Paddle-Wheel and Trilobate Isomers of the Hexagonal Prisms $\{Li[CE(Nt-Bu)(n-Bu)]\}_{6}$ (E = S, O)

Tristram Chivers,*,† Andrew Downard,† and Glenn P. A. Yap[‡]

Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4, and Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Received June 5, 1998

Current interest in isoelectronic analogues of carboxylate anions RCO_2^- (**1a**) such as amidinates $\text{RC}(\text{NR}')_2^-$ (**1b**) focuses on the ability of these tunable ligands to generate unusual structures and/ or reactivity in both main group and transition-metal chemistry.¹⁻⁴ The structures of lithiated oxoamidate anions $[\text{RC}(\text{O})(\text{NR}')]^-$ (**1c**) are germane for studies of deprotonated oligopeptides.⁵ The thio-amidate anions $[\text{RC}(\text{S})(\text{NR}')]^-$ (**1d**) are especially interesting ligands since they combine both hard (N) and soft (S) donor centers. Surprisingly, however, only a few transition-metal complexes of this anion are known and none of them were prepared from **1d** by metathetical reactions.⁶ Alkali-metal derivatives of **1d** are unknown.

Here we report the syntheses and structures of the novel anion $[C(S)(Nt-Bu)(n-Bu)]^-$ and, for comparison, the oxo analogue $[C(O)(Nt-Bu)(n-Bu)]^-$ as their lithium derivatives. Both complexes adopt hexameric {Li[CE(Nt-Bu)(n-Bu)]}₆ structures (**2a**, E = S; **2b**, E = O), based on Li₆E₆ hexagonal prisms.

The reaction of organolithium reagents with carbodiimides provides a versatile route to amidinates (**1b**).^{1,3,7} In an extension of this approach to other heteroallenes we disclose that the dropwise addition of *n*-BuLi to a slight excess of *tert*-butyl-isothiocyanate or *tert*-butylisocyanate in hexane at 0 °C yields the hexamers **2a** and **2b**, respectively, as moisture-sensitive white solids in essentially quantitative yields [eq 1].⁸

6t-BuNCE + 6n-BuLi
$$\xrightarrow{\text{hexane}}$$
 {Li[CE(Nt-Bu)(n-Bu)]}₆ (1)
(E = S, O) 2a, E = S
2b, E = O

The ¹H, ¹³C, and ⁷Li NMR spectra of **2a** and **2b** indicated single environments for t-C₄H₉ and n-C₄H₉ groups as well as the lithium

- [‡]University of Ottawa.
- (1) (a) Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1997, 119, 8125. (b) Zhou, Y.; Richeson, D. J. Am. Chem. Soc. 1996, 118, 10850.
- (2) (a) Edelmann, F. T. Coord. Chem. Rev. 1994, 137, 403. (b) Barker, J.; Kilner, M. Coord. Chem. Rev. 1994, 133, 219.
- (3) Berno, P.; Hao, S.; Minhas, R.; Gambarotta, S. J. Am. Chem. Soc. 1994, 116, 7417.
- (4) (a) Karsch, H. H.; Schlüter, P. A.; Reisky, M. Eur. J. Inorg. Chem. 1998, 433. (b) Barker, J.; Blacker, N. C.; Phillips, P. R.; Alcock, N. W.; Errington, W.; Wallbridge, M. G. H. J. Chem. Soc., Dalton Trans. 1996, 431.
- (5) (a) Maetzke, T.; Seebach, D. Organometallics **1990**, *9*, 3032. (b) Maetzke, T.; Hidber, C. P.; Seebach, D. J. Am. Chem. Soc. **1990**, *112*, 8248.
- (6) (a) Seitz, Th.; Muth, A.; Huttner, G.; Klein, Th.; Walter, O.; Fritz, M.; Zsolnai, L. J. Organomet. Chem. 1994, 469, 155. (b) Vivanco, M.; Ruiz, J.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics 1993, 12, 1802. (c) Adams, R. D.; Chen, L.; Wu, W. Organometallics 1993, 12, 3812. (d) Gamborotta, S.; Fiallio, M. L.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. Inorg. Chem. 1984, 23, 3532.

