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Continuous Symmetry Measures. 5. The Classical Polyhedra
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The continuous symmetry measures approach, designed to assess quantitatively the degree of any symmetry within
any structure, is extended to the important class of the polyhedra. For this purpose, we developed a general
methodology and a general computational tool, which identify the minimal distance of a given structure to a
desired general shape with the same number of vertexes. Specifically, we employ this tool to evaluate quantitatively
the degree of polyhedricity within distorted polyhedra, taking as examples the most central and abundant polyhedral
structures in chemistry in general and in coordination chemistry in particular, namely the tetrahedron, the bipyramid,
the octahedron, the cube, the icosahedron, and the dodecahedron. After describing the properties of the symmetry
measurement tool, we show its application and versatility in a number of cases where the deviation from exact

symmetry has been an issue, includrgxis Jahn-Teller type polyhedral distortions, tantalum hydride complexes,
pentacoordinated zinc complexes, tetrahedral/octahedral Sn complexes, and icosahedrally digthriedeGe
anions.

1. Background continuos symmetry scale. Among these demands are the ability
to express quantitatively how much of a given symmetry there

up to practical applications, that there are certain advantages iniS in any (distorted) structure, at any temporal resolution, at any
ptlop pp ’ Y spatial resolution, and with respect to any ideal element or group

treating symmetry as a structural property of continuous nature. symmetry, the ability to express the distortion wittsiagle

Symmetry ha_s t_radmonally fur_](_:tlorjed as a condensed Ia‘nguageparameter, the ability to compare all symmetries on the same
for the description and classification of molecular and supra-

molecular shapes and structures and as an identifier of bothscale’ and the freedom from the need to select an arbitrary
apparent and irr:herent correlations between structure and ph si_reference structure. The solution to the symmetry measurement

pp - pny: problem, which we have proposed in a series of papers since
cal properties of matter. Our study of symmetry has been based

on the thesis that perfect symmetry is rarely attainable in reality; 19927 was shown to fulfill these requirements. It has proven
P y y y ) Y to be general and practical and has passed the critical test of
much more often than not, molecules a@ symmetric. To

realize it, one has to refine the resolution of observation, spatial identifying quantitative correlations between the degree of
’ . . . o symmetry and molecular properties in a wide variety of systems
or temporal, up to the point where it becomes evident. Consider, Y y prop y orsy '

for instance, the observation of “symmetric” molecules on time examples of which are collected in ref 4. Furthermore, it has
’ T Symme . also passed the test that in our view is the most crucial one,
scales that are faster then typical vibrations or rotation rates, or

consider the local distortive forces on “symmetric” molecules namely, that in all of these studied cases, the identified
. Y correlations between property and symmetry translate correctly
in the condensed phase. Symmetry has served as an ap

. - : _ . ; the physical qualitative intuition that one may have a priori on
proximate, idealized descriptive language of this reality, and the existence and direction of such correlations
Wh“elit is true .that andimpr%cisgf;gngufgge hzlps in gdraspri]ng In this report, we extend our methodology to .the family of
complex situations and in identifying first-order trends, the : _— :
danger of missing important intricate details of the complexity the high symmetries of the classical, perfect polyhedize
by this practice is there.

A natural approach to the treatment of the imprecise nature
of symmetry is to allow flexibility in its description, namely,
as mentioned above, to treat it as a structural property of
continuousnature, complementary to the classical discrete point
of view, as indeed proposed by several research groufs.
list of stringent demands must be fulfilled by any proposed

We have been advancing the notion, from the conceptual level

(2) Some examples for symmetry measurements (see also citations in ref
1): (a) Maaskant, W. J. Al. Phys.: Condens. Mattéi997, 9, 9759.
(b) Zimpel, Z.J. Math. Chem1993 14, 451. (c) Auf der Heyde, T.
P. E.; Bugi, H.-B. Inorg. Chem 1989 28, 3960. (d) Murray-Rust,
P.; Burgi, H. B.; Dunitz, J. D.Acta Crystallogr.1978 B34, 1787.
The problematics of selecting a specific reference structure was
discussed in another paper by these authors: Murray-Rust, P.; Burgi,
H.-B.; Dunitz, J. D.Acta Crystallogr.1979 A35 703. (e) Cammi,
B.; Cavalli, E.Acta Crystallogr 1992 B48, 245. Cavalli, E.; Cammi,
R. Comput. Cheml994 18, 405. (f) Mezey, P. G. Ifruzzy Logic in
Chemistry Rouvray, D. H., Ed.; Academic Press: San Diego, 1997;
pp 139. (g) Korobko, V. ISymmetry: Culture and Scd995 6, 308.
(h) Klein, D. J.J. Math. Chem1995 18, 321. (i) Kuz'min, V. E,;
Stel'mach, I. B.; Bekker, M. B.; Pozigun, D. \J. Phys. Org. Chem.
1992 5, 295. (j) Toporova, A. P.; Toporov, A. A.; Ishankhodzhaeva,
M. M.; Parpirev, N. A.Russ. J. Org. Cheml996 41, 466. (k)
Grunbaum, BProc. Symp. Pure Math.: Am. Math. S4963 7, 233.
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regular, Platonic polyhedra, namely, the tetrahedron, the octa- N
hedron, the cube, the icosahedron, and the dodecahedron, as Z|Qk - Pkl2
well as to theDn, equilateral bipyramids, taking the trigonal . k=
bipyramid as a case example. These polyhedra represent also S=mi N x 100 (1)
the prism (cube) and antiprism (octahedron) polyhedra faniilies. Q. — Q |2
The role that these structures play in chemistry and in particular kZl K 0
in coordination chemistry is so cenfréhat only with this report
we feel that we begin to approach completion of the continuous Here Q; is the coordinate vector of the center of mass of the
symmetry measures (CSM) methodology as a general working investigated structure
tool.

