Protonated Borane–Lewis Base Complexes BH_4X^+ (X = NH₃, PH₃, H₂O, H₂S, CO)¹

Golam Rasul,* G. K. Surya Prakash, and George A. Olah*

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661

Received September 29, 1998

Structures of protonated borane–Lewis base complexes H_4BX^+ (X = NH₃, PH₃, OH₂, SH₂, CO) as well as their neutral parents were calculated using ab initio method at the MP2/6-31G** level. All of the monocations H_4BX^+ are B–H protonated involving hypercoordinate boron with a three-center two-electron (3c-2e) bond. Protonation energies of H_3BX to form H_4BX^+ were calculated with the G2 theory and were found to be highly exothermic. The ¹¹B NMR chemical shifts of the compounds were also calculated by the GIAO-MP2 method.

Introduction

Lewis acid—base interactions are at the heart of our understanding of many catalytic reactions. Donor—acceptor complexes of Lewis acid BH₃ have been the subject of many theoretical studies.² Recently Anane et al. reported a G2 molecular orbital study of a series of donor—acceptor complexes of BH₃ including BH₃X (X = NH₃, PH₃, H₂O, H₂S).^{2a} Previously, we reported³ on the calculated structures and energies of the parent hexa-, hepta-, and octacoordiate boronium ions, BH₆⁺, BH₇²⁺, and BH₈³⁺. In continuation of our study of onium ions and dications⁴ we have now extended our investigations to the structures and energetics of protonated BH₃X (X = NH₃, PH₃, H₂O, H₂S, CO) by ab initio calculations and found some very intriguing results.

Calculations

Calculations were carried out with the Gaussian 94 program system.⁵ The geometry optimizations and frequency calculations were performed at the MP2/6-31G** level.⁶ From calculated frequencies, the optimized structures were characterized as minima (NIMAG = 0) or transition structure (NIMAG = 1). For improved energy, the Gaussian-2 (G2) energies⁷ were computed. Calculated energies are given in Table 1.

- Chemistry in Superacids 40. Part 39: Olah, G. A.; Orlinkov, A.; Oxyzoglou, A. B.; Prakash, G. K. S. Russ. J. Org. Chem., in press.
- (2) (a) Anane, H.; Boutalib, A.; Tomas, F. J. Phys. Chem. 1997, 101, 7879. (b) Jonas, V.; Frenking, G.; Reetz, M. T. J. Am. Chem. Soc. 1994, 116, 8741, 2900. (c) Dapprich, S.; Frenking, G. J. Phys. Chem. 1995, 99, 9352. (d) Sakai, S. J. Phys. Chem. 1995, 99, 9080. (e) Umeyama, H.; Morokuma, K. J. Am. Chem. Soc. 1976, 98, 7208. (f) Glendening, E. D.; Streitwieser, A. J. Chem. Phys. 1994, 100, 2900. (g) Skancke, A.; Skancke, P. N. J. Phys. Chem. 1996, 100, 15079. (h) Bühl, M.; Steinke, T.; Schleyer, P. v. R.; Boese, R. Angew. Chem., Int. Ed. Engl. 1991, 30, 1160.
- (3) Rasul, G.; Olah, G. A. Inorg. Chem. 1997, 36, 1278.
- (4) Olah, G. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 767.
- (5) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*, Revision A.1; Gaussian, Inc.: Pittsburgh, PA, 1995.
- (6) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley-Interscience: New York, 1986.
- (7) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.

Table 1. Total Energies (-au), ZPE,^{*a*} and Relative Energies $(\text{kcal/mol})^b$

		MP2/6-31G**// MP2/6-31G**	G2	rel. energy (kcal/mol)
$\begin{array}{l} H_3BNH_3\\ H_4BNH_3^+\\ H_2BNH_3^+\end{array}$	1a 1b 1c	82.92320 (42.2) 83.24289 (48.2) 82.07360 (36.1)	83.02504 83.33242 82.15705	0.0 192.9
$\begin{array}{l} H_3BPH_3\\ H_4BPH_3^+\\ H_2BPH_3^+\end{array}$	2a 2b 2c	369.10145 (34.8) 369.40858 (40.7) 368.23001 (28.9)	369.23661 369.53012 368.34683	0.0 184.2
$\begin{array}{l} H_3BOH_2\\ H_4BOH_2^+\\ H_2BOH_2^+ \end{array}$	3a 3b 3c	102.73427 (33.4) 103.04298 (39.3) 101.88426 (28.4)	102.87328 103.17224 102.00400	0.0 187.6
$\begin{array}{l} H_3BSH_2\\ H_4BSH_2^+\\ H_2BSH_2^+\end{array}$	4a 4b 4c	425.31670 (29.4) 425.61816 (35.5) 424.44714 (24.1)	425.47470 425.76149 424.58502	0.0 180.0
$H_3BCO \\ H_4BCO^+ \\ H_2BCO^+$	5a 5b 5c	139.54693 (22.1) 139.81674 (28.3) 138.63025 (16.4)	139.73668 139.99280 138.80159	0.0 160.7
H_2		1.15766 (6.6)	1.16636	

