Synthesis of New Stanna- and Germaundecaboranes

Joel A. Dopke, Douglas R. Powell, Randy K. Hayashi, and Donald F. Gaines*

Department of Chemistry, University of Wisconsin at Madison, Madison, Wisconsin 53706

Received January 29, 1998

While carboranes are well-known and well-studied,¹ the analogous heteroboranes containing tin and germanium moieties have received comparably less attention.^{2,3} Previously reported stanna- and germaboranes include the pseudoicosahedral *closo*-EB₁₁H₁₁^{2–} (E = Ge, Sn, Pb) species and methylated derivatives;^{3f} neutral R₂EB₁₀H₁₂ (R = alkyl, Cl; E = Si, Ge, Sn), in which two terminal substituents prevent full insertion of the heteroatom;^{3b–e} and the unusual stannaundecaborane, Me₂Cl₂SnB₁₀H₁₂.^{3d} In the process of studying the chemistry of the reactive *nido*-decaborane dianion B₁₀H₁₂^{2–}, we recently reported the insertion of -BR,⁴ -CH,⁵ and $-SiR^6$ units to generate undecaboranes isoelectronic with the nido-B₁₁H₁₄[–] anion. Herein we report the synthesis of a related but new class of *nido* stanna- and germaundecaboranes by reaction of Sn(II) and Ge(II) halides with Na₂B₁₀H₁₂.

The reaction of $SnBr_2$ with a THF solution of $Na_2B_{10}H_{12}$ generates the air- and moisture-sensitive stannaborane salt, $Na_{7}Br_{7}SnB_{10}H_{12}$], in which the bromine occupies the terminal position on the tin heteroatom.⁸ A typical yield, by ¹¹B NMR, is 90%. Metathesis with [Ph₃PMe]Br in THF affords the phosphonium salt, Ph₃PMe[7-Br-7-SnB_{10}H_{12}], red crystals of which were used for X-ray structural analysis. Representative bond distances are listed in Table 1.

Treatment of 7-Br-7-B₁₀H₁₂⁻ with 1 equiv of MeLi in THF at -78 °C forms the linked species 7,7'-(SnB₁₀H₁₂)₂²⁻, in which the clusters are joined via an Sn–Sn bond.⁹ It is postulated that this linkage is forged after elimination of LiBr, formation of the

- (5) Bridges, A. N.; Gaines, D. F. Inorg. Chem. 1995, 34, 4523.
- (6) Dopke, J. A.; Bridges, A. N.; Schmidt, M. R.; Gaines, D. F. Inorg. Chem. 1996, 35, 7186.
- (7) In accordance with Wade's rules: Wade, K. *Electron Deficient Compounds*; Meredith Corporation: New York, 1971.
- (8) Since preparations of 7-I-7-GeB₁₀H₁₂⁻ and 7-Br-7-SnB₁₀H₁₂⁻ are very similar, only a description of the synthesis of the stannaborane is provided here: A solution of Na₂B₁₀H₁₂ (prepared from 4.19 mmol of B₁₀H₁₄ and excess NaH)⁵ in 60 mL of THF was added to a 200 mL Schlenk flask containing a magnetic stir bar and a slurry of SnBr₂ (1.31 g, 4.67 mmol) in 20 mL of THF. The solution immediately turned an opaque red-orange, and gray-black material (probably metallic tin) deposited upon stirring for 2 h. Anhydrous [Ph₃PMe]Br (1.43 g, 4.03 mmol) was added to the solution under nitrogen, and the flask contents were stirred overnight. The flask contents were filtered and the volatiles removed from the filtrate in vacuo. The residue was dissolved in THF (15 mL), and then Et₂O (75 mL) was added to precipitate the free-flowing, red-orange powder.

