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Equations are derived and discussed that allow the computation of zero-field splitting (ZFS) tensors in transition
metal complexes for any value of the ground-state total Spin effective Hamiltonian technique is used and

the calculation is carried to second order for orbitally nondegenerate ground states. The theory includes contributions
from excited states of spiB andS + 1. This makes the theory more general than earlier treatments. Explicit
equations are derived for the case where all states are well described by single-determinantal wave functions, for
example restricted open shell Hartrgeock (HF) and spin-polarized HF or density functional (DFT) calculation
schemes. Matrix elements are evaluated for many electron wave functions that result from a molecular orbital
(MO) treatment including configuration interaction (Cl). A computational implementation in terms of bonded
functions is outlined. The problem of ZFS in high-spin ferric complexes is treated at some length, and contributions
due to low-symmetry distortions, anisotropic covalency, charge-transfer states, and ligandrbjticoupling

are discussed. ROHF-INDO/S-CI results are presented forsFedid used to evaluate the importance of the
various terms. Finally, contributions to the experimentally observed reduction of the metabspincoupling
constants (the relativistic nephelauxetic effect) are discussed. B3LYP and Hdftrele calculations for Fe@t

are used to characterize the change of the iron 3d radial function upon complex formation. It is found that the
iron 3d radial distribution function is significantly expanded and that the expansion is anisotropic. This is interpreted
as a combination of reduction in effective charge on the metal 3d electrons (central field covalence) together with
expansive promotion effects that are a necessary consequence of chemical bond formationidhealues

that are important in the interpretation of magnetic data are up to 15% reduced from their free-ion value before
any metat-ligand orbital mixing (symmetry-restricted covalency) is taken into account. Thus the use of free-ion
values for spir-orbit coupling and related constants in the analysis of experimental data leads to values for MO
coefficients that overestimate the metigand covalency.

1. Introduction to the magnetic properties of the electronic-ground state
configuration. Traditionally, the splittings of the ground con-

Transition metal complexes play important roles as catalysts figuration sublevels are described by a spin Hamiltonian (SH)

Iln the active sﬂesh(_)fr:netall?etpzymes ?nld Itn |n(tjustr|e}l prg::éss_fs. which introduces an effective spi® of the state under
N many cases high-resolution crystal structures for the Sites ., \iqeration and absorbs the spatial degrees of freedom into a

are not available, _and spectroscopic StUd'e$ are relied upon tOsmaII set of numerical parametéi®ln this way the data analysis
provide structural information. This is especially important for

the study of reaction intermediates. Complementary to crystal- is divided into two steps: fitting SH parameters to experimental

. . L - spectra and their interpretation using an appropriate theoretical
lography, spectroscopic techniques provide information about method. The second step is frequently not carried out, and man
the electronic structures of the sites which are intimately linked ' P q y ' Y

to their reactivitieg. To maximize the amount of information empirical relations for thg SH pgramgters have been used .to
obtained from spectroscopic studies, theoretical models aregreat_advant_age by expenmentahstg (|.e.,_ref._6). !—Iowever,_ this
required that connect the active site geometric and electronic SteP 1S required if the goal of the investigation is a detailed
structure to the observed spectra.

Since transition metal complexes are frequently paramagnetic,
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electronic structure description of the compound under inves-
tigation and is the focus of this paper.

The SH was first introduced by Abragam and Pryicethe
context of crystal field theory (CFT) and elaborated by otfers.
In analyzing experimental results, it has generally been found
that spir-orbit coupling (SOC) constants that are reduced from
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problem has been analyzed by several autffof3 but applica-
tions of these theories to transition metal complexes are scarce.
McWeeny has developed a transparent approach to the calcula-
tion of g-values and ZFS%¥.However, his results only include

the case where spitorbit coupling occurs between states of
the same spif® This restriction is unsatisfactory for many

the value of the free ion are required, and this has been calledapplications and especially for the ZFSs of high-spin ferric

the relativistic nephelauxetic eff€cbecause the spirorbit
coupling effect is relativistic in origin and the reduction could
be explained by an expansion of the metaldial probability
distribution functior? Detailed accounts of these developments
are availabl&® 1! and are still used in the ligand field theory
and angular overlap approacHhés.

On the basis of the nephelauxetic effect and the observation

of ligand hyperfine interactions,it became clear that metal
ligand covalency should be accounted for in more detail, and
molecular orbital (MO) models were developed fpralues,
hyperfine coupling$? and ZFSg4d15Importantly, the combined
experimental and theoretical study of the ZFS in high-spin ferric
complexe¥18 showed that Griffith’'s modé? predicts the
wrong sign for the ZFS in the case of FeChnd that this can

be traced back to the differential convalencies of the predomi-
nantly Fe-3d MOs, thus underlining the importance of an explicit
consideration of covalency.

The question arises of how the spin Hamiltonian parameters

can be calculated in the general case where no specific

approximation (MO, valence bond, ligand field, etc.) to the
nonrelativistic many-electron wave functions is assumed. This
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complexes where the SOC between the ground sextet and low
lying excited state quartet states makes a major contribution to
the ZFS16-19

Therefore an extension of McWeeny'’s treatment is necessary
and is developed in sections 2.2.4 of this paper. Readers not
interested in the derivation can proceed directly to the results
in egs 16, 18, 30, and 31. In sections 2.5 and 2.6 the numerical
implementation in terms of MO and CI wave functions is
presented. On the basis of these developments, the ZFSs of high-
spin ferric complexes are analyzed in section 3 and contributions
due to low-symmetry ligand field splittings, anisotropic cova-
lency, charge-transfer states, and ligand spirbit coupling are
identified (section 3.1). The various contributions are then
evaluated through INDO/S-CI calculations for the specific case
of FeCl~ (section 3.2). This complex was chosen as a
representative for high-spin ferric systems with axial ZFS,
because (1) it is a relatively simple, high-symmetry system, (2)
it has been intensely studied at the single-crystal level with
ground- and excited-state spectroscopies and the second- and
fourth-order contributions to the observed ZFS have been
experimentally determine®;1” and (3) the origin of the ZFS
in this complex has been analyzed in det&il’

It is commonly assumed that the free-ion SOC constants
obtained from atomic spectroscopy are suitable to calculate
g-matrices and-tensors. However, these constants depend on
the radial distribution function of the metal and ligand orbitals
involved in bonding, and the changes of these radial functions
upon complex formation have received little attention. Therefore
section 4 of the paper evaluates the changes in the metal 3d
radial distribution functions for the special case of ReCising
the Hartree-Fock and B3LYP electronic structure methods.
Finally, the connection to ligand-field models is developed
(section 4.3), and the contributions to the total reduction in the
apparent metal spirorbit coupling are discussed (section 4.4).

2. Theory

In the absence of nuclear spins and exchange interactions,
the spin Hamiltonian up to terms bilinear in the effective spin
is usually writtert

spin HZe + HZFS
— p,BgS+ DS

H 1)

wherefg is the Bohr magnetoé is the magnetic flux density,
Sis the operator for the effective spin, agdand D are the
g-matrix and the ZFS-tensor, respectivétig,in acts on the basis
functions|SMwith M =S S— 1, ...,—S If a coordinate system
is chosen that diagonaliz€s Hzrs can be rewritten:

Hzes=DIS — 1;8(S+ 1] + E[S’ — §/]
D=D,,— 1/2(Dxx+ Dyy); E= l/Z(Dxx - Dyy)

(2)
®3)

A constant/3(Dy + Dyy + D)S(S+ 1) is dropped because it
shifts all levels equally, and the facter/sDSS + 1) is
introduced for convenience. In a proper coordinate system
and z are chosen such that 8 E/D < %/3.2324 Note that in
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generalDyy + _Dyy + D_ZZ¢ 0; the D-tensor is not in general Heoe= XZE(riA)TA(i) 3(i) = z(_l)mzh—m(i) s () (6)
traceless, as is sometimes stated. T ] |

2.1. Origin of Spin Hamiltonian Parameters. To connect
g andD with exact or approximate eigenfunctions of the Bern -
Oppenheimer (BO) Hamiltonian, an effective Hamiltonian WhereA sums over all nuclela(i) is the angular momentum of
technique is use®:2>An orthonormal set of many-electron wave ~ €lectroni relative to atomA, _§(|) is the spin operator for_thldah
functions{ |aS;M[J is assumed, where is a compound label electron, ancE(ria) is a radial operator that is proportional to

the total spin of state,, and its projection onto theaxis (M = A (ria = [Fi . Ral; Ra is the position of theAth nucleus). In
S S — 1, ...,—Sy). The set of states is assumed to diagonalize atomic units

the BO Hamiltonian, i.e.Hgo|aS;M= E,|aS,ML] and states
are labeled in order of increasing energy. Sikige commutes ) A
with the & operator S, andM are good quantum numbers. The (T, — R ) = o Zoff )
full Hamiltonian is taken to be PoA 2|7, - Ry’
H=Hg,+H, (4)

wherea is the fine structure constar(/137),syis a standard
whereH; = Hsoc + Hze. Hze is the Zeeman operatoHsoc component of the spin vector operatar€ —1, 0, 1), anch—p,
the SOC operator (see below). In the effective Hamiltonian s a standard component of a reduced sfirbit vector operator.

approach, the set of states is divided iatcandb-sets. Inthe  Note that this form oMy assumes a spherically symmetric
present treatment it is required that the ground state is only spin-glectric field around each nucleus.

degenerate; that is, tleeset contains &, + 1 functions|aSML)
while theb-set contains all other functions. The goal is to absorb
the effect of theb-set on thea-set states into a small set of
numerical parameters so that the matrix of the effective
Hamiltonian,Hes, in the basis of the perturbeadset functions
can be identified with the matrix of the spin Hamiltonian. ) ] S 1S ]
Following McWeeny2 one obtains for the matrix elements of @%Mlzf(l) Sy(i)Ib§M' = (M' m‘ M)@%Hzf(l)llb%D
the effective Hamiltonian ! ! (8)

