Lewis Acid Behavior of ReO2F3: Synthesis of (ReO2F3)∞**, ReO2F4** -**, Re2O4F7** -**, Re3O6F10**-**,** and ReO₂F₃(CH₃CN) and Study by NMR Spectroscopy, Raman Spectroscopy, and Density Functional Theory Calculations; and X-ray Structures of [Li][ReO₂F₄], [K][Re₂O₄F₇], $[K][Re_2O_4F_7]$ ^{**'2ReO₂F₃, [Cs][Re₃O₆F₁₀], and ReO₃F(CH₃CN)₂CH**₃CN[†]}

William J. Casteel, Jr.,1 David A. Dixon,2 Nicolas LeBlond,1 Philippa E. Lock,1 Hélène P. A. Mercier,¹ and Gary J. Schrobilgen^{*,1}

Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada, and William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 906 Batelle Blvd., P.O. Box 999, KI-83, Richland, Washington 99352

*Recei*V*ed June 18, 1998*

The reaction of Re_2O_7 with XeF_6 in anhydrous HF provides a convenient route to high-purity ReO_2F_3 . The fluoride acceptor and Lewis base properties of ReO_2F_3 have been investigated leading to the formation of $[M][\text{ReO}_2F_4]$ $[M = Li, Na, Cs, N(CH₃)₄], [K][Re₂O₄F₇], [K][Re₂O₄F₇]₂ReO₂F₃, [Cs][Re₃O₆F₁₀], and ReO₂F₃(CH₃CN). The$ $ReO_2F_4^-$, $Re_2O_4F_7^-$, and $Re_3O_6F_{10}^-$ anions and the $ReO_2F_3(CH_3CN)$ adduct have been characterized in the solid state by Raman spectroscopy, and the structures [Li][ReO₂F₄], [K][Re₂O₄F₇], [K][Re₂O₄F₇]·2ReO₂F₃, [Cs]- $[Re₃O₆F₁₀]$, and $[Re₃C₁g₂-(CH₃CN)₂·CH₃CN]$ have been determined by X-ray crystallography. [Li][$[ReO₂F₄]$ crystallizes in the tetragonal system, space group $P\overline{42}$ *m*, with $a = 4.727(3)$ Å, $c = 8.880(7)$ Å, $V = 198.4(7)$ Å³, and $Z =$ 2 at 24 °C, $R_1 = 0.0378$, and w $R_2 = 0.1029$. [K][Re₂O₄F₇] crystallizes in the monoclinic system, space group *P*2/*n*, with $a = 5.4990(11)$ Å, $b = 5.1530(10)$ Å, $c = 14.753(3)$ Å, $\beta = 95.68^{\circ}$, $V = 415.99(14)$ Å³, and $Z = 2$ at 20 °C, $R_1 = 0.0473$, and w $R_2 = 0.1200$. [K][Re₂O₄F₇] \cdot 2ReO₂F₃ crystallizes in the monoclinic system, space group *C*2, with $a = 27.32(2)$ Å, $b = 5.274(5)$ Å, $c = 5.355(3)$ Å, $\beta = 99.53(4)^\circ$, $V = 760.9(11)$ Å³, and $Z = 2$ at -60 °C, $R_1 = 0.0238$, and w $R_2 = 0.0645$. [Cs][Re₃O₆F₁₀] crystallizes in the triclinic system, space group *P*1, with $a = 7.011(1)$ Å, $b = 9.773(2)$ Å, $c = 10.331(2)$ Å, $\alpha = 113.73(1)^\circ$, $\beta = 91.05(2)^\circ$, $\gamma = 92.42(2)^\circ$, $V =$ 647.4(2) Å³, and *Z* = 2 at -118 °C, R_1 = 0.0522, and w R_2 = 0.0529. ReO₃F(CH₃CN)⁻CH₃CN crystallizes in the orthorhombic system, space group *Pnma*, with $a = 9.138(3)$ Å, $b = 12.518(5)$ Å, $V = 1045.4(7)$ Å³, and $Z = 4$ at -63 °C, $R_1 = 0.0198$, and w $R_2 = 0.0605$. The structure of ReO_2F_4 ⁻ consists of a *cis*-dioxo arrangement of $Re-O$ double bonds in which the $Re-F$ bonds trans to the oxygen atoms are significantly lengthened as a Re-O double bonds in which the Re-F bonds trans to the oxygen atoms are significantly lengthened as a result of the trans influence of the oxygens. The $Re_2O_4F_7^-$ and $Re_3O_6F_{10}^-$ anions and polymeric ReO_2F_3 are open chains containing fluorine-bridged ReO_2F_4 units in which each pair of $\text{Re}-\text{O}$ bonds are cis to each other and the fluorine bridges are trans to oxygens. The trans influence of the oxygens is manifested by elongated terminal Re F bonds trans to Re O bonds as in $ReO_2F_4^-$ and by the occurrence of both fluorine bridges trans to Re O $O_2F_4^-$ and $ReO_2F_2^-$ and ReO_2F_3 (CH₂CN) have cis-dioxo arrangements bonds. Fluorine-19 NMR spectra show that $ReO_2F_4^-$, $Re_2O_4F_7^-$, and $ReO_2F_3(CH_3CN)$ have *cis*-dioxo arrangements in CH3CN solution. Density functional theory calculations at the local and nonlocal levels confirm that the *cis*dioxo isomers of ReO_2F_4 ⁻ and $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$, where CH₃CN is bonded trans to an oxygen, are the energyminimized structures. The adduct $\text{ReO}_3\text{F}(\text{CH}_3\text{CN})_2\cdot\text{CH}_3\text{CN}$ was obtained by hydrolysis of $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$, and was shown by X-ray crystallography to have a facial arrangement of oxygen atoms on rhenium.