The development described here provides a practical and 1N
convenient way of answering questions such as “how much Q=—) Q (2)
octahedricity is there in a distorted octahedron?”; “which in a NiE
set of icosahedral fullerenes is the most distorted one?”; “what ] ) o i
is the degree of a JakiTeller degeneracy removal distortion?”; ~ The CSM defined in (1) is independent of the position,
“by how much does the symmetry of a fluxional bipyramid ~Orientation, and size of the original structure. Equation 1 is
change along the isomerization mode?”; and so on. We general and alloyvs one to evaluate the symmetry measure of
investigate currently several of these key questions; at the @ny shape relative taany symmetry group G or element.
moment we devote this report to the methodology itself, its |Q — PI*is a “measure” (a metric), the units of which are length

underlying base, its properties, and its application to some realSquared. To avoid size effects, the size of the original structure
data. is normalized to the rms distance from the center of mass of

the structure (placed at the origin) to all vertexes. As proven

below, the bounds are 1@0S> 0. However, since the practice
2. Continuous Symmetry Measure in symmetry-related studies has been to focus on small

distortions, we found it convenient to expand thelOrange

The design of a measurement tool, which translates the by a factor of 100. If a structure has the desired G-symmetry,

concept of continuous symmetry into practice, involves a certain S(G) = 0. The symmetry measure increases as it departs from
degree of arbitrariness, in the sense that one has to decide ors-symmetry and reaches a maximal value (not necessarily
issues such as how should the zero-reference level be set, what00)3 All SG) values, regardless of G, are on the same scale
should be the maximal value, what should be the actual and are therefore comparable; one can compare the degree of,
measurement yardstick, what normalization procedures shouldsay, octahedricity of various distorted octahedral complexes,
one employ, and so on. Having this in mind, we set up to base the symmetry content of various symmetry subgroups in one
the symmetry measure on a definition that would be as octahedron Cs-ness,Cs,-ness, etc.), and even different sym-
minimalistic as possibl& The amount of a given symmetry  metries in different objects.
in a structure is a function of the minimal distance that the  Since the use of similarity or distance functions as structural
vertexes of the structure have to undergo in order for it to attain descriptors is a known approatli, is in order to reiterate a
the desired symmetry. In a more formal way, the continuous unique aspect of eq 1, mentioned briefly above. A standard
symmetry measure (CSM) of the original structure is a normal- approach has been to definegecific (ideal) reference structyre
ized root-mean-square deviation from the closest structure with identified through a specific set of (Cartesian or symnigtry
the desired symmetry. It is a distance function the end point coordinates and to find the distance of the studied structure from
of which is being searched. We emphasize the generality of this preset reference. A more general and demanding task,
this definition. It does not seek the distance to a preset referenceadapted by the CSM approach, has beefinbthe coordinates
structure?d¢ but to a required symmetry. Thus, given a of the nearest ideal reference structure (the perfectly symmetric
(distorted) structure composed Nfvertexes, the coordinates one)2d For example, if one wishes to determine the degree of

of which are given by the vectq;er, k=1, 2, .. N}, we Cs,-ness in a tetrahedron, the near€st structure out of an
search for the vertex coordinatéBy, k = 1, 2, ...,N} of the infinite library is searched, located, and displaye8.
nearest perfectly G-symmetric object (G being a specific .

symmetry group) and define the symmetry measure as 3. Polyhedral CSM Approach: The Distance to a Shape

The main practical problem is then how to find the nearest
(4) Examples include the following. (a) Application of centrosymmetry structure that has the desired symmetry, namely how to locate

measure as an order parameter in the study of the melting point of {ha specific set ofP’s that minimizes eq 1. In aseries of papers
icosahedral clusters: Buch, V.; Greshgoren, E.; Zabrodsky Hel-Or, . . ) . R '
H.. Avnir, D. Chem. Phys. Lett1995 294Z 149. (b) Quami%'ative a detailed solution to that problem was provided, which is based

investigation of the chirality properties of the cyclic trimer of water ~on what we termed the “foldingunfolding” algorithms. It is
and of its enantiomerization pathways: Pinto, Y.; Zabrodsky Hel-Or, g general approach, which analyzas of the elements that

H.; Avnir, D. J. Chem. Soc., Faraday Tran$996 92, 2523. (c) . - : - "
Analysis of the correlation between the degree of centrosymmetry and comprise a given symmetry point group (see detailed description

hyperpolarizability: Kanis, K. D.; Wong, J. C.; Marks, T. S.; Ratner, N refs 3 and 9). We found, however, that the large number of
M. A.; Zabrodsky, H.; Keinan, S.; Avnir, DJ. Phys. Chem1995 symmetry elements of the perfect polyhedra renders the fold-

99, 11061. (d) Quantitative analysis of the chirality of large random ; ~_ ;
objects: Katzenelson, O.: Zabrodsky Hel-Or, H.: Avnir, Chem. ing—unfolding approach cumbersome beyond the tetrahetiron.