Sinced(i) is of type T with respect to the total spi6 =
>i(i), one can apply the WignetEckhard theorem to each
operator of the forny f(i) sm(i):2°

ASM|H JaSM' = E, 0y, + RSM|H,[aSM'D
—%Aglﬁide|H1|b$,M"DJE)$,M"|H1|aSaM'D(5) where
s

whereAp = E, — Ej, a positive quantity, anB, is conveniently (SO 1 ‘ Sa)
set to zero. The connection to the spin Hamiltonian formalism M" m|M

is made by requiring that the matrix eleme@§M|HeraSM'O

are equal tdSMHspinl SM L With the present choice ¢4, the is a ClebschGordon coefficient (CGC}: Any component
first-order contribution to thg-matrix is a diagonal matrix with ~ h_q(i) can be substituted fdti), and one obtains
elementsge, the free electrong-value, while there is no

contribution to theD-tensor. It is well-known that the direct S 1S

spin—spin dipolar interaction gives a traceless first-order ' ' _1ym | ) SaSo_
contribution to theD-tensor2%-26For transition metal complexes aSMiHsodbSMT= ;( 1 (M' m| )Y ™ ©)
it is usually assumed that the second-order contribution to the

D-tensor, which originates from SOC, is domin&#tdand this

is the focus of the present paper. Tdpenatrix will be written whereY3*(—m) denotes a reduced matrix element. The same
g = gel + Ag, wherel is a 3 x 3 unit matrix. equation in terms of density functions was given by McWe&hy,
2.2. Spin—Orbit Coupling. The SOC operator in the Breit and a closely analogous equation but with inclusion of the spatial

Pauli approximation is composed of one- and two-electron Symmetry contained in the vector operator, by Griffith.30
contributions and is relatively difficult to handle even in the Since most of our future applications will be to systems with
case of atomd’ The usual approach for molecules is to little or no symmetry, we disregard the spatial symmetry and
approximateHsoc by an effective one-electron operator of the use eq 9. The selection rules contained in the CGCs regylire
form?8 — S = 0, 1, and the reduced matrix elements are calculated
for the standard states with = S giving

(25) Lowdin, P.O. InPertubation Theory and its Applications in Quantum
MechanicsWilcox, C. H., Ed.; John Wiley and Sons Inc.: New York,

1966; pp 255ff. (29) (a) Moores, W. H.; McWeeny, Froc. R. Soc. A973 332 365. (b)
(26) Weil, J. A.; Bolton, J. R.; Wertz, J. EElectron Paramagnetic Abegg, P. W.; Ha, T. KMol. Phys.1974 27 (3), 763. (c) Pasternak,

Resonance. Elementary Theory and Practical Applicatioidey R.; Wagniere, GJ. Comput. Cheml981, 2 (3), 347. (d) Koseki, S.;

Interscience: New York, 1994. Schmidt, M. W.; Gordon, M. SJ. Chem. Physl992 96, 10768. (e)
(27) (a) Blume, M.; Watson, R. ERroc. R. Soc. ALl962 270, 127. (b) Langhoff, S. RJ. Chem. Physl974 61, 1708. (f) Cohen, J. S.; Wadt,

Blume, M.; Watson, R. EProc. R. Soc. A963 271, 565. (c) Blume, W. R.; Hay, P. JJ. Chem. Phys197971, 2955.

M.; Freeman, A. J.; Watson, R. Phys. Re. 1964 134, A320. (30) Griffith, J. S.The Irreducible Tensor Method for Molecular Symmetry
(28) (a) McClure, D. SJ. Chem. Physl952 20, 682. (b) McGlynn, S. P.; Groups Prentice-Hall Inc.: Englewood Cliffs, NJ, 1962.

Vanquickenborne, L. G.; Kinoshita, M.; Carroll, D. Gitroduction (31) Rose, M. E.Elementary Theory of Angular MomenturDover

to Applied Quantum Chemistriflolt, Rinehart, and Winston Inc.: New Publications Inc.: New York, 1957.

York, 1972. (c) Misetich A. A.; Buch TJ. Chem. Physl964 41 (8), (32) Lushington, G. H.; Grein, FTheor. Chim. Actal996 93, 259.

2524, (33) Ditchfield, R.Mol. Phys.1974 27(4), 789.
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v 1
+1 I T _
Y SH(—m) = —Sa(z )@sasaih_m(i) s(0)IbSS.T (10) Agyg %ZAb dssf @%Sallzlp(u)|bsbsom
| [ﬂ’sbSdZS(FiA) Ipq() S0)[@aSS,0

+ @%Salzé(rm) o) 50) DS SIS S| 1) 2SS

Y5 (-m) =

25 +3 ’
(& h_. (i) s_;()Ib(S, + 1)(S, + 1)O(11 18
s i1 S8/ N-n® 201D, + (S + DI (18)
Sas"‘ l( m) = It is important to point out that the Zeeman operator has no

. : _ _ matrix elements between states of different multiplicity @or
BLSdSa|Zh,m(|) Su(Ib(S ~ DS~ DE(A2) Z b) and therefore to second order tgamatrix unlike the

D-tensor contains no contributions from states with a total spin
The part of the second-order contribution, eq 5, that contains different from that of the ground state. This appears not generally
Hsoc twice is to be recognized, as many treatments relate botbtrend the
g-matrix to a common tensaof. As discussed in the litera-
T ,(\‘;)M =_ %Ab_l@%WH'so& bSM"IBSM" |HsoJaSM' 0 ture59:14.20.21.3%3he evaluation of the orbital angular momentum
& matrix elements introduces a variance with respect to the choice
(13) of origin. Numerical calculations suggest that the effects are
small if the center of charge is taken as origilternatively,
gauge invariant angular momentum operators can be défined
or field-dependent atomic orbitals used (for example see ref 33
and references therein).

[BMH,dSM (= Z(—l)m+mr DmmgBMShJSM'Dx 2.4. Contributions from States with S, = S, + 1. The
mm importance of contributions of this type to ZFSs has been clearly

BM'|S,ISMO(14) recognized in the case of Cr(fand®S ground-state iori§:16.17.19

It is not obvious that the pertubation sufff), (k = +1) has

can now be made (hel®y, is an element of th®-tensor in the sameMM' and mni dependence as eq 14 whén= S,
spherical components). Three cases need to be distinguishedThis however is the requirement for being able to write down

where it is understood that the sum includes only the terms with
S = S + k (k= 0, +£1). By inserting the appropriate matrix
elements, the connection to the matrix elementsigfs

relating to$, — §, = 0, £1. . a SH that is bilinear in the spin operators. Grifft’has shown
~ 2.3. Contributions with S, = S,. Insertion of eqs 9 and 10 that this is possible, but his result was not in the standard form
into 13 yields of eq 1. In this section B-tensor in standard form is obtained.
To proceed definel
T o = —Z<‘1)m+mZAb‘lY§%SB(—m)Y§fB(—M) x "
m,m
LIS)S L)% A = = Ay Yo (—m) Yor(—m) (19)
M., o (15)

Consider first

1
S gdz(—l)‘"*'“ZAgl
m’. . o M = M e b S+11(§
BSSIY 1ol SOIDSSISSIY 1) SO1BSSD Thiwr = 5 5 dod {1 \

S TSMIS S TSMIS,ISM T (o L5 eo

By comparing egs 14 and 15, one obtains after switching back

S The selection rule is contained in the last sum. For the first
to Cartesian indicep(q =X, Y, 2)

CGC itisM" + m= M and for the seconi' + m = M"".
1 These are the same selection rules as for the 8ase S..
Dgg =— _ZasasnAbﬂ@SaSJZé&(riA) | p(0) S0 [0§,S,0x However, the numerical value of the CGC is different in the
saz 7 ' present case, and a proportionality to the spin-only matrix
. . elements of the formi$M S,|SMis not immediately evident.
EHJS)SOIZE(FM) aq(1) S()1a8S,0(16) Consider a matrix elemeniBMHzrgdSM — 2000of the spin

Hamiltonian:
which is McWeeny’s resuf using the Zeeman operator in the
form [SMH,-dSM— 20=
Hze = ey B(I (1) + 6:3() (17) 1(S=M+1)(S+ M) V(S—M+2)(S+ M- 1)Dy
' (21)

The parts of the second-order energy that contain the products
of matrix elements oHg,- andHze yield the g-shift ag° Alternatively, the pertubation sum gives
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gl TR e 23
R FETRG R
JS+M(S+M— 1S~ M+ 1)(S — M+ 2) . (“S;H 31|Sa)(;a 1 311)2&11]:

1 /25 +3

3\ 25 +1

S

o ol ol ™)z

IIMM%

V(S + 1)(2S, + 1)(2S, + 2)(25, + 3)

Thus, theM dependence of the two matrix elements is the same,
and it can therefore be concluded that they will be numerically
equivalent if it is defined

[Zd&) +dp, +d) ] (29)

Subtracting this from any diagonal element and taking into
«/— account the definition of the reduced matrix elements eas 10
2 Zdb (23) 12, it is concluded that the contribution from states vath=

L _
Dii = S, + 1 to theD-tensor is given by

V(S + 1)(25, + 1)(25, + 2)(25, + 3) 1
W_ _

. o . . D _—
The same proportionality is readily established®dt,_,, D, P (g4 1)@+ 1) *
D{J, D§,, andD™),,. Next, consider a diagonal element of the

spin Hamiltonian: ZésosaﬂAgl@s‘sags(rm) ap() S_1())1bS S, Ox
[SMH,pd SM= M?Dyy — Y,(S— M)(S+ M + 1)D_,, — EﬂJS,SOIZE(nA) laq(i) 5:4(1)12SS,0(30)

