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Mixed-valency can be introduced into mixed-metal oxides by
traditional high-temperature methods1 or by low-temperature
topotactic routes.2 Though the former has yielded an extensive
number of compounds, the elevated temperatures required by these
reactions do not always allow clear control of structure and
stoichiometry. Our group is currently working to develop a series
of reaction schemes for the routine low-temperature (e500 °C)
synthesis of new, potentially metastable, mixed-valence com-
pounds. By utilizing such strategies, one can strive to manipulate
electronic properties while maintaining salient structural features.
Recently we described a simple two-step topotactic method for
the preparation of a mixed-valence titanate with the K2NiF4

structure type.3 This route consisted of aliovalent ion exchange
of NaLaTiO4 followed by alkali-metal intercalation. Here we
expand this chemistry to the manipulation of the triple-layered
perovskite, K2La2Ti3O10. A novel three-step procedure is used
to prepare the mixed valence compound, Na2-x+yCax/2La2Ti3O10

(x ) 1.22,y ) 0.32).
The synthetic route utilized in our approach relies on divalent

ion exchange to open the host compound to reductive intercalation.
For this step not to considerably disrupt the crystallinity of the
host and to favor an extensive degree of exchange, there should
be a close size match between exchanging cations such as that
provided by sodium (1.38 Å) and calcium (1.32 Å).4,5 Initially,
Na2La2Ti3O10 was targeted as the starting compound to the triple-
layered titanates, but we and others6 have not been able to prepare
single-phase samples, even by the methods of Todaet al.7 An
indirect route with sodium ion exchange of K2La2Ti3O10 was then
used to access Na2La2Ti3O10.8,9 Subsequently, divalent ion
exchange with calcium nitrate was carried out to introduce cation
vacancies,10 and the resulting intermediate, Na0.8Ca0.6La2Ti3O10,
was then reduced by intercalation with sodium metal vapor.11 The
composition of the final product, Na1.12Ca0.61La1.93Ti3O10, corre-

sponds to a 100% monovalent cation exchange, ca. 60% divalent
exchange, and ca. 55% intercalation into available cation vacan-
cies.12

Na1.12Ca0.61La1.93Ti3O10 was characterized by X-ray powder
diffraction (XRD), magnetic susceptibility, and four-probe resis-
tivity.13 Diffraction patterns of Na2La2Ti3O10, the divalent
exchange intermediate, and the intercalation product, along with
a calculated pattern of the final product,14 are shown in Figure 1.
Though some loss of crystallinity would be expected in each of
the synthetic steps, the broadening of diffraction lines is minimal.
The lattice parameters and unit cell volumes for the parent,
intermediates and final product are presented in Table 1. A slight
overall cell contraction is observed on divalent exchange because
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of the smaller size of Ca2+ versus Na+. On intercalation, thea
parameter expands while thec contracts, this is ascribed to the
size increase of titanium upon reduction and the greater electro-
static attraction between the perovskite sheets and the interlayer
cations, respectively.3,15 The magnetic data (Figure 2), corrected
for diamagnetism, shows predominately temperature independent
paramagnetism (øTIP) down to ca. 50 K and Curie-Weiss behavior
at lower temperatures.16 Resistivity measurements from 2 K
(Figure 2, inset) reveal semiconductive behavior (F300K ) 4.7 ×
104 Ω cm); however, plots of logF vs T-1 were nonlinear. The
dramatic rise in resistivity at low temperatures is indicative of
weakly localized states;17 low-temperature data (T < 10 K) exhibit
a T-1/4 response attributed to a variable range hopping mecha-
nism.17,18 The extensive TIP component, the low-temperature
Curie-Weiss behavior, and variable range hopping have been

associated with Anderson localization effects in semiconductors.19

Such a response, possibly in combination with small polarons, is
not unreasonable in a layered system that contains a random
distribution of monovalent and divalent cations as well as
vacancies in its interlayer. The observation of metallic behavior
above 25 K in the structurally related oxygen-deficient calcium
titanate,20 even atd-electron counts approaching zero, further
suggests that localization effects are at work in Na1.12Ca0.61La1.93-
Ti3O10.

The multistep processing presented here allows the introduction
of mixed valency into the triple-layered perovskite, K2La2Ti3O10.
Initial results indicate that divalent exchange levels in excess of
90% are possible and that comparable degrees of intercalation
should follow. If the bottom of the conduction band for these
compounds is localized on the inner transition metal oxide layer
as has been suggested,21 it is then expected that higher electron
counts will overcome the influence of the localization effects such
that the Fermi energy will cross the mobility edge to result in
metallic behavior. By careful selection of reaction pathways in
other Ruddlesden-Popper, or even Dion-Jacobson, type perov-
skites that contain exchangeable cations, one should be able to
consciously direct their electronic properties while maintaining
specific structural details. Such strategies, however, are not
necessarily limited to those pathways outlined above.
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Figure 1. X-ray powder diffraction patterns of the (a) monovalent
exchange, (b) divalent exchange, and (c) intercalation products and (d) a
simulated pattern of the intercalation product.14 Miller indices are indicated
for selected reflections.

Table 1. Tetragonal Unit Cell Parameters of the Parent,
Intermediates, and Final Product

cmpd12 unit cell (Å) cell vol. (Å3) lit. cell (Å)

K2La2Ti3O10 a ) 3.869(1) 445.6 a ) 3.871(2)
c ) 29.77(2) c ) 29.78(2)8

Na2La2Ti3O10 a ) 3.8330(1) 421.10 a ) 3.834(7)
c ) 28.662(1) c ) 28.65(6)8

Na0.8Ca0.6La2Ti3O10 a ) 3.8334(2) 417.12 this work
c ) 28.385(2)

Na1.12Ca0.61La1.93Ti3O10 a ) 3.8778(2) 418.23 this work
c ) 27.813(2)

Figure 2. Molar susceptibility versus temperature for Na1.12Ca0.61La1.93-
Ti3O10. The solid line represents the fit toø ) [C/(T θ)] + øTIP.16 The
inset is a plot of resistivity versus temperature.
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