically equivalent, indicating that one of the two ssb patterns originates from an impurity phase. Stick plots of integrated ssb intensities for the high- and low-frequency sites in the ⁵¹V MAS spectrum of our Zn₃(VO₄)₂ sample (Figure 2a) are shown in Figure 1c and Figure 2e, respectively. From the similarity in spectral width (and thereby quadrupole coupling) between the stick plot of ssb intensities in Figure 1c and the ssb manifold observed for $Mg_3(VO_4)_2$ (Figure 1a), the high-frequency site of Figure 2a is assigned to $Zn_3(VO_4)_2$, while the low-frequency, low-intensity site is ascribed to the impurity phase. Least-squares optimization and error analysis for the ssb intensities observed for Zn₃- $(VO_4)_2$ (Figure 1c) gives the parameters in Table 1 and the optimum simulation shown in Figure 1d. In analogy to the optimization for Mg₃(VO₄)₂ a fixed value of $\psi = 0^{\circ}$ was employed, because initial seven-parameter fits showed that reliable values for all three Euler angles cannot be obtained from the ssb manifold in Figure 1c. The isotropic chemical shift (Table 1) is in good agreement with the value $\delta_{iso} = -522$ ppm^{7,22} reported earlier for Zn₃(VO₄)₂ from ⁵¹V MAS NMR of the central transition, while improved data for the CSA parameters is obtained from the ssb intensities in Figure 1c compared to those estimated by Hayakawa et al. ($\delta_{\sigma} = 28$ ppm, $\eta_{\sigma} = 0.96)^{22}$ from ⁵¹V static-powder NMR of the central transition.

A least-squares optimization and error analysis has also been performed for the ssb manifold (Figure 2e) observed for the impurity site in the $Zn_3(VO_4)_2$ sample and the final result is illustrated by the simulated manifold of ssbs for this site in Figure 2f. Furthermore, a total simulation including the ssbs from $Zn_3(VO_4)_2$ and from the impurity site is shown in Figure 2d. It is noted that the expansions of a set of ssbs shown in Figure 2b and 2d illustrate that the ssbs from the impurity phase partly split into two peaks as a result of the difference in secondorder quadrupolar shift for the $(\pm^{1/2} \leftrightarrow \pm^{3/2})$ and $(\pm^{3/2} \leftrightarrow \pm^{5/2})$ 2) transitions. A comparison of the optimized parameters for the impurity site with ⁵¹V CSA parameters determined earlier clearly reveals that α -Zn₂V₂O₇ constitutes the additional phase in our sample. ⁵¹V chemical shielding data for α -Zn₂V₂O₇ have been reported by Eckert and Wachs ($\delta_{\sigma} = -120$ ppm, $\eta_{\sigma} =$ 0.67, $\delta_{iso} = -616 \text{ ppm})^7$ and Hayakawa et al. ($\delta_{\sigma} = -118 \text{ ppm}$, $\eta_{\sigma} = 0.65, \ \delta_{\rm iso} = -620 \ \rm ppm),^{22}$ and these parameters are in good agreement with those obtained from optimization to the ssb intensities in Figure 2e (Table 1). The observation of Euler angles (describing the relative orientation of the two interaction tensors) that deviate from 0° modulo 90° is in accord with the monoclinic crystal structure of α -Zn₂V₂O₇ (space group C2/c) reported from X-ray diffraction,³² since the ⁵¹V site is not located on the 2-fold axis in this space group. The larger shielding anisotropy (δ_{σ}) and the larger quadrupole coupling, observed for α -Zn₂V₂O₇ as compared to the data for Zn₃(VO₄)₂, may reflect the more distorted electronic environments of the ⁵¹V site in the pyrovanadate unit compared to ⁵¹V in the isolated VO₄ tetrahedron of the orthovanadate.

BiVO₄. Bismuth vanadate occurs in nature as the mineral pucherite (orthorhombic, space group Pnca),33 while hightemperature synthesis gives a ferroelastic, tetragonal phase of BiVO₄,³⁴ which transforms into a monoclinic form (space group I2/b)³⁵ below the ferroelastic transition temperature (528 K). The ⁵¹V MAS NMR spectrum ($\nu_r = 8.2$ kHz) of monoclinic BiVO₄ is shown in Figure 3a and reveals a ssb pattern dominated by the quadrupole coupling interaction, since only vague asymmetries in the ssb intensities of the manifold are observed at the quite high spinning frequency required to resolve all resonances. The expansions from two different regions (insets in Figure 3a) illustrate the observation of separate peaks from the individual transitions and that the ssbs from the outer transitions ($m = \pm \frac{5}{2}, m = \pm \frac{7}{2}$) exhibit second-order quadrupolar line shapes, indicating a quite large quadrupole coupling for the ⁵¹V site in BiVO₄. Least-squares fitting of simultated to integrated ssb intensities for the spectrum in Figure 3a gives the parameters listed in Table 1 and the optimum simulation shown in Figure 3b. Although second-order effects were not considered in the simulations used for the optimization, the simulated spectrum in Figure 3b also includes the second-order

⁽³²⁾ Gopal, R.; Calvo, C. Can. J. Chem. 1973, 51, 1004.

