Structural, Magnetic, and Ion-Exchange Properties of RbMnHP₃O₁₀

A. J. Wright and J. P. Attfield*,[†]

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

Received February 26, 1998

The crystal structure, magnetic properties, and ion-exchange behavior of RbMnHP₃O₁₀ have been determined. The crystal structure (a = 12.1866(3) Å, b = 8.3586(2) Å, c = 9.0763(3) Å, $\beta = 109.067(1)^{\circ}$, space group C2/c), determined from X-ray powder diffraction, is of NH₄FeHP₃O₁₀ type, consisting of hydrogen triphosphate anions linking Jahn–Teller distorted Mn^{III}O₆ octahedra around Rb⁺ cations. Magnetic susceptibility measurements and low-temperature neutron powder diffraction show that RbMnHP₃O₁₀ behaves as a Curie–Weiss paramagnet at high temperatures and orders antiferromagnetically below a Néel temperature of 10 K. The magnetic structure is commensurate with the nuclear cell, and the collinear antiferromagnetic structure has magnetic symmetry group $P_{C2/c'}$ with spins of 3.82(6) $\mu_{\rm B}$ lying in the *ac* plane. Exchange of H⁺ for Li⁺ has not proved possible without a breakdown of the RbMnHP₃O₁₀ framework due to strong symmetric hydrogen bonding between triphosphate anions.

Introduction

The properties of inorganic framework materials are of importance in many areas of current research. This can be attributed to both the relevance of their chemical behavior and their diversity. Some have the ability to catalyze organic reactions within their frameworks,¹ while others exhibit enhanced ion-exchange properties or high ionic conductivity^{2,3} which find applications in rechargeable batteries and fuel cells research. Such properties are mainly a consequence of the open framework structures adopted by these materials and have led to an intensive worldwide search for materials with similar structural characteristics. This has produced numerous new examples, among which are transition metal phosphate frameworks such as FePO's,⁴ ZnPO's,⁵ and CoPO's.⁶ The magnetic properties of many of these materials are also of fundamental interest in understanding the nature of magnetic interactions.

We are currently searching for new framework materials with the ability to "switch" between distinct framework geometries by means of ion exchange, leading to the possibility of flexible host materials. This behavior, first demonstrated by Li^+/H^+ exchange in MnAsO₄·H₂O,⁷ requires the presence of Jahn– Teller cations in the framework. The exchange of Li⁺ for H⁺ produces a switch in the framework geometry, resulting from cooperative changes to the Jahn–Teller distortions of the MnO₆ octahedra. This has led us to study the series of phases, AMnHP₃O₁₀ (A = K, Rb, Cs) which contain high-spin 3d⁴ Mn³⁺. The structure of CsMnHP₃O₁₀ has previously been

- (1) Thomas, J. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 913–937.
- (2) Brochu, R.; Lamzibri, A.; Aadane, A.; Arsalane, S.; Ziyad, M. Eur. J. Solid State Inorg. Chem. 1991, 28, 253–270.
- (3) Clearfield, A. Eur. J. Solid State Inorg. Chem. 1991, 28, 37–56.
- (4) Corbin, D. R.; Whitney, J. F.; Fultz, W. C.; Stucky, G. D.; Eddy, M. M.; Cheetham, A. K. *Inorg. Chem.* **1986**, *25*, 2279–2280.
- (5) Harrison, W. T. A.; Nenoff, T. M.; Eddy, M. M.; Martin, T. E.; Stucky, G. D. J. Mater. Chem. 1992, 2, 1127–1134.
- (6) Chen, J.; Jones, R. H.; Natarajan, S.; Hursthouse, M. B.; Thomas, J. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 639–640.
- (7) Aranda, M. A. G.; Attfield, J. P.; Bruque, S. J. Chem. Soc., Chem. Commun. 1991, 604–606.

reported⁸ from a single-crystal X-ray diffraction study and is known to consist of chains of HP_3O_{10} units, interlinked by tetragonally distorted MnO_6 octahedra, to form a threedimensional framework. RbMnHP₃O₁₀ was first prepared by Guzeeva and Tananaev,⁹ who reported an X-ray powder diffraction pattern but no further crystallographic information. Here we report the crystal structure and magnetic properties of this phase and some attempts to exchange the H⁺ ion by Li⁺.

