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Introduction

One-dimensional ferrimagnetism is synonymous of antifer-
romagnetic coupling between alternated spinsSA * SB, which
allows a net magnetic moment. Some examples of{Mn Cu}n

or {Mn Ni}n have been reported in recent years1 together with
some examples of mixed coordination compound-radical units.2

When the same scheme is applied to 3-D compounds, ferri-
magnetism becomes a useful tool to obtain molecular based
magnets such as the prussian blue-like compounds, in which
SA andSB were obtained from heterometallic systems or mixed-
valence homometallic paramagnetic centers.3 To try to obtain
ferrimagnetic chains from homometallic systems withSA ) SB

is a priori an inappropriate strategy, but ferrimagnetism may
be obtained from the adequate topology of the chain: it is
necessary to find ferromagnetic coupling alternated with two
consecutive antiferromagnetic interactions, Figure 1. In the
present work we report the synthesis and structural characteriza-
tion of the one-dimensional compound [Cu(3-Clpy)2(N3)2]n, in
which 3-Clpy is 3-chloropyridine. Magnetic measurements
indicate that, in agreement with the structural data, the chain
shows a regular alternancy of two ferromagnetic and two
antiferromagnetic interactions, with global ferrimagnetic be-
havior.

An additional interest of the title compound lies in the large
value of 129.1(3)° found for one of the Cu-N-Cu bond angles
of one of the end-on azide bridges present in the compound,
which is involved in an overall antiferromagnetic pathway (see

Chart 1). The double end-on bridge or the end-on azido bridge
together with another monatomic bridge such as hydroxo or
phenoxo have a characteristic Cu-N-Cu bond angle4 around
100°, but the recent contributions of Thompson et al. point out
that one end-on azido bridge and a second diatomic bridge as
pyridazine5 allow for greater Cu-N-Cu bond angles, typically
in the 110-115° range.

Similar bond angles have recently been obtained in end-on
azide/carboxylate simultaneous bridges.6 From these results,
antiferromagnetic coupling has been proposed for end-on azido
bridges with Cu-N-Cu bond angles greater than 108°.5 In
our case the second bridge is a triatomic ligand and the greatest
Cu-N-Cu bond angle reported to date has been obtained
(129.1°), and in agreement with the Thompson proposal, it
should contribute to the antiferromagnetic coupling in the mixed
1,1 and 1,3 bridge.

Experimental Section

Caution. Azide deriVatiVes are potentially explosiVe! Only a small
amount of material should be prepared, and it should be handled with
caution.

Preparation of [Cu(3-Clpy)2(N3)2]n. An aqueous solution of sodium
azide (0.195 g, 3 mmol) was added to a mixture of copper(II) nitrate
trihydrate (0.72 g, 3 mmol) and 3-chloropyridine (1.13 g, 10 mmol) in
40 mL of acetone. The solution was filtered, and the filtrate was
allowed to stand in a refrigerator for 3-4 weeks to grow well-formed
black crystals of the [Cu(3-Clpy)2(N3)2]n complex. Anal. Calcd for
C10Cl2CuH8N8: C, 32.05; H, 2.16; N, 29.91; Cu, 16.96. Found: C,
31.9; H, 2.2; N, 30.0; Cu, 16.7.

Crystallographic Data Collection and Refinement of the Struc-
ture. The X-ray single-crystal data were collected on a modified STOE
four-circle diffractometer. Crystal size: 0.80× 0.30× 0.25 mm. The
crystallographic data, conditions retained for the intensity data collec-

† Universitat de Barcelona (www.ub.es/inorgani/molmag.htm).
‡ Kuwait University.
§Technische Universita¨t Graz.