⁽³³⁾ Qurashi, M. M.; Barnes, W. H. Am. Mineral. 1953, 38, 489.

⁽³⁴⁾ Bierlein, J. D.; Sleight, A. W. Solid State Commun. 1975, 16, 69.

⁽³⁵⁾ Sleight, A. W.; Chen. H.-Y.; Ferretti, A.; Cox, D. E. Mater. Res. Bull. 1979, 14, 1571.

Figure 2. (a) ⁵¹V MAS NMR spectrum (9.4 T, $\nu_r = 7.0$ kHz) of the central and satellite transitions observed for our Zn₃(VO₄)₂ sample, which consists of a mixture of $Zn_3(VO_4)_2$ and α - $Zn_2V_2O_7$. Expansion (b) illustrates that the low-intensity ssbs from α -Zn₂V₂O₇ partly split into separate peaks as a result of the difference in second-order quadrupolar shift of the individual transitions, while (c) shows the spectral region for the centerbands from $Zn_3(VO_4)_2$ and α - $Zn_2V_2O_7$ (asterisk) with a ppm scale relative to neat VOCl₃. Integrated centerband and ssb intensities for the two 51V species are shown in Figure 1c for $Zn_3(VO_4)_2$ and in (e) for $\alpha\mathchar`-Zn_2V_2O_7$. (d) Simulated spectrum including second-order quadrupolar effects of the ssb manifolds in (a) employing the ${}^{51}V$ parameters for $Zn_3(VO_4)_2$ and α - $Zn_2V_2O_7$ in Table 1 and an intensity ratio of $I(Zn_3(VO_4)_2)/I(\alpha - Zn_2V_2O_7) = 2.1$. The expansions in (d) correspond to those in (b) and (c) for the experimental spectrum. (f) Simulation of the centerband and ssb intensities in (e) for α -Zn₂V₂O₇ employing the optimized data in Table 1 for this phase.

quadrupolar interaction in order to account for the line shapes of the ssbs. The excellent agreement between simulated and experimental ssb line shapes and intensities in Figure 3 shows that the experimental spectrum in Figure 3a represents probably the highest quality ⁵¹V MAS NMR spectrum we have recorded to illustrate the ssb method for quadrupolar nuclei. The ⁵¹V chemical shielding data in Table 1 may be compared with those reported by Eckert and Wachs ($\delta_{\sigma} = 81$ ppm, $\eta_{\sigma} = 0.58$, δ_{iso} = -423 ppm)⁷ and by Lapina et al. ($\delta_{\sigma} = 80$ ppm, $\eta_{\sigma} = 0.63$, $\delta_{iso} = -420$ ppm)⁸ from ⁵¹V static-powder and MAS NMR of

Figure 3. (a) Experimental ⁵¹V MAS NMR spectrum of the central and satellite transitions for BiVO₄ recorded at 9.4 T using $\nu_r = 8.2$ kHz and 32.768 scans. (b) Simulated spectrum including the second-order quadrupolar broadening of the ssbs and employing the optimized parameters for BiVO₄ (Table 1) and a combination of 150 Hz Lorentzian and 200 Hz Gaussian line broadening for the ssbs. The insets for two regions in (a) and (b) illustrate the splitting of the ssbs caused by the difference in second-order quadrupolar shifts for the individual satellite transitions and the observation of resolved second-order quadrupolar line shapes for the outer ($\pm^{5/2} \leftrightarrow \pm^{7/2}$) transitions (high-frequency side of the ssbs). The central transition is cutoff at about 30% of its total height in (a) and (b).

the central transition. Furthermore, Hardcastle *et al.*³ have reported values for the centers of gravity for the central transition of -432.1 ± 0.5 and -425.6 ± 0.5 ppm at 7.1 and 11.7 T, respectively. These values correspond to SOQE = 5.2 ± 0.2 MHz and $\delta_{iso} = -421.5 \pm 0.7$ ppm, which are in good agreement with SOQE = 5.05 ± 0.05 MHz and $\delta_{iso} = -421.1 \pm 0.5$ ppm determined from the ⁵¹V MAS spectrum in Figure 3. The Euler angles relating the two interaction tensors (Table 1) are in accord with the location of the ⁵¹V site on a 2-fold axis in the monoclinic structure for BiVO₄,³⁵ since $\psi = 0^{\circ}$ and $\chi = 90^{\circ}$ within experimental error. This corresponds to the principal elements of the CSA and quadrupole coupling tensors (σ_{zz} and V_{zz}) being mutually perpendicular and that one of them is parallel to the C_2 axis.