Experimental Section

RbMnHP₃O₁₀ was prepared from a solution of Rb₂CO₃, Mn₂O₃, H₃-PO₄ (85%), and concentrated HNO₃ in a molar ratio of Rb:Mn:P:N of 7:2:20:5. This solution was heated to 250 °C for 48 h and then slowly cooled to room temperature over 12 h, after which the brown microcrystalline product was collected by filtration and washed with water. The nitric acid in the reaction mixture maintains the Mn³⁺ oxidation state during the reaction.

The X-ray powder diffraction pattern of the product matched that reported for RbMnHP₃O₁₀,⁹ and a long scan ($2\theta = 4-100^{\circ}$, 0.02° steps, 10 s per step) was performed for structure determination on a Phillips PW1710 diffractometer using unmonochromated Cu K α radiation. Neutron powder diffraction data were collected on the D20 instrument at ILL, Grenoble, France. This instrument contains 1600 detectors positioned in 0.1° intervals in the range 0–160° in 2 θ . Data were collected at a wavelength of 2.4177 Å for 30 min. Rietveld analyses¹⁰ of the X-ray and neutron data were performed using the GSAS software package¹¹ to refine the crystal and magnetic structures for this material.

Magnetic susceptibility data were collected on a 57.8 mg sample of RbMnHP₃O₁₀ from 4 to 100 K in a field of 1 T on a Quantum Design SQUID magnetometer. The sample had previously been cooled in zero field.

Ion exchange of H⁺ for Li⁺ was attempted using a number of methods. These included a solid-state reaction of intimately mixed RbMnHP₃O₁₀ and a lithium salt (LiNO₃ or Li₂CO₃ or LiOH or LiCl) in molar ratios varying from 1:1 to 1:10 at temperatures ranging from

- (9) Guzeeva, L. S.; Tananaev, I. V. Inorg. Mater. 1988, 24, 538-542.
- (10) Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65-71.
- (11) Larson, A. C.; Von Dreele, R. B. Los Alamos National Laboratory Report No. LA-UR-86-748, 1994.

[†] E-mail: jpa14@cam.ac.uk. Fax: +44 1223 336362.

⁽⁸⁾ Murashova, E. V.; Chudinova, N. N. Kristallografiya 1995, 40, 476– 484.

Table 1. Structural Parameters for RbMnHP₃O₁₀ Obtained from Rietveld Analysis of 300 K Powder X-ray Diffraction (Upper Values with Bond Valence Sums¹⁷) and 2 K Neutron Diffraction Data (Italicized Lower Values Where Different) in Space Group C2/c, with Esd's in Parentheses

Fitting Factors								
$R_{\rm wp} = 3.0\%$	$R_{\rm p} = 2.2\%$	$R_F^2 = 7.0\%$	$\chi^2 = 5.2$					
2.5%	1.8%	3.6% ^a	4.4					
Lattice Parameters								
a = 12.1866(3) Å	b = 8.3586(2) Å	c = 9.0763(3) Å	$\beta = 109.067(1)^{\circ}$					
12.178(1) Å	8.3513(9) Å	9.089(1) Å	108.990(5)					

Positional Parameters

atom	site	x	у	z	$U_{\rm iso}/{\rm \AA}^2$ b	BVS
Rb	4e	0	0.4358(3)	1/4	0.047(2)	0.95
			0.437(1)		0.033(4)	
Mn	4c	1/4	1/4	0	0.011(2)	2.99
					0.001(1)	
P(1)	8f	0.2922(4)	0.5590(5)	0.2060(4)	0.001(1)	5.48
		0.2907(8)	0.563(1)	0.207(1)	0.001	
P(2)	4f	1/2	0.3681(7)	1/4	0.001	5.22
			0.368(1)		0.001	
O(1)	8f	0.4181(6)	0.4854(7)	0.2973(8)	0.003(2)	2.20
		0.4157(7)	0.485(1)	0.303(1)	0.001	
O(2)	8f	0.2213(6)	0.4335(9)	0.1093(7)	0.003	2.27
		0.2147(7)	0.430(1)	0.102(1)	0.001	
O(3)	8f	0.3272(6)	0.6980(8)	0.1247(7)	0.003	1.87
		0.3235(7)	0.707(1)	0.115(1)	0.001	
O(4)	8f	0.2431(6)	0.6039(9)	0.3252(7)	0.003	2.23
		0.2401(7)	0.617(1)	0.324(1)	0.001	
O(5)	8f	0.4400(7)	0.2753(7)	0.1069(7)	0.003	1.73
		0.4341(6)	0.281(1)	0.114(1)	0.001	
Н	4d	1/4	1/4	1/2	0.003	0.67
					0.032(8)	

^{*a*} R_F^2 values for the nuclear and magnetic reflections were 3.3% and 14.1%. ^{*b*} Values shown without esd's were constrained to be equal to those of the atom above.