Eur. J. 1996 2, 174. Avnir, D.; Katzenelson, O.; Zabrodsky Hel-Or, AS @ consequence and without giving away any of the generality
H. Chem. Eur. J1996 2, 744. (e) Analysis of the macroscopic chirality ~ and restrictions imposed by the definition of the CSM (eq 1),

of Pasteur’s tartrate crystals: Keinan, S.; Zabrodsky Hel-Or, H.; Avnir, \ye developed and present here a different approach that allows

D. Enantiomer1996 1, 351 and refs 21 and 22 below. .
(5) Hargittai, I.; Hargittai, M.Symmetry through the eyes of a chemist one to evaluate the degree of perfect polyhedral symmetry in

2nd ed.: Plenum Press: N.Y., 1995.
(6) Muller, U. Inorganic Structural Chemistry2nd ed.; Wiley & Sons: (7) Rouvray, D. HTop. Curr. Chem1995 173 1. Petitiean, MJ. Chem.
Chichester, 1992. Inf. Comput. Scil1996 36, 1038.




Continuous Symmetry Measures Inorganic Chemistry, Vol. 37, No. 21, 1998577

classical (distorted) polyhedra, overcoming the difficulty of
many elements in a group. As mentioned above, these include
as examples (but are not limited to) the regular polyhedra
(tetrahedron, octahedron, cube, icosahedron, and dodecahedron)
and the bipyramids.

The solution is general from a point of view not shared with
the folding—unfolding algorithms; it allows one to determine
the distance from any required shape (“shape” and not “struc-
ture”: the latter is a specific reference with specific coordinates,
while the former does not specify size, orientation, etc). The

g a g ; b

target shape may be of polyhedral symmetry, of lower sym-

metry, or even distorted with no symmetry. Here we concentrate

on the perfect polyhedral shapes, but practically all of the

considerations and results detailed below are applicable to any

other target shape. (Application of this general solution to other

shapes and symmetries is planned for subsequent reports.) Thus, ——é

since the general shape of a polyhedron is a readily attainable

information input, the complex case of evaluating the degree

of prefect polyhedricity is simplified; it is reduced to the search C d

of the size and orientation of the perfectly symmetric target.

Let us then describe the methodology. Figure 1. Polyhedral symmetry measures approach evaluates the
Given a distorted polyhedron witk vertexes, the coordinates  degree of symmetry content in distorted polyhedra. For instance, here
of which are given by the vectdiQy, k=1, 2, ...,N} (Figure we evaluate the degree of octahedricity of the distorted octahealron,
1a), we search for the vertex coordina{cﬁﬁ, k=12, ..N} The approach is to search for the nearest structure with the desired

. . symmetry,b, identify it, and calculate the distance to it using eq 5.
of the nearest perfectly symmetric polyhedron (Figure 1Db), as From this equation, the degree of octahedricityd$ SOn) = 14.95.

defined above through eq 1. By perfectly symmetric we mean symmetry analyses can also be carried out with the inclusion of the
here the highest possible symmetry group (elgfor a four- central atom, as irt (the distorted one), leading td (the nearest
vertex configuration). For all polyhedra taken as examples here, symmetric one). This example was selected too to §(@) = 14.95
except the trigonal bipyramid, this also means equal distanceas well (cf., caption of Figure 2).
from the center of mass to all vertexes. This, however, is not
an intrinsic requirement in the methodology; the ideal trigonal
bipyramid we selected is of equal faces, and this dictates unequa
distances from the center of mass to the vertexes (which,
nevertheless, are simply interrelated). By distorted we mean
polyhedra that are of symmetry lower than that highest (say, a
Cs-tetrahedron and, obviously,& polyhedron and so on). To
be useful for analysis of complexes, the central atom is included,
if desired, as well (Figure 1c,d). No connectivity is assumed
here; the connectivity displayed in Figure 1 serves only for
graphical convenience. The polyhedral CSM is determined by
the following multiple minimizations procedure.

1. The coordinates of the center of mass of the nonsymmetric
N-polyhedron (for example, a distorted octahedron, Figure 1a)

are calculated, and the polyhedron is placed at the origin of
partesian coordinates, i.e.,@ = 0 (eq 2). The orientation
and size are either arbitrary or selected for convenience of
computation.

2. The target shape, a perfadtpolyhedron of size 1 (a
perfect octahedron, in our example), is also place@gat 0
with an arbitrary orientation and with arbitrary vertex labeling,
{Pos k=1, 2, ...,N}. This defines the searched genestaépe.
This preliminary prototype structure it of minimal distance
from the nonsymmetric structure. It defines the desired shape
and serves as a starting point for the minimization search
procedure.

3. The transformation that the g&j has to undergo to yield
the desired set dPy, namely the set which is closest @, is
(8) The term “continuous” is used here in contradistinction to “either/ Now to be determined. This means that one should determine

or”. Itis a general term that has been used with various connotations. the isotropic scaling facto@, the rotation (3>< 3) matrix, R,

For instance, in physics, continuous symmetry means that by perform- : :
ing a continuous transformation of a set of parameters on a physical and the displacement (3 1) vector, T, all for the desired

system it acts the same way everywhere and at all times (Gross, D. J.transformation ofPo:

Proc. Natl. Acad. Sci. U.S.A993 93, 14256). Lie groups used for

gauge symmetries are another place where this term is used, especially Pk = AR POk +T (3)

in the context of invariance to continuous changes in the coordinates

of observation (Rosen, Found. Phys199Q 20, 283. Pons, J. M. . . .