TaVO₅. The ⁵¹V MAS NMR spectrum ($\nu_r = 4.4$ kHz) of the pentavalent metal orthovanadate TaVO₅ is shown in Figure 4a and illustrates an ssb manifold from a ⁵¹V site possessing a small quadrupole coupling and small ⁵¹V CSA. Initial sevenparameter fits to integrated intensities of the spectrum in Figure 4a show that the angles ψ and ξ are poorly defined from the experimental manifold of ssbs. The crystal structure for TaVO₅ (orthorhombic, space group *Pnma*), reported from powder XRD

Figure 4. ⁵¹V MAS NMR spectra of the central and satellite transitions for (a) TaVO₅ ($\nu_r = 4400$ Hz) and (c) NbVO₅ ($\nu_r = 5040$ Hz) obtained at 9.4 and 11.7 T, respectively. The corresponding simulated spectra are shown in (b) and (d) and employ the optimized parameters for TaVO₅ and NbVO₅ in Table 1 and a combination of Lorentzian and Gaussian line broadening, which results in ssb line widths of 800 Hz (TaVO₅) and 1200 Hz (NbVO₅), in agreement with those observed in the experimental spectra. The isotropic peak is cutoff at 33% of its total height in (a) and (b) and at half-height in (c) and (d).

data,³⁶ indicate that the ⁵¹V site is located on a mirror plane, implying that two of the Euler angles should have a value of 0° or 90° . Consideration of this constraint using fixed ψ and ξ values of either 0° or 90° in five-parameter fits to the experimental data gives the lowest rms value for $\psi = \xi = 90^{\circ}$. Employing these values gives the optimized values for the χ angle and the magnitudes of the two tensors listed in Table 1. The small values of η_{σ} and η_{Q} are a factor reducing the sensitivity of the ssb manifolds to changes in ψ and ξ . This fact comes from our observation that the magnitudes of η_{σ} and η_0 enter the specific terms in the expressions for first-order average Hamiltionians for the CSA and quadrupole interactions which describe the dependencies on ψ and ξ .¹⁵ The manifold of experimental ssbs (Figure 4a) appears slightly smeared out when compared to the optimized simulation in Figure 4b. This most likely reflects that the sample is not highly crystalline in

(36) Chahboun, H.; Groult, D.; Raveau, B. Mater. Res. Bull. 1988, 23,

805.

accordance with the method used for the synthesis, which is generally employed for the preparation of high surface area mixed metal oxides. Obviously, the observation may also be related to the low precision observed for the ψ and ξ angles.

NbVO₅. The mixed oxide NbVO₅ was synthesized for the first time in 1989 by Amarilla et al.³⁷ using sol-gel methods. From powder XRD analysis they observed that NbVO₅ is isostructural with TaVO₅, both having structures where the VO₄ tetrahedra share corners with (Nb,Ta)O₆ octahedra in an arrangement which give pentagonal channels along the b axis. The channels allow intercalation of alkali metals and with the aim of studying these intercalation processes by solid-state NMR, Davis et al.⁴ have initially characterized NbVO₅ by ⁵¹V and ⁹³Nb NMR. In that study they reported parameters for the magnitudes of the ⁵¹V CSA and quadrupole coupling interactions $(C_0 = 1.0 \text{ MHz}, \eta_0 = 0.2, \delta_\sigma = 73 \text{ ppm}, \delta_\sigma = 0.27, \delta_{\text{iso}} =$ -789 ppm) from static-powder and MAS NMR spectra of the central transition.⁴ Improved ⁵¹V interaction parameters are obtained from optimizations to the ssb manifolds observed in the ⁵¹V MAS NMR spectrum ($\nu_r = 5.0 \text{ kHz}$) of NbVO₅ shown in Figure 4c and in a spectrum recorded at lower spinning speed $(\nu_r = 3.3 \text{ kHz}, \text{ not shown})$. The optimized data (Table 1), illustrated by the simulated spectrum in Figure 4d, are achieved from five-parameter fits using the constraint $\psi = \xi = 90^{\circ}$ in analogy to the optimization of the ⁵¹V parameters for TaVO₅. The fact that TaVO₅ and NbVO₅ are isostructural compounds is clearly reflected by the optimized ⁵¹V data (Table 1), which exhibit similarities for both the quadrupole coupling and CSA parameters.

Metavanadates. Recently, we reported magnitudes and relative orientations for the ⁵¹V quadrupole coupling and chemical shielding tensors for five metavanadates (MVO₃, M = Li, Na, K, NH₄, Tl) from optimizations to ⁵¹V MAS NMR spectra of the central and satellite transitions.¹⁶ These metavanadates belong to two different isomorphous groups. LiVO₃ and α -NaVO₃ exhibit monoclinic lattices (space group *C2/c)*^{38,39} while KVO₃, NH₄VO₃, and TIVO₃ have an orthorhombic structure (space group *Pbcm*).^{40,41} The latter group of isomorphous metavanadates also includes RbVO₃ and CsVO₃ and to complete this group, ⁵¹V NMR parameters for these two compounds have been determined in this work from analysis of the ⁵¹V MAS NMR spectra shown in Figures 5 and 6.

The ⁵¹V MAS spectrum of RbVO₃ (Figure 5a) illustrates the observation of the complete manifold of ssbs from the central and satellite transitions covering a spectral width of about 1.8 MHz. The inset of Figure 5a shows that separate peaks from the individual satellite transitions are observed and that the highfrequency shifted ssbs from the outer $(\pm^{5}/_{2} \leftrightarrow \pm^{7}/_{2})$ transitions exhibit partly resolved second-order quadrupolar line shapes. Seven-parameter fits and error analysis of the ssbs in Figure 5a give the optimized parameters listed in Table 2, while the corresponding simulated spectrum is shown in Figure 5b. The simulation includes effects from the second-order quadrupolar interaction which results in an excellent fit to the line shapes and intensities of the ssbs in the experimental spectrum. The optimized ⁵¹V parameters (Table 2) show that RbVO₃ exhibits the largest quadrupole coupling of the metavanadates and that the observed value agrees favorably with previously reported data ($C_0 = 4.33$ MHz and $\eta_0 = 0.72$).⁸ However, the CSA

- (38) Shannon, R. D.; Calvo, C. Can. J. Chem. 1973, 51, 265.
- (39) Marumo, F.; Isobe, M.; Iwai, S.; Kondo, Y. Acta Crystallogr. 1974, B30, 1628.
- (40) Hawthorne, F. C.; Calvo, C. J. Solid State Chem. 1977, 22, 157.
- (41) Ganne, M.; Piffard, Y.; Tournoux, M. Can. J. Chem. 1974, 52, 3539.