(1) Baron, V.; Gillon, B.; Cousson, A.; Mathonie`re, C.; Kahn, O.; Grand,
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Figure 1. (a) Classical ferrimagnetic chain scheme from antiferro-
magnetic interactions betweenSA andSB alternated spins. (b) Topologi-
cal ferrimagnetic chain from a ferro-antiferromagnetic interaction for
SA local spins.
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tion, and some features of the structure refinements are listed in Table
1. Graphite-monochromatized Mo KR radiation (λ ) 0.71069 Å) with
the ω-scan technique was used to collect the data. The accurate unit
cell parameters were determined from automatic centering of 30
reflections (8° < θ < 11°) and refined by least-squares methods. A
total of 4670 reflections (3897 independent reflections,Rint ) 0.0438)
were collected in the range 3.38° < θ < 23.50°. The intensities of
two control reflections (4h14; 4h02), measured every 50 min, dropped
continuously during data collection by 25%. Corrections were applied
for Lorentz-polarization effects, intensity decay, and absorption7 (range
of normalized transmission coefficients: 0.338-1.000). The structure
was solved by direct methods using the SHELXS-86 computer program8

and refined by full-matrix least-squares methods on F2, using the
SHELXL-93 computer program9 incorporated in SHELXTL/PC V 5.03
program package.10 All non-hydrogen atoms were refined anisotropi-
cally. The hydrogen atoms were located on calculated positions and
assigned with isotropic displacement parameters (4 common, 1 for each
3-Clpy molecule). The finalR indices are 0.0572 (R1) and 0.1282
(wR2) [I > 2σ(I)]. The number of refined parameters was 386.
Goodness-of-fit: 1.026. Maximum and minimum peaks in the final
difference Fourier synthesis were 0.425 and-0.563 e Å-3. Final atomic
coordinates are reported in Table 2 and significant bond parameters
are given in Table 3.

Results and Discussion

Description of the Structure. An ORTEP plot of the basic
unit of [Cu(3-Clpy)2(N3)2]n is shown in Figure 2. The structure
consists of neutral chains of copper atoms linked by azido
bridges. Coordination around the copper atoms consists of
N-atoms from 3-chloropyridine ligands in trans and four azido
bridges, two of which are placed on the axis of an elongated
octahedron. Three kinds of copper atom are present in the
structure: Cu(1) shows two double end-on azido bridges with
Cu(2) and Cu(2A) with Cu(1)-N(11)-Cu(2) and Cu(1)-
N(31)-Cu(2) bond angles of 100.3(2) and 102.4(2)°, respec-
tively. Bond distances show a short Cu(1)-N(11) length of
2.006(5) Å and a large Cu(1)-N(31) distance of 2.471(5) Å.
Cu(2) shows the two end-on bridges with Cu(1) and two azido
bridges with Cu(3), one of them end-on and the other end-to-
end. Bond distances are the short Cu(2)-N(21) 1.997(5) Å
and the long Cu(2)-N(43) 2.733(6) Å. The uncommon
Cu(2)-N(21)-Cu(3) bond angle of 129.1(3)° is due to the large
Cu(2)‚‚‚Cu(3) distance of 4.130(2) Å forced by the end-to-end
azido bridge. Finally, Cu(3) shows two double mixed bridges
end-to-end and end-on with Cu(2) and Cu(2B) with a Cu(3)-
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Chart 1

Table 1. Crystallographic Data for [Cu(3-Clpy)2(N3)2]n

chem. formula C10H8Cl2Cu N8

a, Å 15.113(7)
b, Å 13.483(6)
c, Å 15.801(9)
â, deg 116.93(4)
V, Å3 2871(3)
Z 8
fw 374.68
space group P21/c
T, K 293(2)
λ(Mo KR), Å 0.716 09
dcalc, g‚cm-3 1.734
µ(Mo KR), mm-1 1.899
Ra 0.0572
R2ωb 0.1282

a R(Fo) ) ∑||Fo| - |Fc||/∑|Fo|. b Rω(Fo)2 ) {∑[ω (Fo)2 - (Fc)2)2]/
∑[ω(Fo)4]}1/2.

Table 2. Atomic Coordinates (×104) and Equivalent Isotropic
Displacement Parameters (Å2 x 103) for [Cu(3-Clpy)2(N3)2]n

atom x y z U(eq)

