Spectroscopy and Electrochemistry of *mer***-[RuCl3(dmso)(tmen)]. Dimethylsulfoxide Is Sulfur-Bonded to Ru(II), Ru(III), and Ru(IV)**

Jeffrey J. Rack and Harry B. Gray*

Beckman Institute, California Institute of Technology, Pasadena, California 91125

*Recei*V*ed August 25, 1998*

The discovery that halo-ruthenium(sulfoxide) complexes exhibit anticancer activity¹⁻⁴ has stimulated interest in the nature of bonding of metal ions to dimethylsulfoxide (dmso).⁵⁻⁸ Both ^M-S and M-O bonds are observed in metal complexes containing dmso, with the former mode prevalent with "soft" metal centers. The importance of d*π*-S back-bonding in S-bonded complexes has been addressed by several investigators.^{9,10} Especially revealing was the finding by Taube and co-workers that S to O linkage isomerism can be induced by oxidation of pentaammineruthenium(II) to ruthenium(III), $^{11-13}$ thereby suggesting that d*π*-S bonding is a stabilizing factor only in the lower oxidation state. However, the observation that other Ru(III)(chloro)(dmso) complexes are S-bonded led Alessio and Calligaris to propose a role for $d\pi$ -S bonding in Ru(III) as well. ^{9,14} In the course of our work on a related complex, *mer*-[RuCl₃(dmso)(tmen)] (dmso is dimethylsulfoxide; tmen is *N,N,N*′*,N*′-tetramethylethylenediamine), we have found that dmso also can be S-bonded to Ru(IV). Our findings suggest that S(dmso) *σ*-donation to Ru is extensive in the Ru(III) and Ru(IV) states.

The structure of *mer*-[RuCl₃(dmso)(tmen)] features an S-bonded dmso ligand trans to one N-atom donor from tmen (Figure 1).¹⁵ There are two distinct molecules in the unit cell, one of which exhibits disorder in the placement of the methylene carbons within the ethylene bridge of tmen. The Ru-S bond distances for the two molecules are 2.2912(8) and 2.2912(9) Å, and the $S-O$ bond lengths are 1.476(2) and 1.474(2) Å. The S-O bond lengths are much shorter than that of free dmso $(1.492(1)$ Å),⁹ indicating greater S-O double bond character for the S-bonded molecule. The Ru-S and S-O bond lengths of S-bonded $\text{Ru(NH}_3)_{5-}$

- (1) Smith, C. A.; Sunderland-Smith, A. J.; Keppler, B. K.; Kratz, F.; Baker, E. N. *J. Bio. Inorg. Chem.* **¹⁹⁹⁶**, *¹*, 424-431.
- (2) Sava, G.; Pacor, S.; Bergamo, A.; Cocchietto, M.; Mestoni, G.; Alessio, E. *Chem.*-*Biol. Interact.* **¹⁹⁹⁵**, *⁹⁵*, 109-126.
- (3) Coluccia, M.; Sava, G.; Loseta, F.; Nassi, A.; Boccarelli, A.; Giordano, D.; Alessio, E.; Mestroni, G. *Eur. J. Cancer* **¹⁹⁹³**, *29A*, 1873-1879. (4) Sava, G.; Pacor, S.; Mestroni, G.; Alessio, E. *Anti-Cancer Drugs* **1992**,
- *³*, 25-31. (5) Alessio, E.; Calligaris, M.; Iwamoto, M.; Marzilli, L. *Inorg. Chem.* **1996**, *³⁵*, 2538-2545.
- (6) Anderson, C.; Beauchamp, A. L. *Inorg. Chem.* **¹⁹⁹⁵**, *³⁴*, 6065-6073. (7) Henn, M.; Alessio, E.; Mestroni, G.; Calligaris, M.; Attia, W. M. *Inorg.*
- *Chim. Acta* **¹⁹⁹¹**, *¹⁸⁷*, 39-50. (8) Alessio, E.; Balducci, G.; Calligaris, M.; Costa, G.; Attia, W. M. *Inorg.*
- *Chem.* **¹⁹⁹¹**, *³⁰*, 609-618.
- (9) Calligaris, M.; Carugo, O. *Coord. Chem. Re*V*.* **¹⁹⁹⁶**, *¹⁵³*, 83-154.
- (10) Davies, J. A. *Ad*V*. Inorg. Chem. Radiochem.* **¹⁹⁸¹**, *²⁴*, 115-187.
- (11) Sano, M.; Taube, H. *Inorg. Chem.* **¹⁹⁹⁴**, *³³*, 705-709.
- (12) Sano, M.; Taube, H. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 2327-2328.