Mod. Phys. Lett1994 9, 2903). Of relevance are also several studies It follows that finding a symmetric polyhedron that will be the

in spectroscopy. Thus, continuity was suggested for asymmetric rotors most similar (in the root-mean-square sense) to the starting
(2K7I)ngélt(r31.0\lf£]'r;1 Tr?énggrgrﬁg;r(ﬂg\iiozég 'tr?er;)ésdgel’]se r'rT:(:g?A:ﬁe?:\]sﬂure thepOtheciron amounts to obtaining, R, and T from the
dist’ance from specific symmetries. Near-symmetry has been also minimization of the sum function

treated in spectroscopy in terms of perturbation theory: Bunker, P.

R. Molecular Symmetry and Spectroscppycademic Press: New N 5 N 5

York, 1979; Chapter 11. Symmetry of nonrigid molecules was treated J=)1Q—PJ =) IQ— (ARP, + T)| 4)
in the following: Longuet-Higgins, H. CMol. Phys 1967, 6, 445. = =

Louk, J. D.; Galbreith, H. WRev. Mod. Phys1976 48, 69. The latter

reference was through the use of Eckart vectors. Yet another worth FEPE : :
noting approach to the expression of structural deviation is the use of Seve_ral mlmmlza_tlons are InVOIV_ed here'_ In_ Appendl_x A we
matrix elements, which are a power-series expansion in normal modes detail the derivations and technical details involved in these

displacements: IFrey,fR- (lj:.; Ezjavidson, E. R.Chem. Phys1988 minimizations, which are the following ones.
88, 1775. See also refs 2d and e. imimiz ati — ; ;

(9) (a) Zabrodsky Hel-Or, H.; Peleg, S.; Avnir, Bdv. Mol. Struct. Res. 4, Mmlmlzaﬂon OfT leads taT = 0 (Appendix A), ."E.’" the
1995 1, 1. (b) Zabrodsky Hel-Or, H.; Peleg, S.; Avnir, D. Am. selection to place the two polyhedra at the same origin (step 2)

Chem. Soc1995 117, 462. renders this minimization unnecessary. The reBuit 0 means
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also that the centers of mass do not move from the origin atom in the distorted polyhedron (Figure 1c) but must coincide
following this minimization search. with it in the nearest symmetric one (Figure 1d).

5. The spatial mutual orientation of the two structures is  ii. Earlier, we proved that the foldirgunfolding algorithm
minimized. This is done by determination of the elements of leads to the minimaB value?® here the minimization is the
the rotation matrixR that yield the minimal. procedure itself!

6. The size difference between the polyhedra is minimized iii. Itis clear now that this method and its resulting eq 5 are
by determination of the isotropic scaling factéx, Together a general solution to the problem of finding the minimal distance
with the minimization of step 5, this leads to best overlap of from any shape. It applies to all cases where the general shape
the two polyhedra. These two minimizations can be carried of the desired nearest structure is known but not its size and
out in reverse order without affecting the outcome (see Appendix orientation.

A). iv. In Appendix B, we derive an important result, linking

7. The next minimization is over the labeling of the vertexes, the continuous symmetry measure with the correlation coef-
i.e., minimizations 5 and 6 are repeated over all possible ficient probability measure. We show there that given a random
corresponding pairings between the vertexes of the prototypeset of points, itsS value with respect to the nearest symmetric

and nonsymmetric polyhedra in order to locate the st polyhedron is given by
~ P,k j=1,2,..,N} that minimizesJ (eq 4). The total
number of repetitions equalll!. In most cases, the cor- S=(1- p% x 100 (3)

respondence of vertexes of the prototype and nonsymmetric

polyhedra can be specified a priori, and then minimization 7 is where p is the sampling correlation coefficient between the
not needed. In fact, for polyhedra that exceed eight to nine griginal coordinates of the random points and the vertex
vertexes, prepairing is desirable in order to save on computing coordinates of the nearest symmetric polyhedron. In other
time which grows ad\l!. , o words, the minimization procedure for obtainir®can be
8. As detailed in Appendix A, these minimizations lead 0 jnterpreted as a least-squares procedure for obtaining information
] N 1 on an ordered structure (the perfect symmetric polyhedron) from
(S PLR'Q k)2 the given random points set. Again, the result (§dssgeneral
kZl 0K and holds not only for the polyhedra but also for all cases where
1-— % 100 (5) a target shape is specified.

N

NZ1|QK|2 4. Properties of the Polyhedral Symmetry Measure and
| 5 | Examples of Applications
where the upper index, t, shows the transposition of the matrix
or vector. The minimaSBis calculated from eq 5. Usinig, =
ARPq, one obtains the structure of the nearest symmetric
polyhedron (Figure 1b). Like the parenteq 1, eq 5 is also bound
within the interval 100> S= 0;1°the symmetry measure attains
its minimum value §= 0) when the structure has the desired
symmetry. In this casB})iR‘Qi = |Qil = Q = const so that the
ratio in square brackets in eq 5 is equal to 1. The maximal
e e e ety Smmety 1 the same cegree. The CSM approach alws