YA(S+M)(S—M+1)D, ; (24)
where agairp andq refer to the Cartesian components of the

The perturbation sum gives D-tensor. Repeating the process for excited statesSyith S
— 1 results in the following contribution to thB-tensor
0= y&(3 TS| S s, .
M Z 0IM DiV=—- ——  «
& (Sa+1 ‘sa)(sa 1S+ 1)+ "oses-
HMA+1 ~1IM/M 1M +1 Zésosa—lAbﬂ@Sbsﬂzg(riA) |pp(i) S4(1) 0§ S,0x
5l ) e "
m Eﬂ)%SOIZE(nA) laq(i) s-1()1aSS,0(31)
B
V2
= X Summing up, the second-order contributions to the ZFS tensor
\/(3.1 +1)(2S, + 1)(2S, + 2)(2S, + 3) from SOC are given by
2(SHMA DS~ MF Do+ S+ M+ 1S+ Dyq =D + DY + DY (32)

M+2)d, + (S~ M+ 1)(S — M+ 2)d_, with the individual contributions given by egs 16, 30, and 31.
2.5. Formulation in Terms of Molecular Orbitals. Having
Now the average of all eigenvalues of the SH is subtracted from obtained general expressions for the elements ofCthand
each diagonal element. By means of the diagonal sum rule thisg-matrices, it remains to specify approximations to the many-
average is equal to the average of the sum of the diagonalelectron wave functions appearing in egs 16, 18, 30, and 31 in
elements. Using order to perform actual calculations. In this and in the next
section we discuss two standard choices, namely, single
determinants and CI type wave functions.

25+ 1MZ M? = 1/38(3+ 1) (26) 2.5.1. Spin-Restricted DeterminantsThe most elementary
=S case is when all statd3o.S,M[} can be expressed as single
S Slater determinants. This is the case for certain restricted open
2 —1/2(S¥ M(SEM+1)= —1/3S(S+ 1) (27) shell HF (ROHF) solutions and related methods. If a wave
25+ Ivss function for spinS can be represented by a single normalized

Slater determinant (denoted ith n doubl dmsingl
the corrected diagonal elements of the spin Hamiltonian becomeocijgiez ((a)rrrgigzlasn iE isr:)c; ?he|arﬁzgjhw-lspirr11 t;g@:y ancmsingly

1 S ” "
[$M|HZF§SND— - Z |:$M|HZF§SMD= |OSS]: |¢1¢1 wnwnw% %m| (33)
25+1yes

An excited state in which an electron is promoted from a doubly
2 1 1 1
[M® = "/ &(S+ D[Dgo + 75011 + 1:D_11] (28) occupied into one of the singly occupied MOs is also an

The term linear inM cancels. For the perturbation sum the (34) 4 is an orbital that is occupied by a spin-down electron, whilés
equivalent average is occupied by a spin-up electron.



Zero-Field Splittings in Transition Metal Complexes Inorganic Chemistry, Vol. 37, No. 26, 1998573

eigenfunction toS and S, with the same eigenvalues: states). The same sign change does not occur foDttensor
because each term in eq 16 contags$wice.

2.5.2. Spin-Polarized Determinants.In a spin-polarized
bonding scheme (spin-unrestricted DFT or HF) the ground-state
Likewise, if an electron is promoted from one of the singly determinant is written
occupied orbitals into an empty orbital, a single-determinant

spin eigenfunction is obtained:

I 3SSH= [y ... 1/)i’(7}0j e Pltho, Vo | (34)

0SS= |9 oo YR Y Wi (40)
wherea refers to spin-up anfd to spin-down electrons. Excited
states are formed by replacing occupied spin-up or spin-down
The case where an electron is promoted from a doubly occupiedMOs with virtual MOs of the same spin:

into an empty orbital is more complicated because it leads to _ _

several states of the same multiplicity as well as states of IFSST= (9] o Y WS o P WS Wy e il (41)
different multiplicities. The same is true for spin-flip states in
which an electron is promoted from one of the singly occupied and
orbitals into another singly occupied orbital with an accompany-

ing spin flip. These excitations give rise to several states of
lower multiplicity than the ground state. In the latter two cases ) ]
proceeding on a case by case basis is probably best. HoweverYsing these excited states, one f!rst calculates the analogugs of
general conclusions can be drawn for the two types of excited- €ds 36 and 37 and then inserts into egs 16 and 18 to obtain
state wave functions in eqs 34 and 35. These wave functions

are not in general accurate descriptions of the actual states, a$© —
they neglect excited-state electronic relaxation. They are useful ™

1 GSST= (Y181 o Yelitfo, -+ Wa o | (35)

NPSST= (9] .l  yh y ol (42)

1
-

-1 _-u _-on
AT Ty Ty +
4S° i(a-occ) a(o-virt)

however from a conceptional point of view as they link physical
observables to individual MOs. Using Slater’s rd&$in eq
16 gives

UDSSZE(GA) | pi) So()117'SSF=
| 1
- EEIDJ ZE(rA)IA,p“/)ojD (36)
[@S3Z§(riA) |A,p3)(i)|”giSS]:
| 1
+ EWJOJ zg(rA) IA,pW)a[| (37)

For real MOs these two matrix elements are purely imaginary
and hermitian. Therefore the contributions of these two types
of excited states to thB-tensor become

1 — .
DO =~ zb > AdLpLy
43| i(dotbly) o(éimaty)

+; Z AL LI (38)
a(virt) o(singly) ?

where Eﬂp = Im(@i| 3 AE(ra)laplyiD). Note that[ﬂp —Ejlip.
Using the same matrix elements, tienatrix becomes

1 o o
AGy,=+— Zb AL L+ L LS
2S(dou ly)oj(singly) I
- Av{ g L+ L L) (39)
28ath) gj(singly) o
where Egp = Im(Qyillply;0. The positive sign for the first

contribution arises from thg term in the SOC operator. This

wz ALY LY 43)
i(p-occ) a(p-virt)

AGyy= — A g Lgge + L L

23 (o-occ) a(oe-virt)
+— ALY L + Ly Ly (44)

23 -occ) a(p-virt) I
Excitations from spin-up to spin-down MOs cannot easily be
incorporated into the calculations because they would lead to
nonorthogonal configurations. The problem with this approach
is that the values of the total spin is ill defined because the
determinants in egs 40, 41, and 42 are not spin eigenfunétions
and spin contamination may be much larger in the excited states
than in the ground stafé.

2.5.3. Matrix Elements over MOs. The matrix element

involving MOsi andj is resolved into a sum of integrals over
basis functions in eq 45,

@i';g(rA)lA,p“/)jD: zcricsj®r|2§(rA)lA,p|¢sD (45)

where the function§¢} form the atomic orbital basis set and
the c’s are the MO coefficients. This leads to one-, two-, and
three-center integrals. The two- and three-center integrals may
be neglected due to thg~3 dependence of th&(ra) operator,

eq 6, and the one-center integrals are elementary to evathate.

To a good approximation,

mu;s(rA)IA,pw,-m Z Y cicsn @i llaplgs (46)

with &4 = RYE(r) IR OwhereRY(r),, is the radial part of

is related to the fact that in order to create an excited state and the Kronecker delta is included to indicate that the integral

|Ii°'SS]a spin-down electron must be excited, while in order to
create an excited stat#i®SSla spin-up electron is excited.
This accounts for the fact that dystems have negatigeshifts
while d® systems have positivg-shifts as long as only ¢d
transitions contribute to thg shift (no low lying charge-transfer

(35) Szabo, A.; Ostlund, N. $4odern Theoretical ChemistrivlacMillan
Pub. Inc.: New York, 1982.

(36) Bacon, A. D.; Zerner, M. CTheor. Chim. Actdl979 53, 21.

(37) Mabbs, F. E.; Collison, DElectron Paramagnetic Resonance of
d-Transition Metal Compound&lsevier: Amsterdam, 1992.



6574 Inorganic Chemistry, Vol. 37, No. 26, 1998

vanishes iip, and¢s have different angular momentum quantum
numbers. The@fS may either be approximated by the SOC
constants of the appropriate free atoms or ions or be theoretically
evaluated as considered in section 4.

2.6. Implementation in Terms of Cl Wave Functions.A
general and in principle rigorous way to construct the many-
electron wave functions required in the evaluation of eqs 16,
18, 30, and 31 is the method of configuration interaction (Cl).
In a CI treatment each BorfOppenheimer eigenfunction is
constructed by a many-electron wave function of the form

la§MO= 5 C,, @, (47)
4

where usuallyM = S, and the coefficient€ are assumed real.
Each configuration state function (CS®) is an antisymmetric
function in the electronic coordinates and consists of an orbital
product built from a set of orthonormal MJsp} and a spin
function. In the most basic case it is a single Slater determinant.
Although expansions of up to more than’10SFs become
practicaf® in practice, one usually has to work with a severely
truncated se{®}. The matrix element of any one-electron
operator,0, between two CSFs can be written

65,5y 0)15S,S,0= zcyacyﬁzrgzmppqum (48)
! 4 2]

where the coupling coefficient§ depend on the way the
functions{ @} are constructed. A straightforward way to do this
is the method of bonded functioA%3%42 Matrix elements
between two bonded functions of the sarSeand spin-
independent one- and two-electron operators were worked out
by Boys and Reeve®,Sutcliffe * and Cooper and McWeerty.
Summaries can be found in the books by Mcweémnd
PauncZ? A computer program to carry out the projective
reduction was reported by Reev@and computational strategies
for ClI calculations based on bonded functions have been
discussed? The case of spin-dependent one-electron operators
was treated by Manne and Zerfferand applied to SOC
calculations by Kotzian et &f Our present implementation of
the theory is based on this formulation with MOs determined
by semiempirical valence-only methods like the INDO/S model
of Zerner and co-worke?%*” and atomic SOC constarfts.>0

The coefficientd" are evaluated together with the Hamiltonian
matrix elements during the CI calculation and stored in an

(38) Siegbahn, P. E. M. Ibecture Notes in Quantum ChemistRoos, B.
0., Ed.; Springer: Berlin, 1992; pp 255ff.