⁽³⁷⁾ Amarilla, J. M.; Casal, B.; Ruiz-Hitzky, Mater. Lett. 1989, 8, 132.

Figure 5. Experimental (a) and simulated (b) ⁵¹V MAS NMR spectra (9.4 T, $v_r = 7.5$ kHz) of the central and satellite transitions for RbVO₃. The insets show the splitting of ssbs as a result of differences in second-order quadrupolar shift for the individual satellite transitions and the partly resolved second-order quadrupolar line shapes of the ssbs from the outer satellite transitions $(\pm^{5/2} \leftrightarrow \pm^{7/2})$. The simulation includes the second-order quadrupolar interaction and employs the optimized parameters for RbVO₃ in Table 2 and a combination of 150 Hz Lorentzian and 200 Hz Gaussian line broadening for the ssbs. The centerband is marked by an asterisk while the square in (a) indicates the folded ⁶³Cu resonance from the radio frequency copper coil.

 (δ_{σ}) in Table 2 is slightly larger than those reported by Lapina et al. $(\delta_{\sigma} = 293 \text{ ppm}, \eta_{\sigma} = 0.67, \text{ and } \delta_{\text{iso}} = -570 \text{ ppm})^8$ and by Hayashi and Hayamizu $(\delta_{\sigma} = 295 \text{ ppm}, \eta_{\sigma} = 0.71, \text{ and } \delta_{\text{iso}}$ $= -569.1 \text{ ppm})^{42}$ from static-powder and MAS NMR spectra of the central transition. The high-frequency shift of approximately 4 ppm for δ_{iso} in Table 2, as compared to the values listed above, reflect that the earlier reported data have not been corrected for the second-order quadrupolar induced shift of the central transition.

The ⁵¹V MAS spectrum of CsVO₃ in Figure 6a bears a close resemblance to the spectrum observed for RbVO₃ (Figure 5a), which indicates the presence of very similar ⁵¹V environments in these two vanadates. A comparison of the optimized ⁵¹V data for CsVO₃ (Table 2), resulting from least-squares optimization to the ssb intensities in Figure 6a, with those obtained for RbVO₃ supports this finding, since almost identical shielding anisotropies and only small variations in quadrupole coupling parameters are observed for the two metavanadates. The quadrupole coupling in Table 2 for CsVO₃ is slightly larger than the values reported earlier by Segel and Creel ($C_Q = 3.92 \pm 0.14$ MHz, $\eta_Q = 0.62 \pm 0.11$)⁴³ and by Pletnev et al. ($C_Q = 3.84 \pm 0.14$ MHz, $\eta_Q = 0.63 \pm 0.11$)⁴⁴ from static powder NMR. Furthermore, a somewhat larger shielding anisotropy and a high-frequency shift of δ_{iso} are observed, when the values in Table 2 are compared with the earlier reported data by Lapina et al. ($\delta_{\sigma} = 291$ ppm, $\eta_{\sigma} = 0.66$, $\delta_{iso} = -583$ ppm),⁸ Hayashi and Hayamizu ($\delta_{\sigma} = 293$ ppm, $\eta_{\sigma} = 0.61$, $\delta_{iso} = -582.6$ ppm),⁴² and Hayakawa et al. ($\delta_{\sigma} = 285$ ppm, $\eta_{\sigma} = 0.62$, $\delta_{iso} = -579$ ppm)²¹ from static-powder and MAS NMR of the central transition. Again, the high-frequency shift of δ_{iso} is ascribed to the consideration of the second-order quadrupolar induced shift in this work.

Since the earlier study of the metavanadates (MVO₃, M =Li, Na, K, NH₄, Tl),¹⁶ our techniques for extracting quadrupole coupling and CSA parameters from MAS NMR spectra of all transitions has been slightly improved by using rotor-speed control, because even an instability of a few Hz during the experiment may smear out the ssbs in especially the outer regions of the spectrum. Therefore we have reexamined the five metavanadates (MVO₃, M = Li, Na, K, NH₄, Tl) using this additional instrumentation and optimized ⁵¹V parameters from seven-parameter least-squares fits to the experimental ssb intensities in these spectra are listed in Table 2 along with calculated error limits. Within the error limits the data in Table 2 agree with those given in our original investigation.¹⁶ However, the error limits for the Euler angles ψ and ξ in Table 2 are generally somewhat larger than those reported in the earlier study,¹⁶ despite the fact that the present spectra are of higher quality. The reason is that in the earlier work the error limits were estimated by visual comparison of experimental and a series of simulated spectra for which only one parameter was varied at a time. The improved numerical error analysis, employed in this work and described in ref 24, accounts for the larger errors observed in this study (Table 2) for the ψ and ξ values. For the orthorhombic series of metavanadates it is observed that the Euler angles $\psi = 90^{\circ}$ and $\xi = 0^{\circ}$ are within the experimental error in accordance with the requirement imposed by the crystal structures,^{40,41} which show that the ⁵¹V sites are situated in mirror planes. For the monoclinic LiVO₃ and α -NaVO₃ metavanadates no restrictions on the orientation of the quadrupole and CSA tensors are imposed by the crystal symmetry.