Figure 1. Crystal structure of $\{\text{Li}[\text{CS}(\text{N}t-\text{Bu})(n-\text{Bu})]_{6}$ (**2a**). Only one of the two symmetry-unique, but chemically equivalent, molecules is shown. For clarity only the α -carbon atoms of *n*-Bu and *t*-Bu groups are shown: Li–S (bridged), 2.618–2.660(7) Å; Li–S (unbridged), 2.380–2.425(7) Å; Li–N, 1.973–2.001(7) Å; C–S, 1.763–1.779(4) Å; C–N, 1.254–1.275(5) Å.

atoms.⁸ An X-ray structural determination of **2a** revealed a hexameric aggregate based on a Li_6S_6 hexagonal prism (Figure 1).⁹ Although oligomeric structures are common for lithium thiolates,¹⁰ there is only one previous example of a hexagonal prismatic Li_6S_6 arrangement.¹¹ The structure of **2b** is also composed of a central hexagonal prismatic (Li_6O_6) core (Figure 2).¹² However, there is a significant difference between the

- (7) Chivers, T.; Parvez, M.; Schatte, G. J. Organomet. Chem. 1998, 550, 213.
- (8) **2a.** Yield 97%. Mp. 155–156 °C (dec). ¹H NMR (200 MHz, 25 °C, in C₆D₆, TMS in CDCl₃): $\delta = 0.94$ (t, 3 H, CH₃), 1.33 (s, 9 H, CCH₃)₃), 1.40 (m, 2 H, CH₂), 2.07 (m, 2 H, CH₂), 2.72 (m, 2 H, CH₂); ¹³C NMR (200 MHz, 25 °C, in C₆D₆; TMS in CDCl₃): δ 185.9 [s, CS(N/Bu)-(nBu)], 56.0 [s, C(CH₃)₃], 31.7 [s, C(CH₃)₃], 43.1, 32.5, 24.0 and 14.6 (all s, CH₂CH₂CH₂CH₂CH₃). ⁷Li NMR (400 MHz, 25 °C, in C₆D₆; standard: 4 M LiCl in D₂O): $\delta = -0.31$ (s). Satisfactory, C, H, N analysis. **2b.** Yield 99%. Mp. 141–143 °C (dec). ¹H NMR (200 MHz, 25 °C, in C₆D₆, TMS in CDCl₃); $\delta = 1.04$ (t, 3 H, CH₃), 1.31 (s, 9 H, C(CH₃)₃), 1.47 (m, 2 H, CH₂), 1.92 (m, 2 H, CH₂), 2.39 (m, 2 H, CH₂); ¹³C NMR (200 MHz, 25 °C, in C₆D₆; TMS in CDCl₃): $\delta = 175.2$ [s, CO(N/Bu)(nBu)], 50.2 [s, C(CH₃)₃], 32.8 [s, C(CH₃)₃], 36.2, 30.9, 24.2 and 14.7 [all s, (CH₂)₃(CH₃); ⁷Li NMR (400 MHz, 25 °C, in C₆D₆, standard: 4 M LiCl in D₂O): $\delta = -1.56$ (s). Satisfactory, C, H, N analysis.
- (9) Crystals of 2a ·C₇H₈ were obtained from a saturated toluene solution at -20 °C (1 day). Crystal data for 2a ·C₇H₈: C₆₁H₁₁₆Li₆N₆S₆, *M* = 1167.60, triclinic, space group Pī, *a* = 14.466(2) Å, *b* = 16.454(2) Å, *c* = 16.454-(2) Å, *a* = 95.025(1)°, β = 90.858(1)°, γ = 105.112(1)°, V = 3763.7-(8) Å³, Z = 2, ρ_{caled} = 1.030 g cm⁻³, μ (Mo Kα) = 0.218 mm⁻¹, λ (Mo Kα) = 0.710 73 Å, *T* = -70(2) °C, *F*(000) = 1276. Data were collected on a SMART CCD diffractometer on a colorless block (0.4 × 0.4 × 0.4 mm) mounted on a thin glass fiber cooled to -70 °C in the range 1.24° ≤ θ ≤ 25.00° (27 368 reflections collected, 13 032 independent reflections, *R*_{int} = 0.0813). The structure was solved by direct methods, completed by Fourier synthesis, and refinement, based on *F*², was by full-matrix least-squares procedures. R₁ = 0.0676, wR₂ = 0.1505 for 13 025 unique reflections [*I* ≥ *σ*(*I*)].