. © N symmetry content comparison both between various distortions

be the degree of hexagonality of a pentagon; the nearest hexago'af the same polyhedron or between different polyhedra (see next
to a pentagon is that center point, and because of the Sizeexample)
normalization, the distance to it isx1. 100.) Otherwise its upper n z-A;<is Jahn—Teller Type Symmetry-Reducing Mo-

limit is less than 100 and depends on the polyhedron type andtionS in Model Polyhedra. Jahn-Teller (JT) effects are a

ggcttkil:nspeuflc structure that is analyzed, as shown in the nEXtmajor cause of molecular symmetry redu_cf[ion in general a_nd
We éonclude this section with a few comments: sym.metry reduction of po!yheo!ral transition c.omplexes. in
i. In symmetry analyses of polyhedral coordin.ation com- particular® A common d|st(_)rt|ve mOdef for instance in
: octahedral copper complexes, is theefongation and compres-

plexes it is often of relevance and of interest to include also the _; . 2 :
sion along thez-axis (the Q modé??d), reducing the symmetr
central atom. The procedure for such cases follows the same 9 (the Q ) 9 y y

. . o f to Dgn12 It i tral th i h t
eight steps, and parts ¢ and d of Figure 1 exemplify it. Note rom On t0 Dan 'S a central fheme in our approach o

- . propose that rather than discussing the JT effect in terms of
that the center of mass (step 1) need not coincide with the centraljumps from one symmetry to another, it is more natural to attach

(10) This is also a direct outcome from the CaudBunykovsky inequality a scale to this effect in terms of the r§3|dual content of the higher
(Korn, G. A.; Korn, T. M.Mathematical Handbook for Scientists and ~ Symmetry. Thus, a small JT effect In a copper complex' means
Engineers McGraw-Hill: New York, 1968; p 831). a small§Oy) value, and larger JT distortions are manifested

by largerSvalues. In principle, the way is then open to link

I. Isosymmetry. The versatility of the measurement tool
and its application are first demonstrated in Figure 2 for a variety
of model polyhedra with a central atom, including a tetrahedron,
an equilateral trigonal bipyramid, a cube, an icosahedron, and
a dodecahedron. The nearest symmetric polyhedra are shown
as well. The specific set of distorted polyhedra in Figures 1
and 2 was set up to givé= 14.95 for all polyhedra. We term
structures having the san&value isosymmetric. Structures
that are isosymmetric deviate from their specific selected perfect

N N
NZCkZ = (ch)z

2 2 (11) Consequently, the two methods should lead to the same results. Tests
were carried out to compare the outcome of the foleingfolding
tetrahedron algorith® (the only perfect polyhedral program we
developed by that method) with the results of the algorithm described

N N N
here, and as should be the case, the two resuBiivejues are indeed

(12) (a) Comba, P.; Zimmer, org. Chem1994 33, 5368. (b) Chapter
and from it the bounds o%. 6.6 in ref 5 and references therein.

Using this inequality and definition of the vectBg, one obtains
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Figure 3. Symmetry measure value§G), as a function of the
deformation ratio for a trigonal bipyramid, an octahedron, and an
icosahedron, all without a central atom and all deformed along-#xés

(i.e., the axis passing through the top and bottom vertexes of the
symmetric trigonal bipyramid shown in Figure 2, through these vertexes
in the octahedrob of Figure 1, and through any opposite vertexes in
the symmetric icosahedron).

deformation ratio equals 1, tf&values for the three polyhedra
are zero. Recalling that ti#&scale is global so that it is possible

to compare the symmetry content of deformed polyhedra with
different numbers of vertexes, it is seen that the three polyhedra
have different symmetry sensitivities to the same distortion
parameter value and to its direction. Compression, left to the
minimum, affects the bipyramid more than the octahedron and
more than the icosahedron. On the other hand, the order of
sensitivity of elongation, right to the minimum, reverses,
icosahedron> octahedron> bipyramid. These different
orderings can be understood by considering the two different
limiting structures for the polyhedra; for elongation, it is a
straight line onto which all vertexes have coalesced, and for
strated (from top to bottom) for a tetrahedron, an equilateral trigonal the compression, itis a planar structure that (_:ontalns all vertexes.
bipyramid, a cube, an icosahedron, and a dodecahedron, all distorted’/€ have seen that the rate of approaching these structures

and all with a misplaced central atom. The nearest perfect polyhedra, depends on the number of vertexes. Let us then consider a
identified by the computational tool, are shown as well. All of the polyhedron that approaches a sphere. For a sphere, the average

distorted polyhedra (and the octahedra of Figure 1) have the Same distance of a surface point to the diameter line is larger than
value of 14.95; i.e., their distances from their respective polyhedricities the distance to the intersecting circle that contains it. Therefore,
are equal. Thus, all of the distorted polyhedra iscehiral the effort (per vertex) to reach the nearest line increases with
quantitatively the level of spectral splitting to the degree of the number of vertexes, while the effort to reach the nearest
symmetry distortion. It is a very important issue that deserves plane, decreases. Finally, the limitigvalues of the various
an in-depth separate report. Our aim in this introductory paper Polyhedra (Figure 3) are easily calculated from their geometrical
is the development of the appropriate tool and the analysis of properties and from eq 5. For instance, for the octahedron the
its properties. What we do then in this subsection is to show limits are (2/3)x 100 for infinite elongation and (1/3) 100
that the polyhedral symmetry measure is also well behaved in for compression; see Appendix C for details.
responding to gradual continuous changes in structure, of The arguments for the relative ordering in Figure 3 hold for
relevance to the JT effect. the larger distortions. In fact, the picture is more complex,
Figure 3 follows theS(G) changes of a trigonal bipyramid, because the smaller deformations behave differently. Figure
an octahedron, and an icosahedron, all without a central atom4a shows a detail of Figure 3, namely mild deformations of up
and all deformed along theaxis. The “deformation ratio” is  to 10%, as is commonly encountered in JT distorted molecules
the ratio of the distances between thaxis vertexes in the  and in many other coordination compounds. As seen in Figure
distorted and the symmetric polyhedra. Figure 3 shows the 4a, close to the minimum, the same ordering is kept on both
whole picture up to the limits. Severely distorted polyhedra sides, and the reversal of the ordering occurs only when
can be found in small clusters at elevated temperattises elongation becomes more pronounced (Figure 4b). Note that
along the pathway of the isomerization of fluxional compleXes.  the points of lines-crossings in Figure 4b are isosymmetric; the
Let us analyze Figure 3. As should be the case, when thetwo polyhedra with the same deformation ratio differ from
ideality at that point, to the same extent. Isosymmetry does