Relationships between the ⁵¹V NMR Parameters and Crystal Structure Data. Correlations between quadrupole coupling constants and estimated values for the principal elements of the electric-field gradient (EFG) tensors (V^{est}) at the nuclear site have recently been reported for tetrahedrally coordinated ²⁷Al sites in calcium aluminates,⁴⁵ for ²³Na in a series of sodium compounds,⁴⁶ and for ¹³³Cs in various cesium salts.²⁴ In these investigations the EFG tensor elements were obtained by point-monopole calculations,⁴⁷ which only consider oxygen anions within the first coordination sphere of the NMR nucleus. The correlations for the sodium and cesium compounds^{24,46} employed effective charges for the oxygen anions obtained as $q_i = (-2 + \Sigma f_{ij})e$, where f_{ij} is the covalence of the oxygen (*i*)-cation (*j*) bond calculated from the equations of

- (46) Koller, H.; Engelhardt, G.; Kentgens, A. P. M.; Sauer, J. J. Phys. Chem. 1994, 98, 1544.
- (47) Cohen, M. H.; Reif, F. Solid State Phys. 1957, 5, 321.

⁽⁴³⁾ Segel, S. L.; Creel, R. B. Can. J. Phys. 1970, 48, 2673.

⁽⁴⁴⁾ Pletnev, R. N.; Gubanov, V. A.; Chirkov, A. K. Zh. Struct. Khim. 1976, 17, 938.

⁽⁴⁵⁾ Skibsted, J.; Henderson, E.; Jakobsen, H. J. Inorg. Chem. 1993, 32, 1013.

⁽⁴²⁾ Hayashi, S.; Hayamizu, Bull. Chem. Soc. Jpn. 1990, 63, 961.

Figure 6. (a) Experimental ⁵¹V MAS NMR spectrum (9.4 T, $\nu_r = 7.5$ Hz) of CsVO₃ illustrating the complete manifold of ssbs from the central and satellite transitions observed over a spectral width of 1.8 MHz. (b) Simulated spectrum of the ssbs in (a) including the contribution from the second-order quadrupolar interaction and using the optimized ⁵¹V data in Table 2 for CsVO₃. A combination of 100 Hz Lorentzian and 150 Hz Gaussian line broadening was employed for the ssbs. The centerband is marked by an asterisk while the square in (a) indicates the folded ⁶³Cu resonance from the radio frequency copper coil. The small difference in second-order quadrupolar line shapes for the ssbs from the outer ($\pm^{5/2} \leftrightarrow \pm^{7/2}$) satellite transitions, observed in the expansions of the simulated and experimental spectra, most likely reflects a small deviation from exact magic angle setting (less than ca. $\pm 0.02^{\circ}$).

Table 2. ⁵¹V Quadrupole Couplings (C_Q , η_Q), Chemical Shielding Anisotropies (δ_σ , η_σ), Relative Orientations (ψ , χ , ξ) for the Two Tensorial Interactions, and Isotropic Chemical Shifts for a Series of Metavanadates from ⁵¹V MAS NMR^{*a*}

compound	$C_{\rm Q}({ m MHz})$	$\eta_{ m Q}$	δ_{σ} (ppm)	η_{σ}	ψ (deg)	χ (deg)	ξ (deg)	$\delta_{ m iso}{}^{b}$ (ppm)
LiVO ₃	3.25 ± 0.05	0.88 ± 0.02	228 ± 3	0.72 ± 0.02	105 ± 36	21 ± 10	72 ± 33	-573.2 ± 0.5
α -NaVO ₃	3.77 ± 0.03	0.49 ± 0.02	249 ± 2	0.67 ± 0.02	156 ± 36	3 ± 11	75 ± 38	-572.8 ± 0.5
NH_4VO_3	2.98 ± 0.03	0.28 ± 0.02	245 ± 3	0.70 ± 0.02	76 ± 22	25 ± 6	13 ± 31	-569.5 ± 0.5
TIVO ₃	3.76 ± 0.06	0.71 ± 0.03	267 ± 4	0.76 ± 0.03	106 ± 77	30 ± 7	9 ± 38	-529.1 ± 0.5
KVO ₃	4.15 ± 0.04	0.85 ± 0.02	307 ± 3	0.66 ± 0.02	102 ± 35	8 ± 8	25 ± 28	-547.6 ± 0.5
$RbVO_3$	4.23 ± 0.03	0.64 ± 0.02	314 ± 2	0.69 ± 0.02	100 ± 35	28 ± 5	0 ± 26	-565.4 ± 0.2
CsVO ₃	4.10 ± 0.03	0.48 ± 0.02	314 ± 2	0.67 ± 0.02	112 ± 60	21 ± 3	16 ± 26	-577.4 ± 0.2

^{*a*} Optimized data from least-squares fits to the integrated ssb intensities in ⁵¹V MAS NMR spectra. The error estimates are 95% confidence limits calculated for each parameter from the rms deviation between simulated and experimental ssb intensities using the procedure given in ref 24. ^{*b*} Isotropic chemical shift referenced to liquid VOCl₃.