150 to 250 °C, for up to 4 weeks. Refluxing RbMnHP₃O₁₀ with LiCl in 1-hexanol at 150 °C was also attempted. In those cases when a reaction occurred, a mixture of phases was formed including Li₃PO₄ which indicated that the framework structure had been broken down. No evidence for a Li-exchanged product was observed.

Results

Crystal Structure. The X-ray powder pattern obtained from RbMnHP₃O₁₀ clearly indicated a structure type different from that of CsMnHP₃O_{10.8} The pattern was indexed from 22 accurately measured reflection positions using the Treor program¹² on a C-centered monoclinic cell (a = 12.180(1) Å, b =8.355(1) Å, c = 9.075(1) Å, $\beta = 109.07(1)^{\circ}$). This cell is similar to that of NH₄FeHP₃O₁₀,¹³ which has C2/c space group symmetry, and so this structure was used as the initial model for the Rietveld analysis. The refinement, which utilized an asymmetry corrected pseudo-Voigt peak shape,^{14,15} a linear interpolated background function, and a surface roughness correction,¹⁶ converged to $R_{\rm wp} = 3.0\%$. The final refined structural parameters are listed in Table 1, with bond lengths and angles shown in Table 2. The fitted profile is displayed in Figure 1, and views of the structure are shown in Figures 2 and 3. Bond valence sum (BVS) calculations were performed using

Figure 1. Observed (+), calculated, and difference X-ray powder diffraction profiles of RbMnHP₃O₁₀ at 300 K.

Table 2. Bond Lengths (Å) and Selected Angles (deg) for RbMnHP₃O₁₀ Obtained from Rietveld Analysis of 300 K X-ray Powder Diffraction Data, with Esd's in Parentheses

Mn - O(2)	1.919(8) (×2)	O(2)-Mn-O(2')	180
Mn - O(4)	1.982(8) (×2)	O(2)-Mn-O(4)	87.4(3)
Mn - O(5)	2.209(7) (×2)	O(2)-Mn-O(4')	92.6(3)
		O(2)-Mn-O(5)	92.2(3)
P(1) - O(1)	1.609(6)	O(2) - Mn - O(5')	87.8(3)
P(1) - O(2)	1.458(8)	O(4)-Mn-O(4')	180
P(1) - O(3)	1.510(7)	O(4)-Mn-O(5)	93.3(3)
P(1) - O(4)	1.446(7)	O(4) - Mn - O(5')	86.8(3)
P(2) - O(1)	1.556(6) (×2)		
P(2) - O(5)	1.484(6) (×2)	O(1) - P(1) - O(2)	108.2(5)
		O(1) - P(1) - O(3)	99.9(4)
Rb-O(2)	3.340(6) (×2)	O(2) - P(1) - O(3)	117.8(5)
Rb-O(2')	3.654(7) (×2)	O(1) - P(2) - O(1')	101.9(5)
Rb-O(3)	2.848(7) (×2)	O(1) - P(2) - O(5)	113.2(4)
Rb-O(4)	3.146(7) (×2)	O(1) - P(2) - O(5')	105.3(4)
Rb-O(5)	3.107(6) (×2)	O(5) - P(2) - O(5')	117.0(7)
H = O(3) O(3) = O(3')	$1.289(6) (\times 2)$ 2.578(12)	O(3)-H-O(3')	180
0(3) = 0(3)	2.576(12)		

the method and parameters of Brown and Altermatt,¹⁷ and these are also listed in Table 1.

The Rietveld analysis of the 2 K neutron diffraction data was also achieved with an asymmetry-corrected pseudo-Voigt peak shape^{14,18} and a linear interpolated background function. The final refined parameters (from a fit to the nuclear and magnetic intensities as described below) are included in Table 1, and the profile is shown in Figure 4. Although the resolution of the D20 instrument at high 2θ angles limits the accuracy of the refinement confirms that the structure type for RbMnHP₃O₁₀ at 2 K is the same as that at 300 K, without evidence for any low-temperature structural distortions. Refining the H atom off the high symmetry (1/4, 1/4, 1/2) site did not lead to a significant improvement in the fit, and so H was kept at this position in the final neutron and X-ray refinements.