(39) Boys, S. F.; Reeves, C. M.; ShavittNature 1956 178 1207.

(40) Sutcliffe, B. T.J. Chem. Phys1966 45, 235.

(41) Cooper, I. L.; McWeeny, Rl. Chem. Phys1966 45, 226.

(42) Pauncz, R.Spin Eigenfunctions. Construction and Ydelenum
Press: New York, 1979.

(43) Reeves, C. MCommun. ACML966 9, 276.

(44) (a) Roos, B.O. IlComputational Techniques in Quantum Chemistry
and Molecular PhysigsDiercksen, G. H. F., et al., Eds.; D. Reidel
Pub. Inc.: Dordrecht, Holland, 1975; pp 251ff. (b) Scott, J. M;
Sutcliffe, B. T. Theor. Chim. Actal975 39, 289. (c) Diercksen, G.
H. F.; Sutcliffe, B. T.Theor. Chim. Actdl974 34, 105.

(45) Manne, R.; Zerner, M. Ant. J. Quantum Chem. Symp986 19,
165.

(46) Kotzian, M.; Rach, N.; Zerner, M. CInt. J. Quantum Chem. Symp.
1991, 25, 545.

(47) (a) Ridley, J.; Zerner, M. CTheor. Chim. Actal973 32, 111. (b)
Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff, U.
T.J. Am. Chem. S0d98Q 102 589. (c) Anderson, W. P.; Edwards,
W. D.; Zerner, M. C.Inorg. Chem.1986 25, 2728.

(48) Edlen, B.Encycl. Phys1964 80.

(49) Bendix, J.; Brorson, M.; S¢Har, C. E.Inorg. Chem1993 32, 2838.

(50) Dunn, T. M.Trans. Faraday Socl961, 57, 1441.
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Figure 1. Energy levels of a high-spin ferric ion on a cubic ligand

field.

external file. Fors, = S, Reeves's algorithAt cannot be used

to determine thd" coefficients, and a special procedure was
developed following Manne and Zern®r.To evaluate the
D-tensor and the-matrix, this file need only be read once,
and for each set of indicgs g, y, andd the contributions of
each pair of states @ to the sum in egs 16, 30, and 31 are
evaluated. Finally, the fulD-tensor is found by performing the
appropriate sums. Thg-matrix is evaluated according to eq
18 at the same time, as this requires negligible extra effort. The
number of contributing states is defined by either the number
of eigenvectors available from the CI calculation or a given
excited-state energy threshold above which the contributions
are supposed to be too small to warrant evaluation. After the
D-tensor is evaluated, it is diagonalized and the combination
of eigenvectors determined that define a proper coordinate
system. On the basis of this choice theand E/D values are
assigned.

3. Application to High-Spin Ferric Complexes

The equations given above are general and include all
situations that are likely to be met in practice except for the
case of ground-state orbital degeneracy where a spin Hamilto-
nian approach is not appropriate. This development was driven
by our interest in ferric-active sites in non-heme iron enzymes.
Together with the development of a general MCD theory to be
presented elsewhebéthe present methodology constitutes a
powerful probe of the electronic and geometric structure of these
sites. It is therefore appropriate at this point consider the factors
that govern the ZFS in high-spin ferric complexes with ReCl
taken as an illustrative example since it has been studied in
detail 16:17

3.1. Approximate Expressions for the ZFSs of High-Spin
Ferric Complexes. The low lying electronic states typically
found in cubic high-spin dsystems follow from ligand field
theory and are shown in Figure 1. In tRA; ground state

(51) Neese, F.; Solomon, E. |. Submitted for publication.

(52) This result is due to the configurational mixing between*fhestates
following from the (ét;°) and the (&%) configurations. The large
contribution from the*T,° state in Table 1 actually comes from the
(e'tx?) character in this state.
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(denoted 00} there are five singly occupied MOs of mainly Fe |4T?2D= [, — 1]) o o0 (54a)

3d character, and a single-determinantal wave function of the vy

high-spi_n type, eq 33, is a r_easonable reprt_agentati_on_ for this |4'|'21‘X[|: COS’?llﬂyz_’ 1I)X27y2|:|-|— sin ;7|1/,yz—» qj)zzm (54b)
state. Since there are no spin-allowed transitions within the d B _

set the first excited states have quartet multiplicity with a pair |4Tiy|]= CoSN |y, — Yoy = sinnly,, — y,00  (54c)

of 4T, and*T, states being lowes§ To higher energies a series

of quartet states follow that usually partially overlap with the with = /3. Using these states in eq 31 together with eqs 50
onset of sextet LMCT states in which an electron is promoted and 52, one finds for the ZFS

from a mainly ligand-centered MO to one of the singly occupied

Fe 3d based MOs. If the quartet states were all represented by o — CFe 4(nyxz yz)2 (Kyzxz ,+ 3K§‘,Zzz)2 N
single determinants of the form 20 ECT) 8 ECTS)
Yo, = Vo= [W1¥1 o W, - Yo - Yo | (49) (Kpoye T 3K3,2) ) (55)
E(‘T3)
the contribution of these states to the ZFS could be easily
calculated because Let us assume for the moment that &ie can be factored into
contributions belonging to individual MOs, i.eKi’]? ~ 0404. In
0| Zar“‘) lAp(i) s, )y, — 1])0 = perfectly cubic environments symmetry demands that the energy
’ i ! denominators are equal and alsg = ax, = ay; and oy =
1 1 _ oz i.e., D(4Ta) 0. Nonzero contributions in lower sym-
- —EJUoiIZE(fANA,pI%jD: - —L3 (50) metries can be mainly traced back to two sources, namely,
2 distortions that lift the degeneracy of the three quartet states
and changes in covalencies of individual MOs that reflect
therefore from eq 31 differences in bonding interactions.

3.1.2. Contributions from Low-Symmetry Distortions. Let

1 us initially assume that alK’'s are equal to 1 and that the
Déql) =|-—|—- zAOﬁO L°'OJ L°‘OJ = distortion splits the quartet states in a manner consistent with
5/2(25/2 -\ 255 ligand field theory:
1
— A;_.o LS9 LO9 (51) E(*TS) = Eo + oA+ oA, (56a)
2085
E("Tiy) = Eo + TaAe — A, (56b)

In section 4.3 of the paper we will make the connection between
MO and ligand field theory and show that the |ntegrldi§can HereAc s positive ify,2_2is abovey2, A, is positive ifwXzyz
be obtained from eq 45 without introducing further approxima- is above wxy, and E®. Using the seriesa( + h)l =

tions as Yi(—1)bla=~1, which converges rapidly fds < a, one arrives

ata contribution tdD from this mechanism that is given by

Lip = Cre IM(Id[1 e pld; D]Kﬁ-’ (52)

D= — (éo [Ae+ %A, — TANAJES]  (57)

where|diTis the Fe 3d part of MQ, Kg is to be interpreted as
a generalized orbital reduction factor that includes the ligand ] ] ) o o .
SOC and a variety of other effects, afiek is a suitably (out ~ Thus, if Ae is small, this approximation, which is essentially

arbitrarily) chosen free-ion SOC constant. Accordingly, eq 51 the same as Griffith’s? suggests thab would be positive if
becomes Yxzyz IS belowy,y (flattened tetrahedron) and negativeyif,y,

is aboveyyy, (compressed tetrahedron).
3.1.3. Contributions from Anisotropic Covalency.To see
-1 _ q the effect of covalency, one might assume-y2 ~ a2 = a,
Do~ = ZAO*O 9 K°i°J lm(m"illFe’P'd"jg = ¢, andoy; = ay; = y. Equation 57 is then modified to

Im(moiIIFe,q|doj[J (53) 1 CFe

D(TDeor = £ Z @101 = % = 1%, + %)
However, single determinants are usually not suitable ap-
proximations to the excited quartet ligand field states, and a = YA L+ X+ %, + Y xx)] (58)
more complete consideration d])é;l) in high-spin ferric
complexes is necessary. with xe = AJES andx, = A JESY. For the typical case of

3.1.1. Contributions from the Lowest Quartet State.In negativex, and smallx. one can also expedt? < y2, and

cubic symmetry the ground stef&; state can only spinorbit therefore in this case the effect of covalency on the ZFS is
couple to states off; symmetry. In a distorted tetrahedral negative while the distortion gives a positive contribution.
molecule the lowestT; is dominated by the + e excitations 3.1.4. Contributions from Higher Quartet States. This
that are represented by situation changes for the higher lyifd; statesf"l*l is mainly

composed of the e> t excitations that give rise to states with
(53) Sugano, S.; Tanabe, Y.: Kamimura,Multiplets of Transition Metal analogous determinantal descriptions. The only difference is that

lons in Crystals Academic Press: New York, 1970. now A andAy, change sign because the one-electron energy is
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increased in the excited state. Therefore the contribution from

“Tis

1CFe 2,
5E(()b)

D(ATi)cou [‘5 1+ llzxe + 1/2Xt + 1/2X§3X{)

— 72— Y — X, + 1xx)] (59)
with x, = Ae/E0 andxi, = A /EgC It is important to note that
for 4‘I'C the covalency and distortion contributions work |n the

same direction; that is, for negatixg, smallxe, ando? < 2

the effects of both covalency and distortion are negative. Thus,

although“‘l'i is typically >10 000 cn? higher in energy than

4T"j, it is likely to make a significant contribution to the ZFS.
The third 4T, state, ”’I"; is dominated by the spin-flip

transitions within thezset. It does not split to first order with

a geometric distortion but has a small contribution to the ZFS

arising from anisotropic covalency:

D(*T) =

62
E(4sz) ECTY xy)] (60)

3.1.5. Change of States with Distortion.If a geometric
distortion, sayTyq — D2q, is present, it cannot necessarily be

10 Fe

expected that the states in eq 54 retain the same determmanta'ﬁ;zxz =

composition. From group theor‘i]l’a splits into *A; and “E?,
while “T5 splits into B, and “EP. Of these state4B, cannot
spin—orbit couple with the5A; ground state?A, spin—orbit
couples via the-component, while théE states couple via the
X,y components of the SOC operator. Furthermore, the*ivo
states are allowed to mix by CI. TH&, and*E2 and“E? states
are represented by eqs 54@ and the*B, and “EP states are
given by

|4BZD: |1/)xy_> 17)22D (61a)
"ELC= —Sinnlyy, — P H cOSIYy,— p0  (61b)
|4E$D= Sin 77|’l)xz_’ ’IJJXZ—yZD—i_ COS’?|’/’xz_’ 17}22D (610)

The CI effect is described by a deviation of the angl&om

its tetrahedral value/3. Writing = 7/3 + 1" and performing
a power series expansionsjfy the contributions of théA, and
4E? states are now

2 1— 12 + l/ 14
DED(TE) = éFe 2 ? (=7 : 3") 62)
EEYS E(EY)
Similarly, “EP yields the contribution
CF % = ')
DCY*TS ‘o U 63
(o) = oy ) (63)

Defining « = 1 — 52 + Y3y'* (' measured in radians), the
two contributions can be combined to give
o? K 1-

A+ 41y =
2 K
ECA) {E(“Ea) i E(“E“>}

CFe 2
5

An approximate expression is obtained using: E(*EP) —

E(“E?).

(64)

Neese and Solomon

DU + 4Ty =

C_éeazé_z_i{ - (1- )( L)]
57 |E( A) ECA% ECE)  E(EY?

(65)

The ClI effect is now entirely contained in the term{in}. For
small anglesk is close to 1 so that the effect of the Cl is seen
to be a small correction that can be included in the apparent
value fory?2. Thus, ignoring the CI effect will lead to a slight
underestimate of the value gf. However, in the numerical
calculations on FeGt to be presented below we fingd to be
< 5°, which gives an apparent reduction)gfof only ~0.1%.
3.1.6. Influence of CT StatesThe contribution of the spin
sextet LMCT states can be estimated from eq 38. These
contributions are best calculated numerically for a specific case.
3.1.7. Influence of Ligand SOC. Finally we want to
explicitly include the ligand SOC in the calculation. As will be
shown IatelKi‘j’ in eq 52 must simply be multiplied by a factor
Kﬁ'"'g. If four equal ligands are assumed and for simplicity
overlap is neglected,

~1— Y1 — 091021 — ad)o?

xy,lig
=K yor

KZ“Q

XY, X2—y2

(66a)

x

1= (L= A2V~ adla? (66b)

(vL = C/Cre). Inserting these factors into eq 55 gives explicit
expressions of the additional ligand contributions to ‘fﬂi%
terms in the ZFS expressions. There are terms linear and
quadratic inv.. The linear terms vanish in the limits of either
ful (a=y=0=0)orno @ =y =0 =1) covalency and
therefore depend on the simultanous presence of ligand and
metal SOC. The terms quadratic in are ligand-only in
character and vanish only in the limit of no covalency.

3.1.8. Extension to Distorted Octahedral SitesThe case
of octahedral sites is slightly more complicated because the
anisotropic covalency pattern will differ from the tetrahedral
case. Here it may be assumegd-y, = o, a2 = 8, anday, =
Oyz = Olxy = 7. Instead of eq 58, the contribution froﬁﬁi‘g is
now given by

3 Cfe
D(‘Tig) = gg g, (et = BB +38) + ol +
Y e, T % 12thgxeg) + B¢ X, T ¥ e~ ¥ 4thgxeg) +

ap(x, + X — 1%, )] (67)
Again, for the typical case of smatl,, positivexs, anda? <

B? one has a negative contribution to thHe-value from
anisotropic covalency and a positive from the low-symmetry
distortion. The contribution fron?T‘jg is given by the same
equation with the signs of,, andxe, reversed.

3.2. Numerical Results for FeCj~. To probe the relative
importance of the various contributions to ZFS, ROHF-INDO/
S-ClI calculations were carried out for FeChas a function of
a distortion fromTy to Dog Symmetry using the SOC constants
Cre = 397 cnT! and {ci ~ 550 cnt? that will be obtained in
section 4.

The results in Figure 2 show that the ZFS is a nearly linear
function of the distortion angle in the rangel0’ and that it
contains significant contributions from both the ligand field and
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Figure 2. CalculatedD-value for FeC}~ as a function of thely —
Doq distortion angle and charge-transfer and ligand-field contributions.

0.15 — ——— . . , |
] 6['-CT-states 4T -LF-states
0.10 O\ -Q- Fe-SOC+CI-SOC _
o] —y— CI-SOC only
b \ —A— Fe-SOC only
o] o
00545, o |
A O o
ALY o J
= A0 N At
E 000 V‘V‘v-viﬁe( O ot
S \A(V‘V‘V~v LE-X-E5T9NG
) oA ~O.
\o Ny %%
-0.05 4 N I\A o
Q
N\
-0.10 0\ i
O
-0.15 T T T T T T T 1 T T T T T
-10 -5 0 5 10-10 -5 0 5 10

Cl-Fe-CI-109.4712 (degree)

Figure 3. Breakdown of charge-transfer (left) and ligand-field (right)
contributions to the total ZFS in FeLlinto metal SOC only and ligand
SOC only contributions.

the charge-transfer excited states. The experimental vBiue,
—0.042 cm11,16.17js reproduced at a distortion angle-62.7°
compared to an experimental angle#5.1° at room temper-
aturel®17Since the deviation from cubic symmetry is small and
the ZFS arises as the small difference of several contributions,
better agreement cannot be expected. It is however significant
that the calculations predict the correct sign and order of
magnitude of the ZFS at the experimental distortion angle.
Figure 3 shows the combinefl” and “I" contributions
separated into contributions to metal-only and ligand-only SOC.
For both sets of states it is observed that the ligand-only
contribution to the ZFS is quite small. Despite this, the ligand

SOC is important, as can be seen from the difference between

the metal-only and total contributions. This means that the terms
linear invg, i.e., proportional tdcére, are important. For the
CT states they have the same sign as the metal contributions
while for the LF contributions they have opposite sign. Explicit
evaluation of the ligand reduction factors givl&%‘iz,y2 =
0.969,K}, . = 0.976, andK},% = 0.974. Thus in absolute
terms the ligand contribution is quite small, but since it is
anisotropic, it shifts the balance of terms that very nearly cancel
each other if ligand SOC is neglected (Table 1). The more

biologically relevant N- and O-containing ligands have much

Inorganic Chemistry, Vol. 37, No. 26, 1998577

smaller spir-orbit coupling constants than chlorine(~ 1.38,
whereasyyo < 0.25), covalency is usually more limited, and
the ZFS is much larger. Consequently the ligand SOC effects
will not nearly be as prominent as for FQCl Much like the
contributions of the anisotropic covalency to the metal contribu-
tion to the ZFS, the ligand contributions are negative and oppose
those induced by the geometric distortion (eq 57), the latter being
the only contributions taken into account in Griffith’s model of
ZFS19

The breakdown of LF contributions to the ZFS in FgGh
Table 1 shows that the contributions frof¢ and “T are
comparable in magnitude and opposite in sign, while that of
“TS is much smalleP? It also follows from Table 1 that
Griffith’s model gives a large contribution of the wrong sign.
Compared to the earlier analydfsl’ the CT contribution is
calculated to be slightly less negative. The results for the first
ligand-field excited state are also similar, while the balance of
contributions from*T? and “T¢ is slightly changed. The MO
coefficients found from the ROHF-INDO/S calculation aré
= 0.963,06% = 0.850, andy? = 0.865. Thus, as expected the
og-antibonding MOs are much more covalent than thanti-
bonding MOs. Compared to the earlieg-8W results:é17both
the - and o-covalencies are calculated to be smaller, with a
more pronounced difference for tevalue (0.963 compared
to 0.840 from X%,-SW)16.17

In conclusion, the present calculations are largely consistent
with the previous analysis and experimental results for [FeCl
and demonstrate the usefulness of the method in the modeling
of ZFS. The extremely important role of covalency for the ZFS
is emphasized. The anisotropy in the covalency not only induces
contributions of opposite sign of those induced by low-symmetry
ligand field splittings but also leads to the appearance of charge
transfer and ligand SOC contributions that are both found to
be important.

4. Change of Metal Radial Functions: Contributions to
the Relativistic Nephelauxetic Effect

There are three main factors that contribute to the apparent
reduction of the metal SOC constant in complexes: (a) the
covalent mixing of metal and ligand orbitals (the symmetry-
restricted covalency in Jagrgensen’s nomencldjurép) the
ligand spin-orbit coupling, and (c) the change in metal radial
wave function that leads to values Gfs in eq 45 that are
different from the free-ion values (the central field covaléhce
To evaluatel;s using the operator in eq 6, one needs to know
the radial functions of the contributing atomic orbitals. Explicit
electronic structure calculations are reported in this section to
estimate how these radial functions change upon going from
the free ion to the complex.