(53)

Brown and Shannon⁴⁸ and from the chemical bond data of Brown and Altermatt.⁴⁹ The applicability of this approach for correlating ⁵¹V quadrupole coupling parameters with estimated ⁵¹V EFG tensor elements is investigated here for the studied ortho- and metavanadates. From the crystal structures for these vanadates, determined using single-crystal XRD,^{30,31,35,38–41,50–54} estimated oxygen charges are calculated as described above and

(49) Brown, I. D.; Altermatt, D. Acta Crystallogr. B 1985, 41, 244.

used in point-monopole calculations, which only consider the four oxygen anions in the first coordination sphere of the ⁵¹V nuclear site. This gives the estimated values for the principal elements (V_{ii}^{est}) of the ⁵¹V EFG tensors listed in Tables 3 and 4 for the ortho- and metavanadates, respectively. To expand the range of experimental values for the orthovanadates the analysis also includes data for Sr₃(VO₄)₂, Ba₃(VO₄)₂, Li₃VO₄, YVO₄, and LaVO₄ for which experimental quadrupole coupling parameters have been reported by Lapina et al.⁸ However, NbVO₅

Schmidt, G.; Deppisch, B.; Gramlich, V.; Scheringer, C. Acta

⁽⁴⁸⁾ Brown, I. D.; Shannon, R. D. Acta Crystallogr. A 1973, 29, 266.

⁽⁵⁰⁾ Süsse, P.; Buerger, M. J. Z. Kristallogr. 1970, 131, 161.

⁽⁵¹⁾ Carrillo-Cabrera, W.; von Schnering, H. G. Z. Kristallogr. 1993, 205, 271.
(52) Shannon, R. D.; Calvo, C. J. Solid State Chem. 1973, 6, 538.

Crystallogr. B **1973**, *29*, 141. (54) Rice, C. E.; Robinson, W. R. *Acta Crystallogr. B* **1976**, *32*, 2232.

Table 3. ⁵¹V Quadrupole Coupling Parameters (C_Q , η_Q) and estimated Principal Elements (V_{est}^{est}) (×10²⁰ V m⁻²) of the Electric Field Gradient Tensor for a Series of Orthovanadates^{*a*}

compound	C_Q^b (MHz)	$\eta_{ ext{Q}}{}^{b}$	$V_{xx}^{\rm est}$	$V_{yy}^{\rm est}$	V_{zz}^{est}	structure ref ^d
$Mg_3(VO_4)_2$			-0.249	-0.188	0.437	30
$Zn_3(VO_4)_2$			-0.197	-0.091	0.288	31
BiVO ₄			-1.423	-0.345	1.768	35
$Ba_3(VO_4)_2$	0.75	С	-0.121	-0.121	0.242	50
$Sr_3(VO_4)_2$	0.53	С	-0.041	-0.035	0.077	51
Li ₃ VO ₄	1.52	С	-0.341	-0.281	0.621	52
YVO_4	4.75	0.00	-1.360	-1.360	2.719	53
LaVO ₄	5.21	0.69	-1.770	-0.499	2.269	54

^{*a*} Estimated principal elements of the EFG tensor from a pointmonopole calculation using effective charges for the oxygens surrounding the vanadium ion (see text). ^{*b*} Experimental quadrupole coupling parameters taken from ref 8. The C_Q and η_Q values for Mg₃(VO₄)₂, Zn₃(VO₄)₂, and BiVO₄ are given in Table 1. ^{*c*} Asymmetry parameter not reported. ^{*d*} References for the X-ray diffraction structure determinations, which provide the atomic coordinates for the point-monopole calculations.

Table 4. Estimated Principal Elements ($V^{\text{est}_{ii}}$) (×10²⁰ V m⁻²) of the ⁵¹V Electric Field Gradient Tensor for the Series of Metavanadates^{*a*}

compound	$V_{yy}^{\rm est}$	$V_{yy}^{\rm est}$	$V_{zz}^{\rm est}$	structure ref ^{b}
LiVO ₃	-1.272	-0.349	1.621	38
α -NaVO ₃	-1.586	-0.008	1.594	39
TIVO ₃	-1.569	-0.136	1.705	41
KVO ₃	-1.693	-0.579	2.272	40
RbVO ₃	-1.446	-0.521	1.967	40
CsVO ₃	-1.499	-0.340	1.839	40

^{*a*} Estimated values from a point-monopole calculation using effective charges for the oxygens surrounding the vanadium ion (see text). ^{*b*} References for the X-ray diffraction structure determinations, which provide the atomic coordinates for the point-monopole calculations.