Introduction

All of the neutral Re(VII) oxide fluorides, ReO_3F , ReO_2F_3 , and ReOF5, have been synthesized and structurally characterized. Selig and El-Gad³ characterized ReO_3F as the solvolysis product of $\text{Re}O_4$ ⁻ in anhydrous HF by Raman spectroscopy and pure solid samples were obtained by the reaction of $KReO₄$ with IF₅ in the presence of trace amounts of HF.⁴ Peacock⁵ first prepared $ReO_2F_4^-$ by reaction of $[M][ReO_4]$ $(M = K, Rb, Cs, Ag)$ with BrE_2 but the anion was not structurally characterized. A similar $BrF₃$, but the anion was not structurally characterized. A similar

(3) Selig, H.; El-Gad, U. *J. Inorg. Nucl. Chem.* **1973**, *35*, 3517.

synthetic approach involving the reaction of a 1:1 mixture of $Re₂O₇$ and KBr with an excess of BrF₃ was used by Beattie and co-workers⁶ to prepare ReO_2F_3 , who characterized the $ReO₂F₃$ monomer by matrix-isolation Raman and infrared spectroscopy. The vibrational frequencies of the ReO_2F_3 monomer have been subsequently reassigned with the aid of density functional theory (DFT) calculations.⁷ To date the most reliable preparations of ReO_2F_3 and ReOF_5 have involved direct fluorinations using a 4:1 F_2 :Re₂O₇ molar ratio at 200 °C for 65 h for ReO_2F_3 and a 1.1:1 F_2 : ReO_2 molar ratio at 250 °C for 12

(8) Sunder, W. A.; Stevie, F. A. *J. Fluorine Chem.* **1975**, *6*, 449.

[†] Dedicated to the memory of Professor Colin J. L. Lock (Oct 4, 1933-h for $ReOF_5$.⁸ The low volatility and high melting point of μ 1. 1996) and his longstanding interests in and contributions to May 1, 1996) and his longstanding interests in and contributions to technetium and rhenium chemistry.

⁽¹⁾ McMaster University.

⁽²⁾ Pacific Northwest Laboratory.

⁽⁴⁾ Aynsley, E. E.; Hair, M. L. *J. Chem. Soc.* **1958**, 3747.

⁽⁵⁾ Peacock, R. D. *J. Chem. Soc.* **1955**, 602.

⁽⁶⁾ Beattie, I. R.; Crocombe, R. A.; Ogden, J. S. *J. Chem. Soc., Dalton Trans.* **1977**, 1481.

⁽⁷⁾ Casteel, W. J., Jr.; Dixon, D. A.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1996**, *35*, 4310.