Figure 2. Versatility of the polyhedral symmetry measure, demon-

(13) (a) Stillinger, F. H.; Weber, T. Al. Chem. Physl984 81, 5095. (b) ; ;
Wales, D. J.: Berry, R. Shys. Re. Lett 1994 73, 2857, not_ need, _hoyvever, the same deformatllon ratio. _Pass a
(14) Sokolov, V. I.Introduction to Theoretical Stereochemistyordon horizontal line in any part of Figures 3 or 4; then all points of

and Breach, New York, 1991; Chapter 4. intersection with that line have the san®value and are
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0.3 the routine qualitative language of crystallographers and the
——£{s— bipyramid (a) symmetry scale, let us take now a case that is described as
0.25 —O-: i"cf)t::hee‘gg’n “slightly distorted”. It is the pentacoordinated Zn trigonal
bipyramid, [Zn(ll)(diacetoamido-glutarate)-hexaagbl,O,

studied by Gomez-Lara et #in the context of the interaction
of transition metal ions witiN-acetylated groups in proteins.
The coordination is to oxygen atoms, two of the glutarate and
three of the water molecules. Another feature of the CSM
approach is that while details for this complex are given in a

o
bN)

symmetry measure
o
-
w
T T N B B S

0.1 lengthy table (Table 3 in ref 16), as is the routine practice, the
methodology presented here allows a significant condensation
0.05 in grasping the deviation, from a table full of data to a single
value, which in this case iS(Dar-equilateral)= 1.48. ltis in
0 ] 1 order to recall here th&is a global value from which specific
-0.1 -0.05 0 0.05 0.1 structural details cannot be extracted back. This globality is
deformation ratio - 1 both the weakness and the strength of that approach, as with
50 any thermodynamic function._ Thus, the strength here is that
1 — bipyramid the §Op) = 4.37 of the previous tantalum complex and the
4 —O— octahedron (b) S(D3n) = 1.48 are on the same scale and can be compared. As
o 40 ——O— icosahedron a result of space limitation, we are not reproducing the original
E i tables and figures of these two complexes, but the interested
bt ] reader who wishes to see what is meant by “severely distorted”
E 30 and by “slightly distorted” may wish to compare Figure 2 in
2 ] ref 15 and Figure 1 in ref 16.
g 20 Finally, we use this Zn complex study in order to comment
E ] on the limits of sensitivity of the CSM measurement tool. The
@ ] Zn complex crystallized in fact as a dimer of two complexes;
107 one has aisvalue of 1.4776 and the other 1.4687. Because of
] its importance, we devote a separate report to the issue of
0] ' ‘ | 1 : i [ evaluating of errors irf§G) and assessing the probability that

a given symmetry can be assigned to a (distorted) structure, on
the basis of the uncertainty in the X-ray data (cf. also ref 9a).

Figure 4. Details of Figure 3: (a) mild deformation levels (deformation V. Which Symmetry Represents Better a Given Com-

ratio—1 is used here for clarity); (b) crossing points of the symmetry/ PI€X? The “either/or” attitude toward symmetry labeling leads
deformation-ratio lines. often to a “conflict of identity”, in particular in cases where the

structure shows characteristics of two different polyhedra, either

therefore isosymmetric, i.e., all, whether the same polyhedra because it seems to be similarly distorted with respect to the
or different ones, deviate similarly from perfect polyhedricity. two options or because it is relevant to count all or only part of
lll. Tantalum Hydride Complexes. It is important to the ligand bond$’ One finds in such reports lengthy discus-
demonstrate that the polyhedral CSM approach is a working Sions on whether the structure is that of polyhedron A or of
tool on real molecules beyond models, so these will be the nextPolyhedron B. The CSM approach addresses this conflict in a
four cases of this section. For this purpose, we selected somedhatural way; it characterizes the structure in terms of the degree
cases from the published literature where distortion of symmetry of polyhedricity A as well as the degree of polyhedricity B,
has been a noticeable observation or a main issue. We begirfwo values that are on the same scale. Unclear polyhedral
with the report of Visciglio et a5 who studied the structure of  identity characterizes, for instance, some tin complexes where,
six-coordinated tantalum dihydrides as part of ongoing researchdepending on how many of the differently attached ligands are
on the mechanism of the catalytic activity of transition metal counted, the complex may be regarded as either a tetrahedron
hydrides. Catalytic activity is often highly sensitive to the Or a trigonal bipyramid, or as either a tetrahedron or an
intricate details of structure, and so in particular these authors Octahedrort® The latter case was addressed recently by Cea-
reported that the analysis of the solid-state structure of Ta(H) Oliveras et at®who have prepared SpBomplexes where four
(OCsH3Pr»-2,6)5(PMePh) revealed this complex to be “severely ~sulfur atoms are coordinated directly and two additional sulfur
distorted from octahedral”. The point we wish to make here is atoms, which are located within octane rings, interact trans-
simple—the CSM methodology allows one to quantify this type annularly with the central Sn (see Figure 1 in ref 18). Thus, a
of statement, which abounds in the literature, into a quantitative Mmain discussion point in that study were structures that “can
one; the degree of octahedrici§(Oy), of this complex is 4.37. best be described as intermediate between tetrahedral and
Beyond quantification of statements of distortion, scaling the octahedral”, concluding for the SgStructures that the “possible
degree of symmetry opens the possibility to look for quantitative relation with an octahedral geometry is less obviotisBy the
correlations between properties, say catalytic activity in this CSM approach, the SgStructure has a§(Oy) value of 8.11.