 a Zero point vibrational energies (ZPE) at MP2/6-31G**//MP2/6-31G** scaled by a factor of 0.93. b Relative energy based on G2 energies.

Table 2. Calculated^a and Experimental^{b 11}B NMR Chemical Shifts

		GIAO-MP2/tzp/dz	expt
$\begin{array}{c} H_3BNH_3\\ H_4BNH_3^+\\ H_2BNH_3^+\end{array}$	1a 1b 1c	-19.3 -17.9 76.4	-22.3
$\begin{array}{c} H_3BPH_3\\ H_4BPH_3{}^+\\ H_2BPH_3{}^+\end{array}$	2a 2b 2c	-44.6 -36.3 92.5	-42.5
$\begin{array}{c} H_3BOH_2\\ H_4BOH_2^+\\ H_2BOH_2^+ \end{array}$	3a 3b 3c	7.1 -3.5 57.7	2.5 ^c
$\begin{array}{c} H_3BSH_2\\ H_4BSH_2^+\\ H_2BSH_2^+ \end{array}$	4a 4b 4c	-20.4 -24.1 81.4	-20.1^{d}
$H_3BCO \\ H_4BCO^+ \\ H_2BCO^+$	5a 5b 5c	-50.9 -36.1 75.3	-48.5

^{*a*} ¹¹B NMR chemical shifts were referenced to F₃B:O(C₂H₆)₂. ^{*b*} Experimental values were taken from refs 16 and 17. ^{*c*} For H₃B: O(CH₃)₂. ^{*d*} For H₃B:S(CH₃)₂.

Figure 1. MP2/6-31G** structures of 1-5.

MP2/6-31G** geometrical parameters and G2 calculated energies will be discussed throughout, unless stated otherwise. NMR chemical shifts were calculated by the GIAO^{8,9} method. GIAO-MP2 calculations using the tzp/dz basis set^{8,9} have been performed with the ACES II program.¹⁰ Calculated chemical shifts are listed in Table 2.

Results and Discussion

Protonated H₃BNH₃ and H₃BPH₃ (H₄BNH₃⁺ and H₄-BPH₃⁺). B-H protonation of the H₃BNH₃ (1a) leads to monocation $H_4BNH_3^+$ (**1b**) which was calculated to be a stable minimum at the MP2/6-31G** level. The C_s symmetry structure **1b** is isoelectronic and isostructural with dication $H_4CNH_3^{2+,11}$ Monocation **1b** contains a five-coordinate boron atom with a three-center two-electron (3c-2e) bond (Figure 1). Ion **1b** can be considered as $-NH_3^+$ substituted BH₅. BH₅, which is isoelectronic with CH₅⁺, is C_s symmetrical with a 3c-2e bond

⁽⁸⁾ Gauss, J. Chem. Phys. Lett. 1992, 191, 614.

⁽⁹⁾ Gauss, J. J. Chem. Phys. 1993, 99, 3629.

⁽¹⁰⁾ Stanton, J. F.; Gauss, J.; Watts, J. D.; Lauderdale, W. J.; Bartlett, R. J. (Eds.) ACES II; Quantum Theory Project; University of Florida: Gainesville, Florida, 1991.

⁽¹¹⁾ Lammertsma, K. J. Am. Chem. Soc. 1984, 106, 4619.