Magnetic Properties. The magnetic susceptibility data (Figure 5) show that RbMnHP₃O₁₀ orders antiferromagnetically with $T_{\rm N} = 10$ K. At higher temperatures it behaves as a Curie–Weiss paramagnet. The fitted Curie–Weiss curve (after diamagnetic correction) for RbMnHP₃O₁₀ gives a Weiss constant $\Theta = -1.2$ K and an effective magnetic moment $\mu_{\rm eff} = 4.6 \,\mu_{\rm B}$ (compared to 4.9 $\mu_{\rm B}$ expected for high-spin 3d⁴ Mn³⁺).

After the nuclear contribution was fitted for the 2 K neutron diffraction pattern, several magnetic peaks were evident (see

⁽¹²⁾ Werner, P. E. Z. Kristallogr. 1969, 120, 375-387.

⁽¹³⁾ Krasnikov, V. V.; Konstant, Z. A.; Fundamenskii, V. S. *Inorg. Mater.* 1983, 19, 1231–1235.

⁽¹⁴⁾ Thompson, P.; Cox, D. E.; Hastings, J. B. J. Appl. Crystallogr. 1987, 20, 79–83.

⁽¹⁵⁾ Finger, L. W.; Cox, D. E.; Jephcoat, A. P. J. Appl. Crystallogr. 1994, 27, 892–900.

⁽¹⁶⁾ Collazo, J.; Hermann, H.; Pitschke, W.; Wetzig, K. J. Appl. Crystallogr. 1997, 30, 312–319.

⁽¹⁷⁾ Brown, I. D.; Altermatt, D. Acta Crystallogr. 1985, B41, 244–247.
(18) Howard, C. J. J. Appl. Crystallogr. 1982, 15, 615–620.

Figure 2. [010] projection of the crystal and magnetic structures of RbMnHP₃O₁₀ showing the unit cell. Only the MnO₆ and PO₄ polyhedra are shown, and one P_3O_{10} unit is hatched.

Figure 3. Polyhedral view of the structure of RbMnHP₃O₁₀ showing Rb (large spheres) and H atoms (small spheres) enclosed in channels. The symmetric O(3)–H–O(3') hydrogen bonds are also displayed.

Figure 4. Observed (+), calculated, and difference neutron powder diffraction profiles of RbMnHP₃O₁₀ at 2 K. The five magnetic peaks marked in order of increasing 2θ are (011), (210)/(211), (102), (122), and (013).

Figure 4) and were indexed on the same unit cell as the nuclear structure, with reflection conditions consistent with magnetic symmetry group $P_C 2/c'$. The magnetic intensities were Rietveld-fitted using a calculated form factor.¹⁹ Good agreement between observed and calculated intensities was obtained only with the

(19) Freeman, A. J.; Watson, R. E. Acta Crystallogr. 1961, 14, 231-234.

Figure 5. Magnetic susceptibility data for RbMnHP₃O₁₀ between 4 and 100 K. The fitted Curie–Weiss curve is also shown.

moments in the *ac* plane. Refining the two components gave a resultant moment of 3.82(6) $\mu_{\rm B}$ directed 24(2)° from *a* and 85(2)° from *c*. The relative direction of the four Mn spins in the unit cell are (1/4, 1/4, 0)+, (3/4, 3/4, 0)-, (3/4, 1/4, 1/2)-, and (1/4, 3/4, 1/2)+, as shown in Figure 2.

Discussion

Overall, the structure of RbMnHP₃O₁₀, like that of CsMnHP₃O₁₀, consists of MnO₆ octahedra linked by hydrogen triphosphate anions around alkali-metal cations. These three-dimensional framework structures can be contrasted to those of other M^IM^{III}HP₃O₁₀ materials, such as NH₄AlHP₃O₁₀²⁰ and CsGaHP₃O₁₀,²¹ which have the M^I cations separating layers of HP₃O₁₀^{4–} and M^{III}O₆ units.