Y
Y
(%3]
[AY]

2.5 3 3.5 4 4.5 5
deformation ratio

example and symmetry (see below). As for the Sng, our methodology actually allows one to carry
IV. Pentacoordinated Zinc. The previous case was de- 16) G P c AN R ——
: « H H : omez-Lara, J.; loscano, R. A.; Negron, G.; Zarate, E.; Campero,
scribed as “severely distorted®. To build a bridge between A J. Chem. Crystallogri994 24, 441.
(17) For example: Swisher, R. G.; Holmes, R.Grganometallics1984
(15) Visciglio, V. M.; Fanwick, P. E.; Rothwell, I. Rl. Chem. Soc., Chem. 3, 365.

Commun.1992 1505. Here and below, coordinates are available on (18) Cea-Oliveras, R.; Lomeli, V.; Hernandez-Ortega, S.; Haiduc, I.
the PDB. Polyhedron1995 14, 747.
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Table 1. Degree of the Octahedricity and of All Possible 0.048
Tetrahedricities of 58
symmetry measures atom nos. g 0.046 -
struct G SG) 1 2 3 4 5 6 7 g
1 On 8.11 * * * * * * * > 0.044 r
Td 27.41 * * * * * b
3 Ty 14.12 * * * * * QE) 0.042
4 Ta 1485  * * ok * £
5 Ta 7.14 ook % oo o 004 |-
6 Ty 17.18 * oo * *
7 T 19.88 ook ox * <
8 T 13.71 x x x x - 0038 1
9 Ty 13.51 * * ook ox
10 Ta 32.27 ook ko * 0.036
11 Ty 16.75 *ooxx ook 0 1 2 3 4 5 6
12 Ta 16.97 * * * %% charge
13 To 6.81 : . : : ¥ t Figure 5. Ceo-fullerene anions undergo Jahmeller distortion of the
14 Ta 16.29 . . . x original prefect icosahedral structure of the neutral mole€U&hown
ig P 1(7)32 s x e is the correlation between the degree of icosahedricitysef@lerene
d .

anions and their charge. (For the distorted dianion: upper point, singlet;
lower, triplet.)

of the unique correlation of Figure 5, made possible in fact only
by treating symmetry as a measurable quantity, and of other
correlations that emerge from ref 20 will be the topic of a
separate report, due to the special importance of this molecule.

5. Conclusion

We have extended the continuous symmetry measures ap-
proach to polyhedra. The methodology and the general
a blind search over all Scombinations out of the igands, computational tool we de\{e!oped are general and applicable to
looking for theminimal §T¢) value. When one does so (Table the .assessment of thg minimal distance of a structure to.a.ny
1), one obtains that the best tetrahedron haS(@g) value of desired shape. SpeC|fl|ca!Iy, we dem.onstrated the polyhedricity
0.95, significantly lower than the octahedricity value. The tin Measure for the quantitative evaluation of the symmetry of the
complex is much better described as a (slightly distorted) Most abundant polyhedral structures, both on models and on
tetrahedron than an octahedron, from which it deviates signifi- real examples. The correlation found for the fullerene case
cantly. (Figure 5) points to the direction of our future activity in this

VI. The Degree of Icosahedricity of Distorted G field; once the degree of polyhedricity can be measured, how
Fullerene Anions. In all previous examples, both model and do the various properties of polyhedral complexes, clusters, and
real, the number of vertexes of the perfect polyhedron was the covalent structures correlate quantitatively with symmetry? We
minimal to support the polyhedricity. However, the tool we have already reported on three other cases where symmetry as
developed here is capable in fact of dealing wathy number a global structural parameter correlates better with physical/
of vertexes that can support a given polyhedricity. Thus, chemical properties than specific descriptors. One case has been
whereas above we looked at a 12-vertex icosahedron, we shalthe relation between the degree of chirality of enzymatic
now analyze a 60-vertex distorted icosahedron. We selectedinhibitors and their inhibition efficiency! a second case related
this example because of the substantial interest in the structurakthe symmetry-normalized energy of isomerization of chiral
changes that the perfect icosahedra} illerene undergoes  fullerenes to their siz& and a third case identified the melting
upon substitution, ionization, and intracage entrapriemany point of deuterium cluster&. In fact, these correlations along
of the properties of this molecule are intimately related to its with the new one shown in Figure 5 strengthen our belief that
high, perfect symmetry and therefore also to distortions from the specific symmetry measurement tool we designed reflects
it. The example we have chosen is the study of Green®t al. the physical world properly.
on the electronic structures of a series @f @nions. Green et
al. found that the perfect icosahedricity of the fullerene is  Acknowledgment. We thank Prof. P. Fowler for providing
distorted upon extra charging of this molecule and that the s the coordinates of the anion-fullerenes.
degree of this JT-induced distortion changes with amount of
charge. An excellent correlation between the degree of icosa-
hedricity and charge was obtained (Figure 5). It is significant
that bond lengths and the norm distqrtion vectors (Table 1 in a. Minimization with Respect to the Translation Vector
ref 20) do not follow the increase in _charge, whereas the T. Differentiating eq 4 with respect to the vecibrand setting
symmetry measure does; a global descriptor, symmetry, works

o . ~th rivativ | to zero yiel
here much better than a specific, local one. A detailed analy5|st e derivative equal to zero yields