 $P2_1/n$, $Z = 8$, MW = 401.8, and ρ (calc) = 1.792 g/cm.

- (13) Yeh, A.; Scott, N.; Taube, H. *Inorg. Chem.* **¹⁹⁸²**, *²¹*, 2542-2545. (14) Alessio, E.; Bolle, M.; Milani, B.; Mestroni, G.; Faleschini, P.; Geremia,
- S.; Calligaris, M. *Inorg. Chem.* **¹⁹⁹⁵**, *³⁴*, 4716-4721. (15) Red-orange crystals of *mer*-RuCl3(dmso)(tmen) were isolated from the reaction of *cis*-RuCl₂(dmso)₄ with 1 equiv of the diamine ligand in ethanol at room temperature, followed by addition of 0.1 M HCl. X-ray data were collected at 85 K on a CAD-4 diffractometer. The structure was solved by direct methods. In the final least squares refinement cycle on F^2 , $R = 3.62\%$, $R_w = 6.63\%$, and GOF = 1.727 on 8665 reflections *F*², *R* = 3.62%, *R_w* = 6.63%, and GOF = 1.727 on 8665 reflections with 450 parameters. The crystal data are $a = 14.086(4)$ \AA $b = 8.716$ with 450 parameters. The crystal data are $a = 14.086(4)$ Å, $b = 8.716$ -
(2) Å $c = 24.444(4)$ Å $\beta = 97.13(2)$ ° $V = 2977.9(12)$ Å³ space group (2) Å, $c = 24.444(4)$ Å, $\beta = 97.13(2)$ °, $V = 2977.9(12)$ Å³, space group $P2\sqrt{n}$, $Z = 8$ MW = 401.8 and o(calc) = 1.792, σ/cm

Figure 1. Structure of mer -[RuCl₃(dmso)(tmen)]. Selected distances (\check{A}) and bond angles (deg) for the non-disordered molecule: Ru-S, 2.2912- (8); S-O, 1.476(2); Ru-N(2), 2.194(2); Ru-N(1), 2.204(2); Ru-Cl(3), 2.3340(9); Ru-Cl(1), 2.3497(9); Ru-Cl(2), 2.3503(8); N(2)-Ru-N(1), 82.72(9); N(2)-Ru-S, 96.02(6); N(1)-Ru-S, 176.77(6); N(2)-Ru-Cl(3), 88.17(6); N(1)-Ru-Cl(3), 91.74(6); S-Ru-Cl(3), 91.20(3); N(2)-Ru-Cl(1), 91.87(6); N(1)-Ru-Cl(1), 89.95(6); S-Ru-Cl(1), 87.11(3); Cl(3)-Ru-Cl(1), 178.31(2); N(2)-Ru-Cl(2), 173.38(6); N(1)-Ru-Cl(2), 91.62(7); S-Ru-Cl(2), 89.81(3); Cl(3)-Ru-Cl(2), 88.57(2); Cl(1)-Ru-Cl(2), 91.55(2).