The BVS values (Table 1) are in agreement with the expected values, although the bond distances (Table 2) show that the MnO₆ and PO₄ polyhedra are highly distorted. The MnO₆ octahedra show a typical [4 + 2] Jahn–Teller distortion, with four short Mn–O bonds (2 × 1.919(8) Å, 2 × 1.982(8) Å) and two long bonds (2 × 2.209(7) Å). The triphosphate group contains three distorted PO₄ tetrahedra, with long P–O bonds to the bridging O(1) atom, intermediate P(1)–O(3)H distances, and short bonds to the terminal O(2), O(4) and O(5) atoms. This pattern of P–O bond lengths within a P₃O₁₀ unit has been observed previously for CsMnHP₃O₁₀.⁸ Rb⁺ is in 10-fold coordination as is Cs⁺ in CsMnHP₃O₁₀, but the difference in size between these two cations leads to different structures being adopted.

Strong, symmetric O···H···O hydrogen bonding, which is found in many hydrogen phosphates,²² links the triphosphate anions into chains. The H atom is located at a center of symmetry between two O(3) atoms, but the high thermal factor in the 2 K neutron refinement, equivalent to a root-mean-square displacement of 0.18 Å, suggests that a static or dynamic disorder of H occurs around the mean position. This is consistent with the low BVS value for H⁺ as the calculated valence is related exponentially to the bond length. Similar symmetric O···H···O hydrogen bonding found in CaHPO₄ at room temperature²³ has been reported to order into long and

- (22) Emsley, J. Chem. Soc. Rev. 1980, 9, 91-124.
- (23) Catti, M.; Ferraris, G.; Filhol, A. Acta Crystallogr. 1977, B33, 1223– 1229.

⁽²⁰⁾ Averbuch-Pouchot, M. T.; Durif, A.; Guitel, J. C. Acta Crystallogr. 1977, B33, 1436–1438.

⁽²¹⁾ Anisimova, N.; Bork, M.; Hoppe, R.; Meisel, M. Z. Anorg. Allg. Chem. 1995, 621, 1069–1074.

short O–H bonds at 145 K.²⁴ However, in this study it has not been possible to determine if such H ordering occurs at low temperatures due to the low resolution of the neutron data.

An important feature of the RbMnHP₃O₁₀ structure is that channels lie parallel to the [110] and [010] directions (Figures 2 and 3). These channels contain the H⁺ sites which suggest that these ions might be exchangeable. However, the failure of attempts to ion exchange H⁺ for Li⁺ indicates that the very strong hydrogen bonding between triphosphate groups may be necessary to maintain the framework structure. This seems to preclude the possibility of RbMnHP₃O₁₀ being a "switchable framework".

The sharp Néel transition observed in the susceptibility data collected from RbMnHP₃O₁₀ and the negative Weiss constant, Θ , indicate that three-dimensional antiferromagnetic order occurs below 10 K and the magnetic structure obtained from the low-temperature neutron data is in accordance with this. The magnetic superexchange interactions between spins are mediated by Mn–O–P–O–Mn linkages as the Mn ions are too distant from each other for direct interactions to be significant. Each Mn spin is connected to six others, four in

the *bc* plane via Mn–O(2)–P(1)–O(4)–Mn' bridges, which are apparently ferromagnetic, and two in the [101] direction through antiferromagnetic Mn–O(5)–P(2)–O(5')–Mn' linkages. Overall, this corresponds to a primitive tetragonal interaction network giving rise to nonfrustrated antiferromagnetic order. The refined magnetic moment of 3.82(6) $\mu_{\rm B}$ close to the theoretical value of 4 $\mu_{\rm B}$ for high-spin Mn³⁺. The moments lie in the *ac* plane, in the direction of the long Mn – O bonds (Figure 2), showing that the easy axis is determined by the local electronic anisotropy of the Jahn–Teller distorted MnO₆ octahedra.

In conclusion, through the use of powder diffraction methods, we have determined the nuclear and magnetic structures of RbMnHP₃O₁₀, which enable the magnetic susceptibility data and ion exchange inactivity to be explained. Although this material appears not to possess a "switchable framework", it does indicate that a wide range of structures and properties are possible in these $M^{I}M^{II}HP_{3}O_{10}$ phases.

Acknowledgment. We thank Dr P. Radaelli for assistance in the collection of neutron data, the EPSRC for provision of neutron facilities and Grant GR/K75040, and the IRC in Superconductivity for access to the SQUID magnetometer.

IC980212L

⁽²⁴⁾ Catti, M.; Ferraris, G.; Mason, S. A. Acta Crystallogr. 1980, B36, 254-259.