4.1. Free-lon Calculations.Based on g 6 a linear relation-
ship is expected betweép, for a given ion and the respective
(i34, values. Therefore, we first evaluate this proportionality
by comparing calculatedi—3[34 values with experimentally
determinedisq's for Fe ions with different @ configurations.
The 3d radial distribution functions from spin-averaged Har-
tree—Focké* calculations using a relatively large basis set of
Slater orbitals are displayed in Figure 4 fovarying from 2 to
7 and show the expected increase in diffuseness with decreasing
positive charge of the ion. Since the Hartrdeock approxima-
tion is well-known to produce one-electron expectation values

(54) (a) Stavrev, K. K.; Zerner, M. dnt. J. Quantum Cheml997, 65,
877. (b) Edwards, W. D.; Zerner, M. Cheor. Chem. Acta987 72,
347. (c) Zerner, M. Cint. J. Quantum Cheni989 XXXV, 567.
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Table 1. Contributions of Excited States to the ZFS in FeGit a Distortion Angle of 2.7 As Calculated by the ROHF-INDO/S-CI Methbd

state Ecalca Dtotal (Cmil) DGrifﬁlh (Cmil) Dmelal (Cmil) Dlig (Cmil) Dmixed (Cmil)

T2 15100 (A;) +0.070 +0.089 +0.086 +0.001 —0.017
15 773 (E)

4TPb 24582 (E) —0.07F —0.021 —0.078 0.000 +0.001
24990 (Ay)

4Teb 30 666 (E) —0.009 —0.006 —0.002 —0.001 —0.006
31027 (A)

T total —0.016 +0.055 +0.005 0.000 —0.022

T total —0.03¢ —0.016 —0.002 —0.013

total —0.047 +0.062 —0.011 —0.002 —0.035

exptl —0.042

2 Note that these numbers cannot be directly compared to the experimental transition energies since the experimental numbers in contrast to the
theoretical ones contain spitrbit coupling.? There is considerable configurational mixing among*hé&(et®) and*T,%(e't?) states’ This number
contains a—0.012 cn1! contribution from the’E state following from*T.?. ¢ This number contains contributions from many states. There is a
significant amount of electronic relaxation in the CT excited states of Fe@at will be analyzed elsewhereDgyisin = considering the low-
symmetry distortions onlyDmeas = contributions of metal SOC alon®j; = contributions of ligand SOC alon®&mixed = Diotal — Dmetai — Diig-

T T T T T T T T T T T

1.2 o) 4 700 4 i
11 m/‘\ 7 \\o -
f 1
1.04 2 \o _
.6 . ] 600 - .
@ Q
A —~
o 081 8 N . c
= vV 5 o\ £
h= ~
o 0.6 <r3>=8.799-0.617 n® | 5 5001 P .
& N d5//
= 4 6 8 - a

0.4 ! 3d
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Figure 4. Free-ion 3d radial distribution function for Fe ions with
different d' configurations found from spin-averaged Hartré®ck
calculations.

that are correct to second order, the radial expectation values
from these calculations are quite accurate. Forfth&3, value

an almost exact linear dependence on the number of 3d electron
is found (inset to Figure 4). This slightly contrasts with Slater’s
rules that predict a cubic dependence but with very small
coefficients for the quadratic and cubic terms. The empirical
correlation of then =34y values with the experimentg}y values

Figure 5. Correlation of empirically determined spirbit coupling
constants for Fe ions with different donfiguration4® and calculated
radial expectation values 33,

4.2. Calculations on FeCJ~. The same Gaussian basis was
hen employed in molecular calculations on FeClL~ at the

HF, ROHF, spin-polarized- (UB3LYP), and spin-restricted
(RB3LYP) B3LYP levels. The metal 3d parts of the five singly
occupied MOs were evaluated along one of their lobes and
renormalized, and théi—33y values were determined by

determined by Bendix et &.is shown in Figure 5. A correlation numerical integration (Table 2). Here we will discuss only the

7

coefficient of 0.993 and a standard deviation of 15.7 tare RB?"YP results: . . . L
obtained. From the slope the reasonable valye= 14.0 is Figure 6 shows the iron radial probability distribution
calculated for the Fe 3d electrons, compareddo= 13.2 from functions that were obtained for the singly occupied metal-based
Slater's rule€s This accuracy is sufficient to make useful t2@nd e MOs together with the corresponding functions for the
predictions about the variation of the SOC constants found in €€ Fe(l), Fe(ll), and Fe(lll) ions. The radial functions for the
molecules based on calculated radial distribution functions. COMPIex are seen to be considerably more diffuse than those

Since molecular HartreeFock calculations are not yet of the Fe(lll) ion and are in fact intermediate between those

feasible with a basis set of Slater orbitals, the calculations were for Fe(l) and Fe(ll). Importantly there is an increased probability

repeated for Fe(lll) with a basis of Gaussian orbitals and the In the outer valence region that increases the mdigand
basis was enlarged up to the point where the Slater orbital values2Verap and aids in the formation of covalent bonds. On average
for 1334 were reproduced te=1% accuracy. In addition to
the UHF method, the B3LYP hybrid density functional méfel  (56) g]) Bec'Fjﬁv Al-ggp gés-lg% A 19883 i& 3A’09D% (g% Bec'l‘fﬁ 'gig%l

was employed. This method is presently thought to be one of 98185?548_ ys1993 98, - (¢) Becke, A. DJ. Chem. Phys1993

the most accurate electronic structure models and effectively (57) The UB3LYP functions are very similar to the RB3LYP ones, while
incorporates dynamic correlation effects that are absent in the the ROHF and UHF functions are more intermediate between the Fe-

(i) and Fe(lll) functions, consistent with the trends in Table 2 and
Hartree-Fock model. The values found foP éfom UHF and the general notion that the HF description of the bonding in transition

B3LYP calculations fofi—3[3, are similar (5.669 vs 5.738 af). metal complexes is too ionic.
(58) Watson, R. E.; Freeman, A. J. Hyperfine InteractionsFreeman,
(55) Atkins, P. W.Molecular Quantum Mechanics, 2nd gddxford A. J., Frankel, R. B., Eds.; Academic Press: New York, 1967; pp

University Press: Oxford, 1983. 53ff.
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T " T " T " element is considered under the following assumptions: (a) the
1.0 T Fellipss 1 metal contributes only the d orbitald”CanddYto MOsi and
L Fe(I) 5D ] j,» (b) every ligand contributes at most a single p ordithll]to
084 Ee‘é:{'xrfz‘ T eSS R e | MO | and |ps0dto MO j, an_d (c) in crystal field theory the
7 e R o ] matrix element would be given b, IF.
o Fe()-(4PrF) | ] L T2 )
¥ 0.6 \ | _ M LAl
& 06 ] P = ay|d" O+ Zbrimr LH 7, (69)
7 I 1 symbolizes the remaining contributions of s orbitals that do
not contribute to the SOC matrix elements. Equation 68 can
0.2 d then be factored as follows:
— fc 1o p/li
0o T ;| ZE(rA)IApr)]-D: Cionlﬁ’ Kﬁ-’ = Cionlﬁ Kﬁrc Kg ¢ Kﬁ-’ 9 (70)
0 1 2 3 4
r (bohr) where
Figure 6. Comparison of free-ion Fe 3d radial distribution functions
with those calculated for the metal-base@mnd e MOs of FeGt by KS'C = (71)
the RB3LYP method. Inset: Graphical illustration of tiie3(dy found i = g
for the complex.i—3l; is equal to the area under each curve. f =
Ki(j: = Crse/ Cion (72)
the reduction of theén 3[4, values found in the calculations is L ot bt B L
~15% (Table 2). Thus the effect is sizable and should not be KPis — 1 4 S pt % 1 ~sj P | va|p5 73
neglected. Interestingly there is also some anisotropy found in i Z ri.sj CFe a,a, P (73)
rs 1 rs

the values obtained for theand e MOs. If the physical origin
of the effect would simply be a reduction in the effective nuclear ) ) . )
charge felt by the Fe 3d electrons due to electron donation by Equation 70 expresses the amsotropls(rzc reduction of the metal
the ligands, an isotropic reduction would re€diThis discrep- ~ SOC constant by three factors: (& is the symmetry-
ancy is related to a fundamental aspect of chemical bonding "estricted covalency where the reduction is stronger the less
that will be taken up in the discussion. In applications to Metal character contained in M@andj and the effect is also
tetrahedral FeGH the matrix element@/r—3t,0is also of sensitive to metatligand and ligand-ligand overlap via the
concern. These values are also given in Table 2 and are roughlynormalization condition&:%° (b) KP°* is the central field
intermediate between the expectation values for shentl e covalence and describes the change of metal radial wavefunction
MOs. upon complex formation as described in the previous section,

4.3. Connection to Ligand-Field Theory.In this sectionan  and (c)KP"? describes the effect of the ligand SOC. The phase
equation is given that allows one to consider the factors that factor Physj that governs the sign of the ligand contribution is
contribute to the total reduction in the apparent metal SOC sketched in Figure 7. It is equal tel if both ligand parts are
constant that is commonly invoked in ligand-field treatments. either bonding or antibonding to the metal orbitals ahdl
The equation can be viewed as an anisotropic generalization ofotherwise. It arises from the fact that the orbital angular
Stevens’ orbital reduction fact8p5° although it explicitly momentum of the ligand is opposite that of the metal for
contains symmetry-restricted covalency, central field covalency, antibonding MOs, while it is in the same direction for bonding

and ligand SOC. Initially the SOC constant of the free metal MOs. Thus, the ligand contribution to a matrix element between

ion (Gion) is factored out of eq 45: ao-antibonding MO and a-antibonding MO is negative, while
it is positive with az-bonding MO (i.e., in a situation where L
WﬂZE(VA)lAijD: is m-back-bonding or in CT states where the donor orbital has
' significant M—L bonding character). Clearly, the importance