and TaVO₅ are not included in the analysis because the crystal structure for NbVO₅ has not been reported and because the fractional atomic coordinates for TaVO₅, obtained from refinements of powder XRD data,³⁶ have quite low precision. Furthermore, NH₄VO₃ is not included in the analysis since the bond valence parameter (r_0) has not been reported for NH₄⁺. This prevents calculation of the effective oxygen charges for this compound. For the vanadates considered here, the effective oxygen charges range between q = -0.84e (O(2) for TlVO₃) and q = -1.13e (O(1) for Li₃VO₄). The calculated EFG tensor elements are correlated with the corresponding elements of the ortho- and metavanadates, respectively, where the experimental quadrupole coupling tensor elements are derived from C_Q and η_Q according to

$$Q_{zz}^{\text{exp}} = C_{\text{Q}} Q_{yy}^{\text{exp}} = -\frac{1}{2} (1 - \eta_{\text{Q}}) / C_{\text{Q}} Q_{xx}^{\text{exp}} = -\frac{1}{2} (1 + \eta_{\text{Q}}) / C_{\text{Q}}$$
(2)

assuming a positive value for $C_{\rm Q}$. For the orthovanadates linear regression analysis of the experimental $Q_{ii}^{\rm exp}$ values and the calculated $V_{ii}^{\rm est}$ data gives the equation

$$Q_{ii}^{\text{exp}}(\text{MHz}) = 2.17 V_{ii}^{\text{est}} (\times 10^{20} \text{ V m}^{-2}) + 0.04$$
 (3)

with a correlation coefficient R = 0.97. A similar relationship is observed between Q_{ii}^{exp} and V_{ii}^{ext} for the metavanadates, *i.e.*

$$Q^{\exp}_{ii}(\text{MHz}) = 2.09 V^{\exp}_{ii}(\times 10^{20} \text{ V m}^{-2})$$
 (4)

Figure 7. Linear correlations between ⁵¹V quadrupole coupling tensor elements (Q_{ii}^{exp}) and estimated EFG tensors elements (V_{ii}^{ext}) from a point-monopole calculation for (a) orthovanadates and (b) metavanadates. The calculated values for V_{ii}^{ext} are summarized in Tables 3 and 4 while the results of linear regression analysis of the data are given in eqs 3 and 4 for the ortho- and metavanadates, respectively. The filled circles in (a) correspond to the orthovanadates studied in this work, while the open circles represent ⁵¹V quadrupole coupling parameters reported in ref 8 for the orthovanadates Ba₃(VO₄)₂, Sr₃(VO₄)₂, Li₃VO₄, YVO₄, and LaVO₄ (*cf.* Table 3).

with a correlation coefficient R = 0.98. The almost identical slopes in eqs 3 and 4 suggest that the observed relationship between Q_{ii}^{exp} and V_{ii}^{est} may also be valid for other types of vanadates such as pyrovanadates. Calculation of the quadrupole coupling tensor elements (Q_{ii}^{exp}) from V_{ii}^{est} using eqs 3 and 4 results in average deviations between Q_{ii}^{est} and Q_{ii}^{exp} of 0.44 and 0.38 MHz for the ortho- and metavanadates, respectively. Thus, we expect that estimates of the quadrupole coupling tensor elements with a precision of approximately ± 0.4 MHz may be achieved from point-monopole calculations of the EFG tensor elements using effective oxygen charges and eq 3 or 4.

Interpretation of the CSAs observed for the ortho- and metavanadates in terms of correlations with structural data appears less straightforward than for the quadrupole coupling parameters. However, the shielding anisotropy data in Tables 1 and 2 clearly reveal that the isolated VO₄³⁻ tetrahedra in the orthovanadates are associated with quite small CSAs ($31 \le \delta_{\sigma}$

Figure 8. Correlation between ⁵¹V quadrupole coupling constants and the magnitude of the chemical shielding anisotropies ($\Delta \delta = |\delta_{zz} - \delta_{xt}|$) for the studied metavanadates employing the experimental data in Table 2. The straight line illustrates the result of a linear regression analysis of the data for the isomorphous series of metavanadates (i.e. MVO₃ for M = NH₄, Tl, K, Rb, Cs). The open squares correspond to the parameters for LiVO₃ and α -NaVO₃ and have not been included in the regression analysis.

 \leq 94 ppm), while significantly larger values are observed for the ${}^{51}V$ sites in the chains of VO₄³⁻ tetrahedra in the metavanadates (228 $\leq \delta_{\sigma} \leq$ 314 ppm). This finding is in agreement with earlier results by Eckert and Wachs,7 who also found that dimeric $[O_3V-O-VO_3]^{4-}$ units in pyrovanadates exhibit δ_σ values between those observed for ortho- and metavanadates. From Table 2 it is also apparent that a CSA asymmetry parameter in the range $0.66 \leq \eta_{\sigma} \leq 0.76$ is a characteristic feature for the metavanadates, which has been noted earlier by Hayakawa *et al.*²¹ For the MVO₃ metavanadates where M =NH4, Na, K, Rb, Cs, Lapina et al.8 reported correlations between the magnitude of the CSA, defined by these authors as the parameter $\Delta \delta = |\delta_{zz} - \delta_{xx}|$, and the bridging O(3)–V–O(3)' angle from X-ray diffraction and between $\Delta\delta$ and η_0 as well as $\Delta\delta$ and C_Q. However, the improved data for the CSA tensors and quadrupole coupling parameters reported here reveal that the correlations between $\Delta\delta$ and the bridging O(3)-V-O(3)' angle as well as between $\Delta\delta$ and η_Q are less apparent. The depiction of $\Delta\delta$ versus $C_{\rm Q}$ in Figure 8 for the metavanadates studied shows the presence of an approximate linear correlation between these two parameters for the series of isostructural, orthorhombic metavanadates (i.e., MVO_3 for $M = NH_4$, Tl, K, Rb, Cs). Linear correlation of the data for this series of metavanadates gives the equation