^{*} To whom correspondence should be addressed. Fax: (403) 289-9488. E-mail: chivers@acs.ucalgary.ca.

[†]University of Calgary.

Figure 2. Crystal structure of {Li[CO(N*t*-Bu)(*n*-Bu)]}₆ (**2b**). For clarity only the α-carbon atoms of *n*-Bu and *t*-Bu groups are shown: Li–O (bridged), 2.060–2.103(5) Å; Li–O (unbridged), 1.864–1.875(5) Å; Li–O (connecting Li₃O₃ rings), 1.943–1.981(5) Å; Li–N, 1.989–2.017-(5) Å; C–O, 1.309–1.316(4) Å; C–N, 1.275–1.282(4) Å.

orientation of the *n*-BuCN*t*-Bu bridges in the structures of **2a** and **2b**. In the sulfur compound **2a** these units connect the two Li_3S_3 rings in a "paddle-wheel" arrangement with D_{3d} symmetry. By contrast, the hexamer **2b** adopts a "trilobate" structure (D₃) in which three *n*-BuCN*t*-Bu groups span alternating Li–O bonds of the two Li₃O₃ rings. A higher state of aggregation is found for the oxoamidate anion (**1c**) in the unsolvated lithium derivative {Li[C(O)(N*i*-Pr)Ph]}₈, which adopts an octameric structure involving face-to-face dimerization of two Li₄O₄ cubes.^{5a}

Consideration of the metrical parameters for **2a** and **2b** provides a possible explanation for this pronounced difference in molecular

- (10) (a) Boche, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 277. (b) Beswick, M. A.; Wright, D. S. Comprehensive Organometallic Chemistry II; Pergamon: Oxford, 1995; Vol. 1, Chapter 1, p. 1. (c) Ruhlandt-Senge, K.; Englich, U.; Senge, M. O.; Chadwick, S. Inorg. Chem. 1996, 35, 5820.
- (11) Janssen, M. D.; Rijnberg, E.; de Wolf, C. A.; Hogerheide, M. P.; Kruis, D.; Kooijman, H.; Spek, A. L.; Grove, D. M.; van Koten, G. *Inorg. Chem.* **1996**, *35*, 6735.
- (12) Crystals of 2b were obtained by recrystallization of this material from toluene at -20 °C (8 days). Crystal data for 2b: C₅₄H₁₀₈Li₆k₀₆0₆, M = 979.10, monoclinic, space group P2₁/n, a = 14.1190(8) Å₆ b = 25.188(2) Å, c = 19.981(1) Å, β = 110.690 (1)°, V = 6647.6(7) Å³, Z = 4, ρ_{caled} = 0.978 g cm⁻³, μ (Mo Kα = 0.061 mm⁻¹), λ (Mo Kα = 0.71073 Å), T = -70(2)°C, F(000) = 2160. Data were collected on a colorless block (0.1 × 0.1 × 0.1 mm) mounted on a thin glass fiber cooled to -70 °C in the range 1.36° ≤ θ ≤ 23.50° (29 768 reflections collected, 9811 independent reflections, R_{int} = 0.0941). The structure was solved and refined as in (9) to R₁ = 0.0759, wR₂ = 0.1979 for 9625 unique reflections [I ≥ 2σ(I)].