 $(dmos²⁺$ are significantly shorter (2.188(3) Å) and longer (1.527-(7) Å), respectively,¹⁶ than those of *mer*-[RuCl₃(dmso)(tmen)]. However, in *trans*-Na[Ru^{III}Cl₄(dmso)(NH₃)] and *mer,cis*-[Ru^{III}- $Cl₃(dmos)(1Me-im)₂$] (1Me-im is 1-methylimidazole) complexes, where the dmso is trans to an N-atom donor, the $Ru-S$ and $S-O$ bond lengths are 2.2797(7), 1.479(3) Å and 2.299(2), 1.464(6) Å, respectively.17,18

The infrared spectrum of *mer*-[RuCl₃(dmso)(tmen)] displays a single $\nu(SO)$ peak at 1115 cm⁻¹ (Nujol mull, KBr disk). This value is much greater than that of free dmso (1055 cm^{-1}) ,¹⁰ as well as those of $[Ru(NH_3)_5(dmso)]^{2+}$ (1045),¹⁹ *trans*-Na[RuCl₄- $(dmso)(NH₃)]$ (1088), and *trans*-Na[RuCl₄(dmso)(im)] (1088),¹⁷ and is identical with $\nu_{\text{asym}}(SO)$ for $[RuCl_4(dmso)_2]^{-.8}$ The infrared spectrum of mer, cis -[Ru^{III}Cl₃(dmso)(1Me-im)₂] was not reported.¹⁸ In the IR spectrum of *mer*-[Ru^{II}Cl₃(dmso)(tmen)]⁻ in acetonitrile solution (prepared by reaction of the Ru(III) compound with Zn/ Hg amalgam), $v(SO) = 1080 \text{ cm}^{-1}$. Both structural and IR data show that the S-O bond in III and II oxidation states of *mer*- $[RuCl₃(dmso)(tmen)]$ is stronger than that found in unbound dmso.

The electronic spectrum (Figure 2A) of *mer*-[RuCl₃(dmso)-(tmen)] in acetonitrile features two low-energy bands with absorption maxima at 396 ($\epsilon = 3420$) and 456 nm ($\epsilon = 1075$ M^{-1} cm⁻¹). These bands, which red-shift slightly in dichlo-

- (16) March, F. C.; Ferguson, G. *Can. J. Chem.* **¹⁹⁷¹**, *⁴⁹*, 3590-3595.
- (17) Alessio, E.; Balducci, G.; Lutman, A.; Mestroni, G.; Calligaris, M.; Attia, W. M. *Inorg. Chim. Acta* **¹⁹⁹³**, *²⁰³*, 205-217.
- (18) Geremia, S.; Alessio, E.; Todone, F. *Inorg. Chim. Acta* **¹⁹⁹⁶**, *²⁵³*, 87- 90.
- (19) Senoff, C. V.; E. Maslowsky, J.; Goel, R. G. *Can. J. Chem.* **1971**, *49*, ³⁵⁸⁵-3589.

Figure 2. (A) Electronic spectra of *mer*-[RuCl₃(dmso)(tmen)]^{0/-} in CH₃-CN. (B) Cyclic voltammogram of *mer*-[RuCl3(dmso)(tmen)] in CH3CN (glassy carbon working electrode, Ag/AgCl reference electrode, 100 mV/ s, $m = 0.1$ M).

romethane solution to 400 ($\epsilon = 3540$) and 460 nm ($\epsilon = 1020$ M^{-1} cm⁻¹), are attributed to Cl p $\pi \rightarrow Ru$ d π LMCT transitions. The band at 346 nm ($\epsilon = 830 \text{ M}^{-1} \text{ cm}^{-1}$) could represent a ligand-
field transition that is coupled to the charge-transfer transition at field transition that is coupled to the charge-transfer transition at 396 nm. The spectrum of the corresponding Ru(II) complex (prepared by reaction of the Ru(III) compound with Zn/Hg amalgam) in acetonitrile exhibits bands at 322 (ϵ = 402), 358 (ϵ $=$ 388), and 435 nm (ϵ = 126 M⁻¹ cm⁻¹). All three bands are attributable to ligand-field transitions.