Cu(1) 0 0 0 30(1)
Cu(2) 2456(1) -67(1) 354(1) 33(1)
Cu(3) 5000 0 0 38(1)
N(11) 653(4) -229(4) -841(4) 36(1)
N(12) 233(4) -455(5) -1622(5) 55(2)
N(13) -190(6) -664(9) -2408(7) 164(5)
N(21) 3159(4) -268(4) -440(4) 36(1)
N(22) 2668(4) -412(4) -1260(5) 46(2)
N(23) 2237(5) -520(7) -2080(5) 87(3)
N(31) 1767(4) 184(4) 1154(4) 37(1)
N(32) 2170(4) 245(4) 1985(4) 34(1)
N(33) 2520(5) 293(6) 2789(5) 85(3)
N(41) 5311(4) 480(4) 1295(4) 42(2)
N(42) 4758(4) 303(4) 1623(4) 35(1)
N(43) 4218(4) 148(4) 1954(4) 54(2)
N(1) -30(4) 1484(4) -261(4) 34(1)
C(1) 495(5) 2124(5) 435(5) 38(2)
C(2) 528(5) 3122(5) 288(6) 44(2)
Cl(1) 1251(2) 3875(1) 1228(2) 72(1)
C(3) -13(6) 3489(6) -622(6) 57(2)
C(4) -562(6) 2845(6) -1329(6) 55(2)
C(5) -556(5) 1856(5) -1139(5) 41(2)
N(2) 2466(4) 1416(4) 64(4) 35(1)
C(6) 3096(5) 2042(5) 698(5) 38(2)
C(7) 3171(5) 3015(5) 487(5) 43(2)
Cl(2) 4023(2) 3780(2) 1340(2) 72(1)
C(8) 2588(5) 3381(5) -418(5) 47(2)
C(9) 1926(5) 2729(5) -1077(5) 49(2)
C(10) 1885(5) 1751(5) -829(5) 42(2)
N(3) 2575(4) -1545(4) 659(4) 35(1)
C(11) 2085(5) -2194(5) -32(5) 42(2)
C(12) 2117(5) -3210(5) 136(6) 49(2)
Cl(3) 1417(2) -3976(2) -813(2) 76(1)
C(13) 2683(6) -3578(6) 1025(7) 59(2)
C(14) 3188(6) -2909(6) 1711(6) 65(2)
C(15) 3129(5) -1893(5) 1532(5) 49(2)
N(4) 4791(4) 1422(4) -461(4) 37(1)
C(16) 5392(5) 2136(5) 96(5) 41(2)
C(17) 5296(5) 3109(5) -181(6) 46(2)
Cl(4) 6101(2) 3966(1) 599(2) 68(1)
C(18) 4573(6) 3375(6) -1058(6) 55(2)
C(19) 3950(6) 2648(6) -1619(6) 58(2)
C(20) 4097(5) 1692(5) -1300(5) 48(2)

a U(eq) is defined as one-third of the trace of the orthogonalizedUij

tensor.
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N(21) 2.569(5) Å long distance and a Cu(3)-N(41) 1.988(5)
Å short distance. The chain may be described as the alternance
of two groups of the mixed end-to-end and end-on bridges with
two groups of double end-on bridges along the one-dimensional
compound.

Magnetic Properties. Plot of theøMT product vsT in the
temperature range of 300-2 K is shown in Figure 3. The
minimum øMT value of 0.989 cm3‚K‚mol-1 at 10 K, placed
between the room temperature and the 2 K values of 1.360 and
1.722 cm-3‚K‚mol-1, respectively, corresponds to the typical
shape of a ferrimagnetic system. If one takes into account that
SA ) SB, the only possibility to explain this behavior is by means
of two differentJ1 andJ2 coupling constants for the two kinds
of bridge present along the chain, with aJ1J1-J2J2 alternance,
and with the assumption that the twoJ values have opposite
signs, which is to say the interactions should be one ferromag-
netic and the second antiferromagnetic.

Analytical expressions for a system with twoJ1 alternated
with two J2 interactions are not available, and a fit of the
experimental data was performed in numerical form from a full-

matrix diagonalization11 of the Hamiltonian corresponding to a
ring of 12 localS ) 1/2 centers with the adequate alternance
of J1J1 andJ2J2. The best fit parameters obtained by minimizing
theR factor) (∑øMTcalc- øMTobs)2/(øMTobs)2, whereJ1 ) -19.6
cm-1, J2 ) +10.6 cm-1, g ) 2.21, andR ) 4.3 × 10-4. The
fit shows a small deviation only in the very low-temperature
range despite the ground state for the ferrimagnetic 12 coppers
ring being the limiting valueS ) 3.