 $ReO₂F₃$ contrasts with those of $ReO₃F$ and $ReOF₅$ and indicate that ReO_2F_3 , like its technetium analogue, TeO_2F_3 , is polymeric in the solid state. Although the polymeric structure of $TcO₂F₃$ has been previously confirmed by its X-ray crystal structure,⁹ the detailed structure of polymeric ReO_2F_3 (denoted below as $(ReO₂F₃)_{\infty}$) has not been determined. The vibrational spectra of the ReO_2F_4 ⁻ anion have since been reported,¹⁰ and a ¹⁹F NMR study of the ReO_2F_4 ⁻ anion, obtained by the reaction of $Re₂O₇$ with HF in ethanol, has also been reported.¹¹

The existing vibrational and solution NMR data indicate that in the Re(VII) oxide fluoride species, where cis- or transarrangements of two or three doubly bonded oxygen ligands are possible, the *cis*-dioxo and *fac*-trioxo isomers are favored, for example, the trigonal bipyramidal ReO_2F_3 ⁶ and ReO_2 - $(OTEF_5)_3^{12}$ monomers and the pseudooctahedral $ReO_2F_4^{-10}$ $\text{ReO}_2(\text{OTeF}_5)_4^{-12}$ and $\text{ReO}_3\text{F}_3^{2-10}$ anions. Moreover, the X-ray structures of the polymeric oxofluorometalates $VO_2F_3^{2-}$,¹³ MoOF4,¹⁴ ReOF4,¹⁵ TcOF4,¹⁶ WOF4,¹⁷ Re₂O₂F₉⁺,¹⁸ W₂O₂F₉⁻,¹⁹ $Os_2O_4F_7^+$, and $TeO_2F_3^9$ show that the bridging F ligands in these systems are always trans to the doubly bonded O ligands.

Previous work has shown that high-valent metal oxides and oxide fluorides can be fluorinated in anhydrous HF using noblegas fluorides. In anhydrous HF, XeF_6 fluorinates TcO_3F to give $TcO_2F_3^9$ and KrF_2 fluorinates OsO_4 and TcO_2F_3 to give $OsO₂F₄²⁰$ and TcOF₅,²¹ respectively. The present paper describes an improved high-yield synthesis of high-purity ReO_2F_3 using an approach analogous to that used to synthesize $TcO_2F_3^9$ and the structural characterization of $(ReO₂F₃)_{\infty}$ by Raman spectroscopy and X-ray crystallography. The Lewis acid behavior of $ReO₂F₃$ toward fluoride ion and $CH₃CN$ was also investigated leading to the structural characterization of the ReO_2F_4^- , $\text{Re}_2\text{O}_4\text{F}_7^-$, and $\text{Re}_3\text{O}_6\text{F}_{10}^-$ anions and the $\text{Re}_2\text{F}_3(\text{CH}_3\text{CN})$ and $ReO₃F(CH₃CN)₂$ adducts.

Results and Discussion

Synthesis of ReO₂F₃. Previous syntheses of ReO₂F₃ have involved direct fluorination of Re_2O_7 or ReO_2 at elevated temperatures, followed by separation of the products by vacuum sublimation. $8,22,23$ The heptoxide has also been fluorinated using $BrF₃$, but the tendency of the Lewis acid $ReO₂F₃$ to form adducts with excess $BrF₃$ made complete removal of this reagent difficult.⁶

An improved, high-yield, high-purity synthesis for ReO_2F_3 has now been achieved by the room-temperature fluorination

- (11) Bol'shakov, A. M.; Glushkova, M. A.; Buslaev, Y. A. *Dokl. Chem. (Engl. Transl.)* **1983**, *272*, 417; *Dokl. Akad. Nauk SSSR* **1983**, *273*, 1134.
- (12) Casteel, W. J.; McLeod, D.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1996**, *35*, 7279.
- (13) Ryan, R. R.; Mastin, S. H.; Reisfeld, M. J. *Acta Crystallogr.* **1971**, *B27*, 1270.
- (14) Edwards, A. J.; Steventon, B. R. *J. Chem. Soc. A* **1968**, 2507.
- (15) Edwards, A. J.; Jones, J. R. *J. Chem. Soc. A* **1968**, 2513.
- (16) Edwards, A. J.; Jones, J. R.; Sills, R. J. *J. Chem. Soc. A* **1970**, 2521.
- (17) Edwards, A. J.; Jones, J. R. *J. Chem. Soc. A* **1968**, 2074.
- (18) Schrobilgen, G. J.; Holloway, J. H.; Russell, D. R. *J. Chem. Soc., Dalton Trans.* **1984**, 1411.
- (19) Hoskins, B. F.; Linden, A.; O'Donnell, T. A. *Inorg. Chem.* **1987**, *26*, 2223.
- (20) (a) Christe, K. O.; Bougon, R. *J. Chem. Soc., Chem. Commun.* **1992**, 1056. (b) Christe, K. O.; Dixon, D. A.; Mack, H. G.; Oberhammer, H.; Pagelot, A.; Sanders, J. C. P.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **1993**, *115*, 11279.
- (21) LeBlond, N.; Schrobilgen, G. J. *Chem. Commun.* **1996**, 2479.
- (22) Aynsley, E. E.; Peacock, R. D.; Robinson, P. L. *J. Chem. Soc.* **1950**, $1622.$
- (23) Cady, G. H.; Hargreaves, G. B. *J. Chem. Soc.* **1961**, 1568.