Table 1. Selected Bond Distances (Å) for $Ph_3PMe[7-BrSnB_{10}H_{12}]$, $[Bu_4N]_2[7,7'-(SnB_{10}H_{12})]$, and $Ph_3PMe[7-IGeB_{10}H_{12}]$

	$7\text{-}BrSnB_{10}H_{12}^{-}$	$7,7'\text{-}(SnB_{10}H_{12})_2{}^{2-}$	$7 \text{-} \text{IGeB}_{10} \text{H}_{12}^{-}$
$E-B(8)^a$	2.521(5)	2.478(6)	2.203(7)
E-B(11)	2.546(5)	2.489(7)	2.218(7)
E-B(2)	2.495(5)	2.484(7)	2.216(6)
E-B(3)	2.487(4)	2.483(9)	2.218(7)
$E-X^b$	2.5868(5)	2.8886(6)	2.5901(8)
B(8-9)	1.806(7)	1.877(8)	1.855(10)
B(9-10)	2.028(7)	1.944(9)	1.925(10)
B(10-11)	1.801(7)	1.856(9)	1.857(10)
av B–B	1.787	1.813	1.801

 a E = Sn or Ge. b X = Br, Sn, or I.

intermediate 7-Me-7-SnB₁₀H₁₂⁻, and oxidative elimination of C₂H₆. Air- and moisture-sensitive red crystalline plates of $[Bu_4N]_2[7,7'-(SnB_{10}H_{12})_2]$ were used to establish the X-ray crystallographically determined structure shown in Figure 1. Representative bond distances are listed in Table 1.

Similarly, the air- and moisture-sensitive iodogermaborane, 7-I-7-GeB₁₀H₁₂⁻, is formed by the reaction of Na₂B₁₀H₁₂ with GeI₂ in THF. A typical yield, by ¹¹B NMR, is 75% with B₁₀H₁₄ as the primary contaminant. Metathesis with [Ph₃PMe]Br in THF affords the yellow phosphonium salt which may be acquired, decaborane free, by washing with ether.⁸ The X-ray crystallographically determined structure of Ph₃PMe[7-I-7-GeB₁₀H₁₂] is shown in Figure 2. Representative bond distances are listed in Table 1.

The ¹¹B NMR spectra of these stanna- and germaboranes show six doublet resonances of relative intensity 2:2:2:2:1:1, consistent with species possessing C_s symmetry. For reasons not yet understood, the stannaborane resonances tend to be broadened. The ¹¹B NMR spectra for 7-Br-7-SnB₁₀H₁₂⁻ and 7-I-7-GeB₁₀H₁₂⁻ have been assigned unambiguously on the basis of their ¹¹B-¹¹B COSY spectra. All expected connectivities are observed. Twodimensional NMR experiments for 7,7'-(SnB₁₀H₁₂)₂²⁻ have allowed partial assignment and derivation of an internally consistent set of connectivities. ¹¹B NMR data, coupling constants, and assignments have been included in the Supporting Information.

Structurally, these new heteroborane anions possess characteristics of both classical borane structures and EX_3^- (E = Ge, Sn; X = halide) species. The heteroatom resides in a roughly pyramidal environment, similar to the EX_3^- anions, consistent with tin and germanium atoms in the +2 oxidation state.¹⁰ The

For examples, please see: Gmelin Handbook of Inorganic Chemistry, Boron, 8th ed.; Springer-Verlag: New York, 1988; 3rd Suppl., Vol 4.

Rudolph, R. W.; Voorhees, R. L.; Cochoy, R. E. J. Am. Chem. Soc. 1970, 92, 3351. Wong, K.-S.; Grimes, R. N. Inorg. Chem. 1977, 16, 2053. Hosmane, N. S.; Sirmokadam, N. N.; Herber, R. H. Organometallics 1984, 3, 1665. Hosmane, N. S.; de Meester, P.; Maldar, N. N.; Potts, S. B.; Chu, S. S. C.; Herber, R. H. Organometallics 1986, 5, 772. Islam, M. S.; Siriwardane, U.; Hosmane, N. S.; Maguire, J. A.; de Meester, P.; Chu, S. S. C. Organometallics 1987, 6, 1936.
(a) Gaines, D. F.; Iorns, T. V. J. Am. Chem. Soc. 1968, 90, 6617. (b)

^{(3) (}a) Gaines, D. F.; Iorns, T. V. J. Am. Chem. Soc. 1968, 90, 6617. (b) Loffredo, R. E.; Norman, A. D. J. Am. Chem. Soc. 1971, 93, 5587. (c) Loffredo, R. E.; Norman, A. D. Inorg. Nucl. Chem. Lett. 1977, 13, 599. (d) Greenwood, N. N.; Youll, B. J. Chem. Soc., Dalton Trans. 1975, 158. (e) DuPont, T. J.; Loffredo, R. E.; Haltiwanger, R. C.; Turner, C. A.; Norman, A. D. Inorg. Chem. 1978, 17, 2062. (f) Chapman, R. W.; Kester, J. G.; Folting, K.; Streib, W. E.; Todd, L. J. Inorg. Chem. 1992, 31, 979.