architecture. The mean Li–S bond distance in **2a** is 2.405(7) Å *within* the Li₃S₃ rings and 2.638(7) Å for the bridged Li–S bonds (cf. 2.34(2)–2.51(2) Å for [Li{SC₆H₄(R)-CH(Me)NMe₂)-2}]₆ for which the data set is of "rather low quality"¹¹). The Li–O distances in **2b** alternate *within* the Li₃O₃ ring with mean values of 2.085(5) and 1.869(5) Å for the bridged and unbridged bonds, respectively. The mean bond length for the Li–O bonds connecting the two Li₃O₃ rings is 1.963(5) Å. Apparently the shorter Li–O compared to Li–S distances result in steric constraints which prevent **2b** from adopting the paddle-wheel conformation.

The mean C–N [1.268(5) and 1.279(4) Å] and Li–N [1.988-(7) and 2.004(5) Å] distances in **2a** and **2b**, respectively, are similar. However, the mean C–S bond length of 1.773(5) Å in **2a** is 0.46 Å longer than the corresponding value 1.313(3) Å for d(C–O) in **2b** resulting in a highly distorted, but planar, fourmembered ring with mean bond angles of ca. 117.5, 90, 66, and 85° at C, N, Li, and O, respectively. The corresponding mean bond angles in **2a** are ca. 118, 105, 67, and 69.5°. The mean bond angles in the Li₃O₃ ring in **2b** are ca. 118° at oxygen and ca. 119° at lithium. The corresponding values for the Li₃S₃ ring in **2a** are ca. 111° (S) and ca. 106° (Li).

Structural studies of lithium derivatives of amidinates **1b** or dithiocarboxylates **1e** are limited to solvated complexes which form either monomers^{13–15} or dimeric step-shaped structures.¹⁶ The formation of the unsolvated hexamers **2a** and **2b** can be visualized as a trimerization of "tub-shaped" dimers. Further discussion of this aggregation process and the ligand behavior of **1d** will be presented in a full paper.

Acknowledgment. We thank the NSERC Canada for financial support.

Supporting Information Available: Crystallographic data (excluding structure factors) for the structures **2a** and **2b** reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-101375 (**2a**) and CCDC-101374 (**2b**). Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax, +44 (1223) 336 033; e-mail, deposit@chemcrys.cam.ac.uk).

IC980624U

- (13) Barker, J.; Barr, D.; Barnett, N. D. R.; Clegg, W.; Cragg-Hine, I.; Davidson, M. G.; Davies, R. P.; Hodgson, S. M.; Howard, J. A. K.; Kilner, M.; Lehmann, C. W.; Lopex-Solera, I.; Mulvey, R. E.; Raithby, P. R.; Snaith, R. J. Chem. Soc., Dalton Trans. **1997**, 951.
- (14) Ball, S. C.; Cragg-Hine, I.; Davidson, M. G.; Davies, R. P.; Raithby, P. R.; Snaith, R. Chem. Commun. 1996, 1581.
- (15) Ball, S. C.; Cragg-Hine, I.; Davidson, M. G.; Davies, R. P.; Edwards, A. J.; Lopez-Solera, I.; Raithby, P. R.; Snaith, R. Angew. Chem., Int. Ed. Engl. 1995, 34, 921.
- (16) (a) Stalke, D.; Wedler, M.; Edelmann, F. T. J. Organomet. Chem. 1992, 431, C1. (b) Gebauer, T.; Dehnicke, K.; Goesmann, H.; Fenske, D. Z. Naturforsch. 1994, 49B, 1444. (c) Eisen, M. S.; Kapon, M. J. Chem. Soc., Dalton Trans. 1994, 3507.