$$\Delta\delta (\text{ppm}) = 103C_0 (\text{MHz}) + 139 \tag{5}$$

with a correlation coefficient R = 0.96. From Figure 8 it is also apparent that the $\Delta\delta$ and C_Q values for LiVO₃ and α -NaVO₃ do not fit the observed correlation for the orthorhombic metavanadates in contrast to the results reported by Lapina et al.⁸ A linear relationship between the magnitudes of the CSA and quadrupole tensors has earlier been observed in ⁵⁹Co NMR for a series of Co(III) complexes,⁵⁵ while no simple relationship between δ_{σ} and C_Q was observed in a ¹³³Cs NMR study of some cesium salts.⁵⁶ These results and those obtained for the metavanadates indicate that correlations between δ_{σ} and $C_{\rm Q}$ may only be expected for quadrupoles in structurally related compounds.

Finally, it is noted that Hayakawa et al. have reported correlations between δ_{iso} and the average V–O bond length of the VO₄³⁻ tetrahedron for ortho-, pyro-, and monovalent metal metavanadates²¹ and between δ_{iso} and the electronegativity of the metal cation adjacent to the VO₄ tetrahedron for divalent metal orthovanadates.²² However, the δ_{iso} values for the studied ortho- and metavanadates in the present work show no correlation with the average V–O bond lengths, while δ_{iso} for Mg₃- $(VO_4)_2$ and $Zn_3(VO_4)_2$ in Table 1 fit the reported correlation between δ_{iso} and the electronegativity of the metal cation for the $M_3(VO_4)_2$ (M = Pb, Mg, Zn, Sr, Ba) orthovanadates.²² Since the chemical shielding tensor elements (or the parameters δ_{σ} and η_{σ}) reflect the local electronic environments of the ⁵¹V nuclei much better than the isotropic chemical shift itself, we expect that the CSA parameters hold more promise in correlations with structural parameters such as V-O bond lengths, V-O-V bond angles, and effective cation charges.

Conclusions

The magnitudes and relative orientations of ⁵¹V quadrupole coupling and chemical shielding tensors have been obtained for a series of ortho- and metavanadates employing rotor-stabilized MAS NMR of the central and satellite transitions. The magnitudes of the tensors (i.e. C_Q , η_Q , δ_σ , and η_σ) and the Euler angle χ between the principal element of the two tensors can be obtained with high precision for the metavanadates using this method, while the observed spinning sideband manifolds are rather insensitive to variations in the two other Euler angles (ψ and ξ). For the orthorhombic metavanadates, where the ⁵¹V atom resides in a mirror plane, the values $\psi = 90^{\circ}$ and $\xi = 0^{\circ}$ are within the experimental error revealing that the principal elements of the CSA and EFG tensors are noncoincident and within the mirror plane. For the orthovanadates the small shielding anisotropies also prevent an accurate determination of the CSA asymmetry parameter (η_{σ}) at least from MAS NMR spectra obtained at a moderate magnetic field (9.4 T). Close similarities are observed for the magnitudes of the two tensors for the isostructural orthoxanadates $Mg_3(VO_4)_2$ and $Zn_3(VO_4)_2$ as well as for TaVO₅ and NbVO₅. Linear correlations between the experimental principal elements of the ⁵¹V quadrupole coupling tensor and a calculated estimate of the electric field gradient tensor, using the point-monopole approach, have been observed for the ortho- and metavanadates. These may be useful for the assignment of ⁵¹V quadrupole couplings for samples with multiple vanadium sites and for estimation of quadrupole coupling parameters from crystal structure data. The correlation between C_Q and the magnitude of the CSA ($\Delta \delta = |\delta_{zz} - \delta_{xx}|$), observed for the isomorphous, orthorhombic series of metavanadates, serve to exemplify that simple relationships between the magnitudes of the quadrupole couplings and the chemical shielding anisotropies may be obtained only for structurally related compounds.

Acknowledgment. The use of the facilities at the Instrument Centre for Solid-State NMR Spectroscopy, University of Aarhus, sponsored by the Danish Research Councils (SNF and STVF), Teknologistyrelsen, Carlsbergfondet, and Direktør Ib Henriksens Fond, is acknowledged. We thank Aarhus University Research Foundation for equipment grants. Access to the use of the Varian UNITY-500 spectrometer at the University of Odense, Odense, Denmark, is greatly appreciated.

IC971503H

⁽⁵⁵⁾ Spiess, H. W.; Haas, H.; Hartmann, H., J. Chem. Phys. 1969, 50, 3057.
(56) Mooibroek, S.; Wasylishen, R. E.; Dickson, R.; Facey, G. J. Magn. Reson. 1986, 66, 542.