⁽⁴⁾ Bridges, A. N.; Hayashi, R. K.; Gaines, D. F. Inorg. Chem. 1994, 33, 1243.

⁽⁹⁾ A sample of Et₄N[7-Br-7-SnB₁₀H₁₂] (from 0.51 g, 4.20 mmol B₁₀H₁₄), dissolved in THF (40 mL) in a 200 mL Schlenk flask containing a magnetic stir bar, was cooled to -78 °C, and MeLi (1.5 M in Et₂O, 2.2 mL, 3.3 mmol) was added dropwise. A light-colored precipitate formed immediately. After 30 min at -78 °C, the flask was warmed to room temperature over 1 h. Diethyl ether (100 mL) was added to the reaction mixture, and the flask contents were allowed to stand overnight. The flask contents were filtered, leaving a red solid product, [Et₄N]₂[7,7'-(SnB₁₀H₁₂)₂], which was washed through the frit with two 15 mL portions of methylene chloride. Diethyl ether (100 mL) was added to the filtrate, causing the red product to precipitate.

⁽¹⁰⁾ Zubieta, J. A.; Zuckerman, J. J. Prog. Inorg. Chem. 1978, 24, 251. King, R. B. Inorganic Chemistry of the Main Group Elements; VCH Publishers: New York, 1995. Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: New York, 1984.

Figure 1. Crystallographically determined structure of $[Bu_4N]_2[7,7'-(SnB_{10}H_{12})_2]$ with thermal ellipsoids drawn at the 50% probability level.

Figure 2. Crystalographically determined structure of $Ph_3PMe[7-I-7-GeB_{10}H_{12}]$ with thermal ellipsoids drawn at the 50% probability level.

terminal moiety on the heteroatom lies below the plane of the open cluster face, while terminal hydrogens on B(8)–B(11) lie above the plane. The observed ¹¹⁹Sn chemical shifts for the bromostannaborane ($\delta = -268$ ppm relative to SnMe₄) and the

linked stannaborane clusters ($\delta = -336$ ppm) are consistent with observed values for other tin(II)-containing boranes.^{2,3f}

Despite the difference in heteroatom oxidation state, the NMR data is consistent with species analogous to the silaboranes 7-R-7-SiB₁₀H₁₂⁻, suggesting the heteroatom to be inserted in a similar fashion.^{6,11} Todd et al. synthesized dianionic closo stanna- and germaboranes in which the heteroatom is bare.^{3f} In these instances, the +2 heteroatom contributes two electrons toward cluster bonding much like a BH unit.⁷ Methylation of the group IV heteroatom with MeI converts it to a three-electron donor. The cluster bonding appears to be analogous to that proposed for the heteroboranes described here. The E–X moiety (X = Br⁻, I⁻, 7-SnB₁₀H₁₂⁻) must donate three electrons to cluster bonding for these stanna- and germaboranes to be isoelectronic with the nido silaborane anions and B₁₁H₁₄⁻.⁷ Further studies of these new group IV heteroundecaboranes are underway.

Acknowledgment. We thank the WARF and the NSF (Grants DMR-9121074, CHE-9629688, and CHE-9310428) for partial support.

Supporting Information Available: Figures showing NMR data for 7-Br-7-SnB₁₀H₁₂⁻ (¹¹B, ¹¹B, ¹¹B, ¹¹Sn, ¹¹B-¹¹B COSY), 7,7'-(SnB₁₀H₁₂)₂²⁻ (¹¹B, ¹¹B{¹H}, ¹¹9Sn), and 7-I-7-GeB₁₀H₁₂⁻ (¹¹B, ¹¹B{¹H}, ¹¹B-¹¹B COSY) and structure tables for 7-Br-7-SnB₁₀H₁₂⁻, 7,7'-(SnB₁₀H₁₂)₂²⁻, and 7-I-7-GeB₁₀H₁₂⁻ (78 pages). Ordering information is given on any current masthead page.

IC980111N

⁽¹¹⁾ Wesemann, L.; Englert, U. Angew. Chem., Int. Ed. Engl. 1996, 35, 527.