Table 3. Thermodynamics of the Dissociation of 1-5b^a

dissociation process	ΔH (kcal/mol)
$H_4BNH_3^+$ (1b) \rightarrow $H_2BNH_3^+$ (1c) $+$ H_2	+5.7
$H_4BNH_3^+$ (1b) $\rightarrow BH_4^+ + NH_3$	+81.0
$H_4BPH_3^+$ (2b) \rightarrow $H_2BPH_3^+$ (2c) $+$ H_2	+10.6
$H_4BPH_3^+$ (2b) $\rightarrow BH_4^+ + PH_3$	+66.8
$\mathrm{H}_{4}\mathrm{BOH}_{2^{+}}\left(\mathbf{3b}\right) \rightarrow \mathrm{H}_{2}\mathrm{BOH}_{2^{+}}\left(\mathbf{3c}\right) + \mathrm{H}_{2}$	+1.2
$H_4BOH_2^+(\mathbf{3b}) \rightarrow BH_4^+ + H_2O$	+59.9
$\mathrm{H_4BSH_2^+}\left(\mathbf{4b}\right) \rightarrow \mathrm{H_2BSH_2^+}\left(\mathbf{4c}\right) + \mathrm{H_2}$	+6.3
$\mathrm{H_4BSH_2^+}(\mathbf{4b}) \rightarrow \mathrm{BH_4^+} + \mathrm{H_2S}$	+54.0
H_4BCO^+ (5b) \rightarrow H_2BCO^+ (5c) + H_2	+15.6
H_4BCO^+ (5b) $\rightarrow BH_4^+ + CO$	+44.3

^a With the G2 theory.

based on high level ab initio calculations.^{11,13} The B–N bond distance of 1b is 1.584 Å, 0.076 Å shorter than that found in H₃BNH₃ at the same MP2/6-31G** level which indicates stronger B–N bonding in 1b than in 1a.

Protonation of H₃BNH₃ 1a to form 1b was calculated to be highly exothermic by 192.9 kcal/mol (Table 1), which is more exothermic by 28 kcal/mol than the protonation of water. The dissociation of 1b into 1c and molecular H₂ (Scheme 1) is

Scheme 1

endothermic by 5.7 kcal/mol (Table 3). In comparison, dissociation of BH₅ into BH₃ and H₂ is indicated to be exothermic by 6.8 kcal/mol.¹² The experimental gas phase observation (by infrared spectroscopy) of BH₅ has recently been reported.¹⁴ On the other hand, dissociation of 1b into BH_4^+ and NH_3 (Scheme 2) is calculated to be even more endothermic by 81.0 kcal/mol

Scheme 2

(Table 3). BH₄⁺ which is isoelectronic with CH₄²⁺ is of $C_{2\nu}$ symmetry and contains a 3c-2e bond.³

The X-ray structure of H₃BNH₃ showed a B-N bond distance of 1.564 Å, which is significantly shorter than the gas-phase B-N distance of 1.672 Å (determined by microwave spectroscopy).^{2h} The gas-phase value, however, agrees rather well with the calculated value of 1.660 Å. Based on self-consistent reaction field (SCRF) calculations it was concluded that the reduction of B-N distance in the crystal is due to the dipolar field effect of the crystal. In fact, on the basis of our present calculations, it is now probable that protosolvation of H3BNH3 is responsible for the observed shorter B-N distance in the solid state.

Protonation of the H_3BPH_3 (2a) leads to the monocation H_4 - BPH_3^+ (2b). Similar to ammonium cation 1b, the calculated

- (13) Watts, J. D.; Bartlett, R. J. J. Am. Chem. Soc. 1995, 117, 825.
- (14) Tague, T. J.; Andrews, L. J. Am. Chem. Soc. 1994, 116, 4970.

structure 2b also contains a 3c-2e bond. However, unlike 1b, the B–P bond distance of **2b** (1.952 Å) is 0.003 Å longer than that of H₃BNH₃. Protonation of H₃BPH₃ 2a was also calculated to be highly exothermic by 184.2 kcal/mol (Table 1). The dissociation of **2b** into **2c** and H_2 (Scheme 1) and into BH_4^+ and NH₃ (Scheme 2) were calculated to be endothermic by 10.6 and 66.8 kcal/mol (Table 3), respectively. These results indicate that the cations **1b** and **2b** should be observable experimentally.

Protonated H₃BOH₂ and H₃BSH₂ (H₄BOH₂⁺ and H₄-**BSH** $_2^+$). We have also calculated the structures of B-H protonated H_3BOH_2 (3a) and H_3BSH_2 (4a) leading to $H_4BOH_2^+$ (3b) and $H_4BSH_2^+$ (4b), respectively, at the MP2/6-31G** level. Each of the structures **3b** and **4b** was characterized by a 3c-2e bond. Structure 3a is isoelectronic as well as isostructural with the carbon analogue $H_4COH_2^{2+.11}$ The oxygen in **3b** and the sulfur in 4b are pyramidal. The B–O and B–S bond lengths of **3b** (1.532 Å) and **4b** (1.945 Å) are shorter than those of neutral **3a** (1.731 Å) and **4b** (2.036 Å), respectively.

