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Molecules which contain donor atoms or reactive bonds within
a molecular cavity or cleft are interesting because the chemistry
within these regions can be unique.1-4 Recently we reported such
cyclotetraphosph(III)azanes, [C6H4N2(PR)2]2 (1, 2), molecules that

are unusual because they incorporate an eight-membered P4N4

ring into a rigid orthocyclophane system.5,6 The P(1,4) atoms
possess lone-pair electrons which point into a molecular cleft
formed between the upward pointing substituents on P(2,3).
Preliminary studies showed that1 displays highly selective and
sometimes unusual coordination chemistry toward transition
metals or metal moieties.5b Unfortunately, to date it has been
possible to obtain1 or 2 only from RPCl2/1,2-(NH2)2C6H4

condensation reactions among mixtures of linear oligomers/
polymers and phosphazane redox products.6 We now report a
synthetic route to these which not only is highly efficient but
also allows synthesis of new classes of heteroatom-substituted
derivatives.

Triphosphazane36 reacts with 1,2-(NH2)C6H4 and Et3N in
acetonitrile to precipitate [Et3NH]Cl and form cyclotriphosphazane
4.7 Compound4 is the major product; only minor quantities of
1 and other unidentified phosphazanes are seen in the31P NMR
spectrum of the reaction mixture. There is no evidence for other
isomers of4. Cyclophosphazane4 shows the expected spectral
properties; the AX2 31P NMR spectrum consists of coupled doublet
(area 2) and triplet (area 1) resonances.

Reactions of4 with RPCl2 (R ) Me, Ph) or MeSi(H)Cl2 and
Et3N in acetonitrile yield1 and the heterosubstituted cyclophos-
phazanes5 and6.8,9 Whereas the RPCl2 reactions proceed readily
at 25°C, the MeSi(H)Cl reaction requires a 2 hreflux. The31P
NMR spectrum of5 consists of two area 1 doublets (JP1‚‚‚P4) of
triplets (2JPNP) and an area 2 apparent triplet assigned to atoms
P(1), P(4), and P(2,3), respectively. The spectrum of6 is a
coupled area 2 doublet [P(2,3)] and an area 1 triplet [P(1)]. The
2JPNP couplings in5 and6 are closely similar, ranging from 16.6
to 19.5 Hz; the similarity of these in5 causes the P(2,3) resonance
to appear as a triplet. The close transannular proximity of P(1)
and P(4) in5 and P(1) and the Si-H hydrogen in6 produces
strong through-space coupling. TheJP1‚‚‚P4 of 93.0 Hz in 5 is
comparable to those reported earlier in molecules that contain
phosphorus atoms separated by too many bonds to show normal
through-bond coupling, but which exist in conformations that
allow through-space coupling.10 This coupling causes the P(1)
and P(4) resonances, otherwise expected to be triplets, to appear
as doublets of triplets. Similarly, theJP1‚‚‚H1 coupling of 11.0 Hz
in 6 is suprisingly large, causing a doublet of quartets for the
Si-H proton 1H NMR spectral resonance. Since these effects
occur in rigid molecules, where the structure in solution is likely
to be close to that in the solid,5 and6 offer fertile ground for
further theoretical studies of through-space coupling effects.

The structures of4 (Figure 1) and6 (Figure 2) are verified by
X-ray single-crystal analysis;11 the structure of5 is inferred from
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spectral data. All contain 1,2-C6H4 groups bonded to adjacent
nitrogen atoms in a cis orientation, thus providing the skeletal
stabilization characteristic of molecules in this family.5 Com-
pound6 is an analogue of1 and2, in which a MeSi(H) moiety
occupies one bowsprit position of the cyclophosphazane ring such
that the Si-H bond points into the molecular cleft between the
phenyl rings on phosphorus atoms P(2,3). In both4 and6, the
P(1) atoms are bonded to outward-pointing phenyl (exo) groups
and contain inward pointing (endo) lone pairs, analogous to what
is seen in1.5 By analogy to that seen in4 and6, it is assumed
that in 5 the Ph and Me groups are also in exo positions. The
absence of a bridging group in the bowsprit position of4 leads
to greater flexibility than is present in1 and6. Distances between
midpoints of both the 1,2-C6H4 groups (5.14 Å) and upward-
pointing phenyl rings of4 (7.85 Å), are appreciably greater than

the corresponding distances (3.71 and 7.05 Å) and (4.01 and 6.72
Å) shown in1 or 6, respectively.6 Bond distances in both4 and
6 are as expected;5,12,13 the mean P-N distances correspond
closely to those observed earlier in1 and its sulfide derivatives.5

Besides being a useful synthon for new heterosubstituted
cyclophosphazanes,4 might also be a novel PN2-type tripodal
ligand, capable of unique reactivity and coordination. Studies
of 4-6 coordination chemistry and the use of4 in the synthesis
of other new skeletally stabilized cyclophosphazanes continue in
our laboratories.
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Figure 1. Structure and numbering scheme of4. Atoms are shown at
the 50% probability level. Selected bond lengths (Å) and angles (deg):
P(1)-N(1), 1.7420(12); P(1)-N(2), 1.7507(12); P(2)-N(3), 1.7030(13);
P(2)-N(2), 1.7423(12); P(3)-N(4), 1.7051(13); P(3)-N(1), 1.7395(12);
N(3)-H(3), 0.890(8); N(4)-H(4), 0.893(8); N(1)-P(1)-N(2), 92.49-
(6); N(3)-P(2)-N(2), 108.10(6); N(4)-P(3)-N(1), 106.80(6); P(3)-
N(1)-P(1), 120.16(7); P(2)-N(2)-P(1), 121.02(7); H(3)-N(3)-P(2),
118.5(12); H(4)-N(4)-P(3), 116.8(12).

Figure 2. Structure and numbering scheme of6. Atoms are shown at
the 50% probability level. Selected bond lengths (Å) and angles (deg):
Si(1)-H(1), 1.38(2); Si(1)-N(4), 1.719(15); Si(1)-N(3), 1.7661(16); Si-
(1)-C(1), 1.848(2); P(1)-N(1), 1.7416(16); P(1)-N(2), 1.7506(15);
P(2)-N(3), 1.7313(15); P(2)-N(1), 1.7354(15); P(3)-N(4), 1.7197(16);
P(3)-N(2), 1.7564(16); H(1)-Si(1)-C(11), 110.2(9); H(1)-Si(1)-N(3),
114.7(9); H(1)-Si(1)-N(4), 115.7(9); N(4)-Si(1)-N(3), 94.94(7);
N(4)-Si(1)-C(1), 109.95(9); N(3)-Si(1)-C(1), 110.56(9); N(1)-P(1)-
N(2), 93.28(7); P(2)-N(3)-Si(1), 125.36(9); P(3)-N(4)-Si(1), 129.24-
(9).
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