A A A A of ligand contributions increases with increasing covalent
: C.C.0 ! | (68
é'O“ZZ nes) 'r's@rslé"’“)@" apl¢sT(68) bonding and increasing ligand SOC constant, but for many

common donor ligands the effect will be small. We will return

To simplify the following discussion, a typical nonzero matrix 0 the interpretation of the individual quantities in the discussion.
4.4. Contributions to the Relativistic Nephelauxetic Effect

(59) In spin-polarized calculations the spin-up Fe 3d orbitals are fully in FeCls~. We are now in a position to give numbers for the
occupied and therefore contribute nothing to covalent bonding, while contributions to thé{yq values in eq 70. To this end we list the

the unoccupied spin-down Fe 3d like orbitals are physically meaning- percentage metal-d character in theahd e MOs of FeGr
less and lead to unreasonable results. The occupied bonding spin- . . .
down counterparts are mainly ligand in character. This effect has been found by the various theoretical methods in Tablé" The

discussed in detail by Watson and Freerffam the spin-polarized results show the typical trends found in calculations on transition
picture, the spin density around the iron is governed by the difference meta| complexes. Namely, the Hartrelock results show a

between a completely filled spin-up 3d shell and a partially covalent P .
spin-down 3d shell, and the two shells are allowed to indivdually adjust MUCh larger ionic character than the DFT results, especially for

their radial expansion. On the other hand, in the spin-restricted method the = type interactions. From the RB3LYP results, the sym-

the whole spin density is described by the five metal-based open shell metry-restricted covalency factoK®*S is ~0.78; that is, it
MOs that therefore have to be covalent to give a realistic description. Le ’ X

. 2!
Consequently the radial functions of these orbitals lack the freedom accounts for 22% reduction of the metal SOC constant. From
to individually adjust and display the net radial expansion effect due
to covalency more directly. In INDO/S calculations the UHF and (61) Here we have neglected the relatively small overlap charges in the
ROHF wave functions have virtually identical energies. metal-based,tand e MOs and only integrated over the Fe 3d part of
(60) Gerloch, M.; Miller, J. RProg. Inorg. Chem1968§ 10, 1. the wave function.
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Table 2. I3, for Metal-Based MOs in Fegl Calculated by Various Quantum Mechanical Metiods

(Fe — 3ck,|rr2|Fe — 3ck,0 [(Fe— 3ddr-2|Fe— 3d.0] [Fe — 3dh,|rro|Fe— 3de]
ROHF 5.352 (93%) 5.313 (93%) 5.332 (93%)
UHF 5.194 (92%) 5.216 (92%) 5.205 (92%)
RB3LYP 4.736 (82%) 4.892 (85%) 4.813 (84%)
UB3LYP 4.759 (83%) 4.767 (83%) 4.763 (83%)

aValues in parentheses are % reduction relative to the free-ion values calculated at the same level of theory. For spin-polarized models the
spin-up orbital values are quoted.

/ p=
nonzero
overlap
with
original function rotated function \
c-antibonding
Pt=-1
———— Ligand-SOC=0
nonzero
overlap
with
P'=-1
nonzero
overlap
with
Pt=1
<Q <0
n-bonding
Figure 7. lllustration of the phase factoi-.
Table 3. Fe 3d Character in the Metal-Based MOs of ReQis the intimate details of the chemical bonds formed between the
Calculated by Various Quantum Mechanical Mettfods metal and the ligands, as will be pointed out in the discussion.
%Fe 3d P %Fe 3d e While the INDO/S calculations showed a small but important
ROHE 895 97.1 ligand SOC effect of 45%, the RB3LYP method tends to give
UHF 96.6 08.1 more weight to this term, basically because #heovalency is
RB3LYP 70.2 86.6 predicted to be much larger than by the HF and INDO/S
UB3LYP 79.4 82.8 methods. In the special case of FgClthe RB3LYP value for
ROHF-INDO/S 83.2 96.3 K{9, is ~<0.82. As discussed above the ligand SOC effect will

2 For spin-polarized models the spin-up orbital values are quoted. usziJaIIy be much smaller in complexes with predominantly N
b Note that the p character in these MOs<i¢% and does not affect gnd O ligation. Taken together, RB3LYP predicts a total
our conclusions. reduction of the Fe 3d SOC constanta&4% of its free-ion
. e value. While this reduction appears excessively large, it may
Table 2, the central flelq_covalenclﬁtzve, is _sllghtly smaller_ be compared to the reduction of the Rad&parameter in
and accounts for an additional 15% reduction. On the basis of Fec|,~ that amounts tev54% of its free-ion value based on
the analysis of Bendix et a?, this means that a value @ the position of the ligand-field exictetE statel” The coinci-
~397 cntl is more appropriate if one works with fixed SOC
constant$? However, ﬂ_"s value cannot be expected to be (2) On the basis of the more commonly used value for the ferric ion SOC
transferable between different complexes but will depend on constant (430 crmh), one would obtairtss ~ 365 cntl.
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dence of these numbers is certainly fortuitous since the physicalhere is certainly not restricted to this type of CI calculation,
mechanisms that govern them are different, but the large and alternative approaches to the inclusion of SOC in CI

reduction ofB suggests that a similarly large reductiorii is calculations have been described in the literatéfé.
not unreasonable. Some attempts to use density functional theory (DFT) to
5. Discussion computeg-values and second-order hyperfine couplings have

5.1. Methodological Aspectsin this study a general and  been reported for'dand & system&® and also for iror-sulfur
practical approach to the calculation of ZFSs apdalues in clusters®® In these calculations excited-state electronic relaxation
transition metal complexes was outlined. The inclusion of was neglected. Incompletely solved problems in the application
excited states of multiplicity different than the ground state of DFT methods to second-order properties such aBttensors
makes the theory more general than previous treatm@fitse andg-matrices include (a) the excited states are not orthogonal
main restriction is that an orbitally nondegenerate ground stateto each other and the ground state when calculatedA ®¢F
is required, consistent with the use of a spin Hamiltonian (for procedures, (b) the DFT wave functions are not eigenfunctions
example see ref 22). A typical example is provided by distorted of the § operator, and (c) the DFT single-determinantal wave
octahedral, monuclear Fe(ll) complexes where the ground statefunctions do not in general describe multiplet splittings correctly.
is a barely splitST,q term, and a reasonable approach is to A promising alternative approach to sum over states methods
calculate the magnetic response of the system by diagonalizatioris to include the relativistic effects in the self-consistent-field
of a Hamiltonian that operates in tR&,4 manifold®3 step, namely, within a coupled perturbed Hartréeck ap-

One advantage of the formulation given in egs 16, 18, 30, proaci®or the zeroth-order regular approximation to the Dirac
and 31 is that it makes no specific assumption about the type equation’!
of wave function that is appropriate to describe the system under The model outlined here was used in conjunction with the
investigation. It is therefore applicable from the most elementary semiempirical INDO/S-SCF-MO-CI meth#&#"to gain insight
crystal field to the most sophisticated ab initio calculations and into the electronic structure and properties of the active sites of
well suited to calculatg-matrices andD-tensors in complicated ~ several mononuclear non-heme iron enzymes and synthetic
bonding situations where single-determinant wave functions arecomplexes that model these sites. It has been succesful in
inappropriate. All that is required for the calculation is to reproducing the sign, magnitude, and rhombicity of the ZFS.
formulate appropriate approximations to the ground- and Similarly, the g-values of several Cu(ll) complexes were

excited-state wave functions for the standard chblce Sand calculated by the same method with reasonable re&uitss
to evaluate at most three matrix elements between the groundhowever important to check the validity of the approach by
and each excited state. simultanously calculating the absorption spectrum of the

Treatments foig-valued2 or second-order hyperfine coup- compound under investigation. Without reasonably accurate
lingst#¢ are frequently based on single-determinant (or single- transition energies, the energy denominators will give rise to
configuration) states and therefore neglect electronic relaxationlarge errors and any agreement of the calculgtetatrices and
in electronically excited states, which is often large in the D-tensors with experimental values would be accidental. In this
excitation and ionization spectra of transition metal complées. context it must be remarked that what is measured are the
Cl is a natural and straightforward way to describe this perturbed state energies, i.e. including SOC, while the theory
relaxation, and the present treatment is readily applied to CI in principle requires the energies of the unperturbed Born
wave functions. Relaxation shows up in ClI calculations as a Oppenheimer states. The difference may not be large in
mixing of CSFs for different electronic configurations so that complexes of the first transition row (several hundred &m
more than one pair of MOs contribute to a given matrix element but is another potential source of uncertainty in the analysis.
between two states in eq 48Although the method of bonded 5.2. The ZFS in High-Spin Ferric Complexesin the second
functions was used in this work, the methodology described part of the paper we have discussed in some detail the subtleties
involved in the calculation of ZFS in high-spin ferric complexes.
(63) Solomon, E. I.; Pavel, E. G.; Loeb, K. E.; Campochiaro08ord. The ZFS arises from a balance of several effects of opposing

Chem. Re. 1995 144, 370. sign and contains contributions from low-symmetry ligand-field

(64) (a) Butcher, K. D.; Didziulis, S. V.; Briat, B.; Solomon, E.J.. Am. - . .
Chem. Soc199Q 112, 2231. (b) Butcher, K. D.; Gebhard, M. S.;  Splittings, anisotropic covalency, charge-transfer states, and

Solomon, E. I.Inorg. Chem.199Q 29, 2067. (c) Didziulis, S. V.; ligand SOC. It is especially important to realize the important

ffgezné(;s- L.; Gewirth, A. A.; Solomon, E.J. Am. Chem. Sod98§ role of covalency in these calculations. Ligand-field theory will
(65) Shavitt, I. InMethods of Electronic Structure Theochaefer, H. F. frequently lead to qualitatively wrong results with regard to sign

Ill, Ed.; Plenum Press: New York, 1977; pp 189ff. and magnitude of the ZFS. Covalency not only alters the balance

(66) If the excited state is still dominated by a given configuration, the petween the terms entering the ZFS but also leads to the

effect of the CSF mixing can be interpreted as a change in the MOs . -
that are principally involved in the excitation. This is particularly appearance of charge-transfer and ligand SOC contributions to

evident if approximate natural orbitéfsfor the excited states are  the ZFS that can be quite sizable as we have found here for
calculated by diagonalizing the first-order density matrix for a given FeCl,~. Importantly, the ZFS is sensitive to differences in the

state. The advantage of the CI method o%&CF calculationsis that  cqoyalencies of individual MOs, and therefore an average
despite the presence of relaxation, all excited states remain orthogonal

to the ground state and to other excited states.