Appendix A: The Minimizations

(19) Fowler, P. W.; Ceulemans, A. Phys. Chem1995 99, 508. (21) Keinan, S.; Avnir, D.J. Am Chem. Sod 998 120, 6152.
(20) Green, W. H., Jr.; Gorun, S. M.; Fitzgerald, G.; Fowler, P. W.; (22) Pinto, Y.; Fowler, P. W.; Mitchell, D.; Avnir, DJ. Phys. Cheml998
Ceulemans, A.; Titeca, B. Q. Phys. Chem1996 100, 14892. 102, 5776.
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N
[Q — (ARPy + T)] =0

(A1)

Since we chose to place both centers of mass (of the original
and of the general shape, prototype polyhedrons) at the origin
of coordinates, this equation givds= 0. Consequently, the

centers of mass of the nonsymmetric polyhedron and the nearest

perfect polyhedron coincide as well. In what follows, we use
thereforeT = 0 and minimize the function

N
J=Y1Q — ARP,|* =

N N

Q> = 2AY P4R'Q +

N
A*S |RP,[* (A2)

In (A2) the upper index t shows the transposition of the matrix
or vector. As rotation does not affect the distance between the

Pinsky and Avnir

points coordinates with zero average, i.e., vifh= 0. Using

this random set, we obtain the nearest symmetric polyhedron
to it (in the statistical sense). To see that this is indeed possible,
let us rewrite (5) as

N

1 b t
NZPOkR Qk
K=

S={1- b x
1 N s 1/2 1 N . ) 1/2
=S |P =Y [R'Q
Y P L3 R, |
i F 1 N 2
Nkz PLQk
100=({1— x 100

N

1 R 1/2 1 N
(Z i ) (Z 2

1/2
2
I

center of mass and vertexes, the last term in (A2) can be takenThe expression in the square brackets is in fact a sampling

as

N N
AZZ|RPOi|2 = AZZ|POi|2 = NA?
= i=

Hence, eq A2 can be written as

N
J=>1Q — ARPoﬂ2 =

N N

IQI* = 2AY PGR'Q, + NA?
(A2)

b. Minimization with Respect to the Scaling FactorA.

Differentiating (A2) with respect toA and setting the derivative
equal to zero, we derive the equation for the scaling factor,

N
N 0] i

A

(A3)

c. Minimization with Respect to Rotation Angles. The
rotation matrixR can be determined using three rotation angles
o, 5, y. By differentiation of (A2) with respect to Eulerian
angles and setting the derivatives equal to zero, the following
equations for rotations angles are derived.

N . 9 t N . t N X
;POiEQi = 2 POi%Qi = s Poi
It is essential to point out that the solutions to eq A4, are

independent of the scaling factok, Therefore, eqs A3 and
A4 can be solved independently. Thus, one can first solve eq
A4 and then use the data to calculate the scaling fakfoom

eq A3. As a rule, eq A4 cannot be solved analytically. To
solve it methods described in refs 23 and 24 can be used.
Substituting (A1) and (A3) into (1) and taking into account the
fact that the center of mass of an asymmetric polyhedron is
located at the origin of coordinates (i.€y = 0), we arrive at

eq 5.

IR
—Q =0 (A4)
ay

Appendix B: Probability Theory Interpretation of the
Symmetry Measure

It is interesting to note that eq 5 can be interpreted in terms
of probability theory. Let us assunig to be a random set of

(23) Arun, K. S.; Huang, T. S.; Blostein, S. [EEE Trans. Pattern Anal.
Machine Intel 1987 PAMI-9, 698.
(24) Horn, B. K. P.J. Opt. Soc. Am1987, A4, 629.

correlation coefficientp, between the original random coordi-
nates and the vertex coordinates of the nearest symmetric
polyhedron. Thus, it is possible to connect the continuous
symmetry measur8 with the correlation coefficienp:

S=(1- p% x 100 (3)

Appendix C: The Limiting S(Oy) Values of a Perfect
Octahedron Undergoingz-Axis Distortions

For extreme elongation of the octahedron along #fais,
the distanc&) between the two vertexes on theaxis and center
of mass is much larger than the distances of the other vertexes.
Using eq 5, one obtains then

6
( Pt RtQ )2
kZ"k ‘ (2Q)?
S= 1—6— x 100=|1— " X
6(2Q°)
6 IQ°
kZ k | |
2
100=- x 100
3

For extreme compression, the situation reverses; the distance
of the twoz-axis vertexes to the center of mass approaches zero,
and one must take into account only the four other distances.
From eq 5

6 | i
Pl RIO)2
(kZ Ok Qk) (4Q)2
S= 1—6— x 100=|1— " X
6(4Q°)
6 2
kleQk|
| | 1
100=- x 100
3

These two limits are clearly seen in Figure 3.
1C9804925





