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Imidazole and other -azole ring systems are structural features
of many drugs and natural products.2 Azoles are typically
susceptible to N-alkylation, forming azolium cations.3 Many of
the latter undergo deprotonation of a ring C-H R to the nitrogen,
generating an azolidene carbene.4 In at least one case, that of
thiamine (vitamin B1), such a carbene is thought to be involved
in the biological function of the molecule.5 In turn, the capacity
of azolidene carbenes to function as ligands in transition-metal
complexes is well-established.6 Consequently, biologically rel-
evant molecules containing azoles are candidates as carbene
sources for metal complexation. We consider the utilization of
drugs or natural products in this role to be a potentially useful
approach for the development of compounds of interest for
medicinal and biochemical applications. Further, since N-
methylation is a common metabolic event,7 studies of such
molecules may ultimately provide new insights into possible
modes of metal-azole interactions in biological systems.8

We report here the results of our initial work in this area, the
utilization of the antifungal drugs econazole and miconazole as
carbene ligand precursors for complex formation with iridium
(Scheme 1). The new complexes are the first to link a drug-
based ligand to a metal via a metal-carbonσ bond, and they
complement a small family of antifungal drug-metal conjugates
possessing metal-nitrogen linkages.9

Both econazole and miconazole were prepared as the respective
free bases from the commercially available nitrate salts.10 The
salts were dissolved in water and the solutions brought to pH)
8 with aqueous base and then extracted with Et2O. Evaporation

of the ether solutions yielded the free bases in essentially
quantitative yield. Alkylation of the free bases was accomplished
by refluxing each in neat methyl iodide, followed by evaporation
to dryness.11 The off-white powders (1, econazole derivative;2,
miconazole derivative) obtained in this fashion are used without
purification.

In THF at 0 °C, the econazolium salt1 reacted with the
phosphazene base P4-t-Bu,12 as ascertained by a change in color
of the solutions from near colorless to yellow upon mixing.
Subsequent addition at 0°C of the putative free-carbene solution
to a light orange, THF suspension of [η4-(1,5-COD)IrCl]2 resulted
in a color change of the latter to dark yellow-orange, accompanied
by the complete dissolution of the iridium complex. After an
additional 15 min of stirring, no further color change was observed
and the THF was removed in vacuo. The residue was extracted
into CH2Cl2 and filtered through silica to remove the putative
P4-t-Bu:HX byproduct. Removal of the solvent in vacuo produced
a yellow-orange microcrystalline product, the1H and13C NMR
spectra of which support its being an iridacarbene.13 A key
spectroscopic element in this assignment is the appearance of a
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resonance in the13C spectrum at 181.26 ppm, characteristic of
an iridium-bound carbene carbon.14

X-ray quality crystals of3 were grown by the slow diffusion
of hexane vapor into a CH2Cl2 solution of the product. The crystal
structure and the labeling of the atoms of3 are shown (Figure
1). The 16e- iridium center adopts a distorted square planar
geometry which includes a hybrid iodo/chloro halogen site and
the econazolidene carbene. The carbene-carbon to iridium
distance of 2.017(7) Å is similar to that of other published
iridium-carbene complexes.14 The crystal structure exists as
discrete molecules of3 with no anomalous intermolecular
contacts.15

The related miconazolidene-Ir complex 4 was prepared
utilizing finely divided sodium acetate as a base. The base,
N-methylmiconazolium iodide (2), and [η4-(1,5-COD)IrCl]2 were
combined in THF and refluxed for 3 h. After cooling, the dark

brown-orange suspension was filtered through 1 cm of silica,
yielding a bright orange solution. Subsequent vapor diffusion
of hexane into the solution produced yellow microcrystals of4.
The 13C NMR spectrum21 of 4 exhibits a singlet atδ 181.26,
confirming the incorporation of a carbene ligand. The spectrum
also exhibits the expected resonances for the remaining compo-
nents of the miconazolidene ligand. Between 127 and 135 ppm
are peaks for the dichlorophenyl carbons, while singlets for the
imidazolidene C4 and C5 atoms appear at 120.98 and 122.51 ppm.
A total of eight COD-carbon resonances between 29.21 and 84.70
ppm are observed, consistent with the asymmetric nature of the
complex imposed by the racemic carbene ligand. Peaks at 85.16,
78.37 and 68.64 ppm arise from the miconazolidene benzyl ether
and N-CH2 units. The resonance for the terminal N-CH3 carbon
is observed at 37.61 ppm. The FAB-MS and elemental analysis
data of4 are consistent with the proposed formulation.22

The preparation of compounds3 and 4 demonstrates the
feasibility of assembling stable drug-metal complex conjugates
by means of linking the two species via M-Ccarbeneinteractions.
Other studies currently underway in our laboratory have given
encouraging results for the utilization of a variety of natural
products as carbene precursors. We expect to report on the results
of these experiments in due course.
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