(67) (a) Hess, B. A.; Marian, C. M.; Peyerimhoff, S. D. Modern (68) (a) Geurts, P. J. M.; Bouten, P. C. P.; van der AvoirdJAChem.
Electronic Structure Theoryyarkony, D. R., Ed.; 1995; pp 152ff. Phys.198Q 73, 1306. (b) Balagopalakrishna, C.; Kimbrough, J. T.;
(b) Buenker, R. J.; Alekseyev, A. B.; Liebermann, H. P.; Lingott, R.; Westmoreland, T. Dinorg. Chem1996 35, 7758. (c) Deeth, R. J.
Hirsch, G.J. Chem. Phys1998 9, 3400. (c) Morokuma, K.; Chem. Soc., Dalton Tran4991 1467.

Yamashita, K.; Yabushita, S. lisupercomputer Algorithms for (69) Noodleman, L.; Baerends, E.J.Am. Chem. S0d.984 106, 2316.
Reactvity Dynamics and Kinetics of Small Moleculdsagana, A., (70) Kim, Y. S,; Lee, S. Y,; Oh, W. S;; Park, B. H.; Han, Y. K.; Park, S.
Ed.; Kluwer Acad. Pub.: Dordrecht, Holland, 1989; pp 37ff. (d) J.; Lee, Y. SlInt. J. Quantum Chen1998 66, 91.

Karwowski, J. In Methods in Computational Molecular Physics (71) (a) van Lenthe, E.; Snijders, J. G.; Baerends, BE. £hem. Phys.
Diercksen, G. H. F., Wilson, S., Eds.; Plenum Press: New York, 1992; 1996 105 (15), 6505. (b) van Lenthe, E.; Wormer, P. E. S.; van der
pp 65ff. (e) Sjovoll, M.; Gropen, O.; Olsen, Jheor. Chem. Acc. Avoird, A. J. Chem. Phys1997 107 (7), 2488. (c) Van Lenthe, E.;
1997, 97, 301. (f) Agren, H.; Vahtras, O.; Manev, Bdv. Quantum van der Avoird, A.; Wormer, E. S1. Chem. Phys1998 108 4783.

Chem.1996 27, 71. (72) Neese, F. Dissertation, Univefsitéonstanz, 1997.
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effective modeling of covalency with a uniform reduction of

Neese and Solomon

contraction effect is usually also found for individual MOs in

the SOC constant or a single Stevens orbital reduction factor many-electron systerfisand therefore appears to be an impor-

will not be appropriate. In addition, the ZFS of distorted cubic
high-spin ferric complexes will in general not be dominated by
the contribution from the lowesfT; state since for this state
the contributions from low-symmetry distortions and anisotropic
covalency tend to cancel each other.

5.3. The Relativistic Nephelauxetic EffectOn the basis of

tant aspect of chemical bonding. Although the anisotropy of
the 3044 reduction was found to be limited in the present
calculations £3% out of~15%), this need not always be the
case, and more examples need to be considered before the
typical magnitude of the effect can be fully appreciated.

A second point to be recognized is that trgalues will be

the discussion in section 4 there are three main factors more strongly affected than tii2-values by the ligand angular
contributing to the apparent reduction in the metal SOC constantmomentum that opposes the metal 3d contribution in antibond-

required to explain experimental data, which are (a) the
symmetry-restricted covalency that is directly related to the
covalent mixing of the metal and ligand orbitals, (b) the central

ing orbitals. The Zeeman matrix elements that involve the ligand
angular momentum, eq 18, are not quenched by Rhé
dependence of the SOC operator and the small SOC constant

field covalency that is related to the change of the metal radial of the ligands. In Ammeter’s analysis gfvalues of a series of

wave functions upon complex formation, and (c) the ligand

Cu(ll) complexes this effect accounts for up to 20% reduction

SOC. Of these, (c) will usually be smallest unless the covalency in the g-shift.”® This provides a rationale for the finditfgthat

is particular high and the ligand SOC constants are very large,

the interpretation of- andD-values in some Cr(lll) complexes

as is the case for ligands beyond the first transition series. Therequired substantial reduction of the free-ion SOC constant in

metal SOC constants are almost invariably fixed at their free-
ion values in the analysis of spin Hamiltonian data, and all
reduction is attributed to symmetry-restricted covalency. This
is the basis of methods that extract MO coefficients from

the case ofi- but not in the case db-values.

Finally it should be noted that tHe-tensor contains contribu-
tions from states of different multiplicity than the ground state,
whereas thg-matrix does not. Thus these two quantities cannot

magnetic resonance data. Often the case of Cu(ll), where thebe related to a common tensgy, as frequently done in the

SOC constant changes from 817 ¢mo 828 cnT! between
Cu(0) and Cu(ll), is invoked to imply negligible charge

literature.
Taken together the theory outlined here offers a general and

dependence of these values. However, this argument is misleadpractical approach to the interpretationdf andg-matrices in

ing because the two configurations involved aré3and 3d-

4< and the shielding effect of 4s on 3d electrons is very small.
The main point of section 4 is that the change in metal radial

wave function is in fact not negligible compared to the

symmetry-restricted covalency. Thus, MO coefficients extracted

from spin Hamiltonian data will have a tendency to overestimate

the metat-ligand covalent mixing if free-ion values are used

transition metal complexes. It can be applied to any level of
theory, and when combined with a suitable model of the
compound under investigation, it provides an important link
between theory and experiment and helps to assess the validity
of the theoretical approach.
6. Computational Details

The spin-averaged Hartre€&ock calculations were carried out

for the expectation values of operators that depend on the metakccording to the formalism developed by Zermer and co-wotkargl

radial wave functions, in particuldarn—3[44. According to the
calculations presented in section 4, a reduction of up16%

in 334 can be expected for the metal-based antibonding MOs.

However, this reduction may be different for different MOs,
showing that there is more involved than just a uniform

reduction in the effective nuclear charge felt by the 3d electrons
due to charge donation by the ligands. The origin effect has

been studied with considerable insight by Ammétend can

be understood from Rlenberg’'s analysis of the chemical
bond’* According to this theory the destructive overlap in
antibonding MOs leads to an increased gradient of the MO in
the bonding region and consequently raises the kinetic erfergy.
The atomic orbitals involved will therefore tend to expand to
decrease the potential energy in order to satisfy the virial
theorem (ZT= —[V0). The opposite is true for bonding MOs,
where the atomic orbitals will contract. While this argument is
only strictly valid for a one-electron system, the expansion/

(73) Ammeter, J.Chimia 1968 22, 469; Dissertation Eidgé€mssische
Technische Universitazirich, 1969.

(74) (a) Rulenberg, KRev. Mod. Phys.1962 34, 326. (b) Feinberg, M.

J.; Ridenberg, K.; Mehler, E. LAdv. Quantum Cheml97Q 5, 27.
(c) Feinberg, M. J.; Rdenberg, K.J. Chem. Phys1971 59, 1495.

(75) The kinetic energy of an electron in an orbitalis proportional to
the average gradient af squared, KEJ f(Vy)2der.

(76) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson,
B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.;
Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen,
W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.;
Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.;
Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, Gaussian
94, Revision C.3; Gaussian, Inc.: Pittsburgh, PA, 1995.

the program Orca developed by F.N. A 9s5p4d basis of Slater functions
(STOs) was employed and all exponents were optimized for each ion
by a quasi Newton procedure until the gradient was smaller than 2
10~* hartree/bohr!. HF and B3LYP calculations with Gaussian orbitals
(GTOs) were then carried out for Fe(lll) using the Gaussian94
program’® For these calculations the d shell in the standard 6-311G
basis set was fully uncontracted, and a Gaussian with exponent 0.25
was added to the s, p, and d sets. To compare radial expectation values
to the STO values, a small program was written to read the Gaussian
output file, project the degenerate components onto pure spherical
harmonics, and evaluate the expectation values. The energy of the GTO-
UHF wave function was higher than that of the corresponding STO-
UHF one by~2.3 eV, but the expectation values agreed-t%. The
same basis set was then used in the molecular calculatioRsFaCl .
In these calculations a bond length of 2.195 A was chosen and tight
convergence requested (SEFTight). The metal parts of given MOs
were then evaluated over a radial grid of 256 points and renormalized
and expectation values calculated numerically. The ROHF-INDO/S-
Cl calculations for FeGl were also carried out with the program Orca.
Calculations were tightly converged on f#g ground state. The active
space in the following Rumer diagram CI on the spin sextets consisted
of all single excitations into the singly occupied MOs and from the
singly occupied into the virtual MOs. For the spin quartets the 24 states
that can be formed within the d manifold were included. InEh&ensor
evaluation all states up to 60 000 chwere taken into account.
Acknowledgment. Our research is supported by the National
Institutes of Health (GM40392). F.N. thanks the Deutsche
Forschungsgemeinschaft for a postdoctoral fellowship, Prof.
Peter Kroneck (Konstanz) for support during his time in
Konstanz, where part of developments reported here were made,
and Dr. Thomas Brunold for helpful comments on an early

version of the manuscript.
1C980948I