From the topology of the chain, which shows three parallel
and one antiparallel spins for each Cu4 unit, the molar
magnetization measurement at 2 K confirms the ferrimagnetic
behavior of the chain: the plot ofM/Nâ vs applied magnetic
field reach a 1.9 value in 2S units and tends to theS ) 1 for
each of four cooper atoms, Figure 4. EPR spectra show the
typical shape of an axial copper(II) withg| ) 2.22 andg⊥ )
2.05, as may be expected from structural data.

This topologic ferrimagnetic behavior withSA ) SB suggests
a new way to build ferrimagnetic compounds from ferromag-
netic building blocks linked by means of antiferromagnetic
interactions, independently of the local spin values.

TheJ2 value of+10.6 cm-1 may be unambiguously assigned
to the Cu(µ1,1-N3)2Cu bridges, which typically show ferromag-

(11) CLUMAG program: Gatteschi, D.; Pardi, L.Gazz. Chim. Ital. 1993,
123, 231.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for [Cu(3-Clpy)2(N3)2]n

Cu(1)‚‚‚Cu(2) 3.495(2) Cu(2)‚‚‚Cu(3) 4.130(2)

Cu(1)-N(1) 2.040(5) Cu(2)-N(3) 2.040(5) Cu(3)-N(41) 1.988(5)
Cu(1)-N(11) 2.006(5) Cu(2)-N(11) 2.525(5) Cu(3)-N(4) 2.025(5)
Cu(1)-N(31) 2.471(5) Cu(2)-N(31) 1.997(5) Cu(3)-N(21) 2.569(5)

Cu(2)-N(21) 1.997(5)
Cu(2)-N(2) 2.053(5)
Cu(2)-N(43) 2.733(6)

N(11)-N(12) 1.144(7) N(31)-N(32) 1.173(7)
N(12)-N(13) 1.146(9) N(32)-N(33) 1.136(8)
N(21)-N(22) 1.182(8) N(41)-N(42) 1.190(7)
N(22)-N(23) 1.166(9) N(42)-N(43) 1.171(8)

N(11)-N(12)-N(13) 178.8(11) N(31)-N(32)-N(33) 176.9(7)
N(21)-N(22)-N(23) 175.0(8) N(41)-N(42)-N(43) 178.6(6)

Cu(1)‚‚‚Cu(2)‚‚‚Cu(3) 164.60(3) N(11)-Cu(2)-N(31) 78.1(2)
Cu(1)-N(11)-Cu(2) 100.3(2) N(43)-Cu(2)-N(21) 91.3(2)
Cu(1)-N(31)-Cu(2) 102.4(2) N(41)-Cu(3)-N(21) 92.7(2)
Cu(2)-N(21)-Cu(3) 129.1(3) Cu(2)-N(43)-N(42) 101.0(5)
N(11)-Cu(1)-N(31) 79.2(2) N(42)-N(41)-Cu(3) 119.8(4)

Figure 2. ORTEP drawing (50% of thermal ellipsoid probability) of
[Cu(3-Clpy)2(N3)2]n with atom-labeling scheme.

Figure 3. øMT vs T plot for [Cu(3-Clpy)2(N3)2]n. The solid line shows
the best fit theoretical curve obtained from full-matrix diagonalization
of the Hamiltonian corresponding to a 12-copper ring (see text).
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netic interactions for bond angles close to 100°.12 TheJ1 value
of -19.6 cm-1 should be assigned to the Cu(µ1,1-N3)(µ1,3-N3)-
Cu unit, which show two different superexchange pathways.

This J1 value is similar to or greater than the values found for
two end-to-end bridges,13 such as (µ1,3-N3)2[Cu(pmdn)]2(BPh4)2

(-13 cm-1) and greater than the expected coupling for an
interaction through one ferromagnetic and one an antiferromag-
netic pathway. On the basis of this result, antiferromagnetic
contribution to the superexchange may be proposed for the end-
on bridge in this case, due to the very large value of the Cu-
N-Cu bond angle of 129.1° and an overall antiferromagnetic
coupling for the Cu(2)-Cu(3) interaction.
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Figure 4. Molar magnetization measurement for [Cu(3-Clpy)2(N3)2]n

assuming then ) 4 sequence as molar unit. As corresponds to the
spin arrangement, a finalS ) 1 spin is reached at high field.
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