Cation **3b** is endothermic by only 1.2 kcal/mol (Table 3) toward dissociation into 3c and H₂ (Scheme 1). Similar dissociation of **4b** into **4c** and H₂ (Scheme 2), however, is more endothermic by 6.3 kcal/mol (Table 3).

Protonated H₃BCO (H₄BCO⁺). The borane-carbon monoxide complex H_3BCO (5a) is isoelectronic with the acetyl cation H₃CCO⁺. Protonation of the H₃BCO (5a) leads to B-H protonated monocation H₄BCO⁺ (**5b**) containing a HBH 3c-2e bond. In comparison, the calculated structure of C-H protonated acetyl dication H₄CCO²⁺ is C_{4v} symmetrical with no localized 3c-2e bond.¹⁵ The B–C bond distance of **5b** (1.607 Å) is 0.052 Å longer than that of H₃BCO (**5a**). The possible O-protonated structure H₃BCOH⁺ is not a minimum on the potential energy surface as the cation dissociates into BH3 and isoformyl cation COH⁺ when optimized at the MP2/6-31G** level. In contrast, O-protonated acetyl dication H₃CCOH²⁺ is more stable by 18.9 kcal/mol than the C-H protonated H₄CCO²⁺.¹¹ This is consistent with the superior donor ability of the BH₃ group in H₃-BCO 5a compared to that of the CH_3 group in H_3CCO^+ . Protonation of H₃BCO 5a was calculated to be less exothermic (160.7 kcal/mol) compared to that of other borane complexes (Table 1). The dissociation of **5b** into **5c** and H_2 (Scheme 1) and into BH4⁺ and CO (Scheme 2) were calculated to be endothermic by 15.6 and 44.3 kcal/mol (Table 3), respectively.

NMR Chemical Shifts. We have also calculated the ¹¹B NMR chemical shifts of 1-5 by the correlated GIAO-MP2 method^{7,8} using MP2/6-31G** geometries (Table 2). The calculated δ^{11} B of H₃BNH₃ (1a) is -19.3, which agrees very well the experimental value of -22.3. For monocation $H_4BNH_3^+$ (1b), the calculated δ^{11} B of -17.9 is only 1.4 ppm deshielded from the δ^{11} B value of neutral **1a**. The GIAO-MP2 calculated δ^{11} B of H₃BPH₃ **2a** is -44.6, which also agrees very well the experimental value of -42.5. Calculated δ^{11} B of H₃BOH₂ (**3a**) and H_3BSH_2 (4a) are 7.1 and -20.4 ppm, respectively, can be compared with the experimentally obtained values of 2.5 for $H_3BO(CH_3)_2$ and -20.1 for $H_3BS(CH_3)_2$. The ¹¹B NMR chemical shifts of the neutral complexes 1-5a by noncorrelated IGLO method have been reported previously.^{2h}

Conclusion

In conclusion, present ab intio calculations at the MP2/6- $31G^{**}$ level indicate that the B-H protonated H₃BX (X = NH₃,

- (16) Wreckmeyer, B. Annu. Rep. NMR Spectrosc. 1988, 20, 61.
 (17) Spielvogel, B. F.; McPhail, A. T.; Knight, J. A.; Moreland, C. G.; Gatchell, C. L.; Morse, K. W. Polyhedron 1983, 2, 1345.

⁽¹²⁾ Schreiner, P. R.; Schaefer, H. F.; Schleyer, P. v. R. J. Chem. Phys. 1994, 101, 7625.

⁽¹⁵⁾ Olah, G. A.; Burrichter, A.; Rasul, G. A.; Prakash, G. K. S.; Hachoumy, M.; Sommer, J. J. Am. Chem. Soc. 1996, 118, 10423.

PH₃, OH₂, SH₂, CO), **1–5b**, are stable minima and should be eventually observable experimentally. The optimized structures show that **1–5b** all contain a 3c-2e bond. Protonations of H₃BX to form H₄BX⁺ were found to be highly exothermic as calculated with the G2 theory. G2 theory was also employed to calculate the possible dissociation of the cations (**1–5b**) into H₂BX⁺ (**1–5c**) and H₂ and into BH₄⁺ and X. The ¹¹B NMR chemical shifts of the compounds were also calculated by GIAO-MP2 method.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

IC9811502