of Re₂O₇ with XeF₆ in anhydrous HF according to eqs 1-3 and is analogous to the preparation of TcO_2F_3 .⁹ When ratios of

$$
Re2O7 + 2HF \xrightarrow{HF} H2O + 2ReO3F
$$
 (1)
H₂O + XeF₆ \xrightarrow{HF} XeOF₄ + 2HF (2)

$$
H_2O + XeF_6 \xrightarrow{HF} XeOF_4 + 2HF
$$
 (2)

$$
eO_3F + XeF_6 \xrightarrow{HF} ReO_2F_3 + XeOF_4
$$
 (3)

$$
ReO_3F + XeF_6 \xrightarrow{HF} ReO_2F_3 + XeOF_4
$$
 (3)
\n
$$
XeF_6 + ReO_2F_3 \xrightarrow{HF} [XeF_5][ReO_2F_4]
$$
 (4)

$$
XeF_6 + ReO_2F_3 \xrightarrow{HF} [XeF_5][ReO_2F_4] \tag{4}
$$

$$
eO_3F + XeOF_4 \xrightarrow{HF} ReO_2F_3 + XeO_2F_2 \tag{5}
$$

$$
ReO_3F + XeOF_4 \xrightarrow{HF} ReO_2F_3 + XeO_2F_2
$$
 (5)

$$
XeF_6:Re_2O_7
$$
 exceeding 3:1 were used, the soluble [XeF₅]-

 $[ReO₂F₄]$ salt was produced according to eq 4 and no further fluorination of ReO_2F_3 to ReOF_5 occurred as was determined by ¹⁹F NMR spectroscopy of a sample of XeF_6 and ReO_2F_3 (9:1 molar ratio) in HF (see NMR Spectroscopy) and is analogous in behavior to the XeF_6 :Tc₂O₇ system.²⁴

The use of a 3:1 molar ratio of XeF_6/Re_2O_7 as the upper limit ensured that only volatile $XeOF_4$ was produced, which was readily pumped off along with HF. The ratio XeF_6 : Re_2O_7 = 1.5:1 is the practical lower limit, yielding $XeO₂F₂$ (eq 5), which has a low volatility and is difficult to pump off. *Caution: ratios lower than 1.5 would likely result in the formation of shocksensitive and explosive* XeO_3 *.*²⁵
The present synthesis provide

The present synthesis provides ReO_2F_3 in quantitative yield as a stable, white, microcrystalline solid which is essentially insoluble in anhydrous HF and has a melting point $(113-116)$ °C) which is consistent with the observations of Stevie and Sunder,⁸ who reported an almost white solid and similar melting point (115 °C). The purity of this material is significantly higher than that reported by Peacock et al.,²² who described ReO_2F_3 as a pale yellow solid melting at 90 °C. Unlike TcO_2F_3 , ²⁴ $ReO₂F₃$ is stable in Pyrex glass and in CH₃CN solutions at room temperature; however, $CH₃CN$ solutions of $ReO₂F₃$ produce charring at -40 °C in the presence of [N(CH₃)₄][F], and ReO₂F₃ solutions in $CH₂Cl₂$ undergo rapid decomposition at room temperature to give blue solutions, typical of Re(VI) species.