In acetonitrile solution *mer*-[RuCl₃(dmso)(tmen)] exhibits two *reversible* one-electron waves (0.11 V ($\Delta E_{\rm pk}$ = 95 mV) and 1.78 V ($\Delta E_{\rm pk}$ = 100 mV) vs NHE),²⁰ corresponding to the Ru(III/II) and the Ru(IV/III) couples, respectively (Figure 2B). The reversible nature of the second peak is remarkable; it shows not only that the Ru(IV) complex is robust but also that it does not isomerize to an O-bonded dmso species. In $\text{[Ru(NH₃)₅(dmos)]²⁺$ and related complexes,^{11-13,21} $E_{1/2}$ for Ru(III/II) of the S-bonded

species is ca. 1.0 V (vs NHE), whereas $E_{1/2}$ for the Ru(III/II) of the O-bonded species is ca. 0.01 V (vs NHE). While $E_{1/2}$ for the O-bonded species is reasonable ($E_{1/2} = 0.07$ V vs NHE for $[Ru(NH₃)₅(\hat{H}₂O)]^{3+/2+}$,²² E_{1/2} for the S-bonded species is very high (cf. $E_{1/2} = 0.3$ V vs NHE for $[Ru(NH_3)_5(py)]^{3+/2+}$).²³ The Ru(II) must π -back-bond to dmso in $[Ru(NH_3)_5(dmso)]^{2+}$ because $E^{1/2}$ is comparable to that found for $[Ru(NH_3)_5(N_2)]^{3+/2+}$ (1.1 V vs NHE).²⁴ Furthermore, the short (strong) Ru-S bond and the long (weak) S-O bond are in accord with this model. On the basis of these comparisons, we conclude that dmso in *mer*-[RuCl3- (dmso)(tmen)] is primarily a σ -donor ($\nu(SO) = 1115$ cm⁻¹).

Since there is no indication of π -back-bonding between Ru-(III) or Ru(II) and dmso in *mer*-[RuCl3(dmso)(tmen)], it is surprising that $S\rightarrow O$ isomerization is not observed on the CV time scale (0.005-50 V/s) upon oxidation to the IV state. One possibility is that synergistic donor interactions involving dmso strengthen both the $Ru-S$ and $S=O$ bonds: in this electronic structural formulation, stronger $\sigma(S)$ donation to Ru(IV) would enhance π (O) to S bonding, thereby stabilizing the S-bonded complex. Further work, especially electronic structure calculations, will test this bonding hypothesis; in particular, it will be of interest to learn the role ancillary halo ligands play in stabilizing S-bonded structures.

Acknowledgment. We thank Mike Day, Larry Henling, Akif Tezcan, and Jay Winkler for experimental assistance and helpful discussions. This work was supported by ARO (DAAH04-95-1- 0125), NSF, and NIST (ATP) Award 70NANB5H1031.

Supporting Information Available: Complete tables of crystal data, atomic coordinates, bond distances and angles, and figures for *mer*-[RuCl3- (dmso)(tmen)] (13 pages). Ordering information is given on any current masthead page.

IC981029V

- (21) Tomita, A.; Sano, M. *Inorg. Chem.* **¹⁹⁹⁴**, *³³*, 5825-5830.
- (22) Marchant, J. A.; Matsubara, T.; Ford, P. C. *Inorg. Chem.* **¹⁹⁷⁷**, *¹⁶*, 2160- 2165.
- (23) Alvarez, V. E.; Allen, R. J.; Matsubara, T.; Ford, P. C. *J. Am. Chem. Soc.* **¹⁹⁷⁴**, *⁹⁶*, 7686-7692.
- (24) Lim, H. S.; Barclay, D. J.; Anson, F. C. *Inorg. Chem.* **¹⁹⁷²**, *¹¹*, 1460- 1466.

⁽²⁰⁾ Cyclic voltammograms were collected in a traditional two-compartment cell using a polished and sonicated 3-mm-diameter glassy carbon working electrode (BAS), Pt wire auxiliary electrode, and Ag/AgCl reference electrode. Measurements were conducted at room temperature with a CH instruments 660 electrochemical workstation. Solutions for electrochemical measurements were performed in acetonitrile (Burdick and Jackson) containing 0.1 M *n*-tetrabutylammonium hexafluorophosphate (SACHEM) and were fully deaerated with argon. Current was linearly dependent upon $ν^{1/2}$ for the scan rates studied (0.005-50 V/s).