The pale yellow $[M][ReO₂F₄]$ (M = Na, K, Rb, Cs, Ag) salts have been previously reported and were formed by combination of ReO_2F_3 and the alkali metal fluorides in the solid state at $120-150$ °C²⁶ or in the reaction between [M][ReO₄] and BrF₃ in Br F_3 ⁵ solvent. Although ReO_2F_3 is insoluble in HF, it rapidly dissolves in the presence of alkali metal fluorides to give pale yellow solutions of $[M][ReO_2F_4]$ (M = Li, Na, K, Cs) salts whose solubilities in anhydrous HF increase with cation size. The K^+ and Cs^+ salts were too soluble for effective crystal growth, but crystals of $[Li][ReO_2F_4]$ were readily grown from saturated HF solutions. The $[Na][ReO_2F_4]$ salt, prepared in a similar manner, gave a pale yellow, microcrystalline powder which was shown by X-ray powder diffraction to be isomorphous with the Li⁺ salt. The Lewis acid behavior of ReO_2F_3 in HF contrasts with that of $TcO₂F₃$ whose conjugate base, $TcO_2F_4^-$, undergoes solvolysis in HF according to eq 6 in all

$$
TcO_2F_4^- + nHF \xrightarrow{HF} TcO_2F_3 + (HF)_nF^-
$$
 (6)
but very concentrated fluoro-basic solutions.²⁴ When the

- (25) Smith, D. F. *J. Am. Chem. Soc.* **1963**, *85*, 816.
- (26) Yagodin, G. A.; Opalovskii, A. A.; Rakov, É.G.; Dudin, A. S. *Dokl. Akad. Nauk SSSR* **1980**, *252*, 1400.

⁽⁹⁾ Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1993**, *32*, 145.

⁽¹⁰⁾ Kuhlmann, W.; Sawodny, W. *J. Fluorine Chem.* **1977**, *9*, 341.

⁽²⁴⁾ Casteel, W. J., Jr.; Dixon, D. A.; LeBlond, N.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1998**, *37*, 340.

Figure 1. ¹⁹F NMR spectrum (470.599 MHz) of $[N(CH_3)_4][ReO_2F_4]$ in CH₃CN solvent recorded at 30 °C, where $A_{c,c}$ and $A_{c,t}$ denote fluorines cis and trans to oxygens, respectively.

 $ReO₂F₃:F⁻$ molar ratio was increased to 2:1 and to 3:1, the binuclear and trinuclear rhenium anions, $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ and $\text{Re}_3\text{O}_6\text{F}_{10}$ ⁻, were formed according to eqs 7 and 8. A 1.9:1 molar ratio of

$$
2\text{Re}O_2F_3 + F^{-} \xrightarrow{\text{HF}} \text{Re}_2O_4F_7^-
$$
 (7)

$$
3\text{Re}O_2F_3 + F^{-} \xrightarrow{\text{HF}} \text{Re}_3O_6F_{10}^-
$$
 (8)

$$
3\text{ReO}_2\text{F}_3 + \text{F}^- \xrightarrow{\text{HF}} \text{Re}_3\text{O}_6\text{F}_{10}^-
$$
 (8)
KF and ReO₂F₃ in HF resulted in the cocrystallization of [K]-

 $[Re_2O_4F_7]$ and $[Re_2F_3]$. The nature and concentration of the cation as well as the relative amount of ReO_2F_3 used influences the degree of anion oligomerization in solution. The isolation of $[K][Re_2O_4F_7]$ ² ReO_2F_3 from HF solution when a 4-fold molar excess of ReO_2F_3 with respect to KF is used indicates that the $Re₂O₄F₇⁻$ anion is the highest oligomer present in HF solution when KF is used as the fluoro base. In contrast, the $\text{Re}_3\text{O}_6\text{F}_{10}^$ anion can only be obtained by using the stronger fluoro base CsF. This behavior suggests that significant ion pairing occurs between K^+ and $Re_2O_4F_7^-$, rendering the $Re_2O_4F_7^-$ anion insufficiently fluoro basic to disrupt the ReO_2F_3 polymer and coordinate another ReO_2F_3 unit. Conversely, the weaker Lewis acidity of $Cs⁺$ and accompanying weaker ion-pair interactions result in a fluoride base strength for the $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ anion which is still sufficient to coordinate another ReO_2F_3 unit, forming the $\text{Re}_3\text{O}_6\text{F}_{10}$ ⁻ anion.

The Lewis acid character of ReO_2F_3 is also evident from its solubility in CH_3CN solvent. The complex $ReO_2F_3(CH_3CN)$ was isolated as a white solid by removal of the solvent at 0° C. Unlike the technetium analogue,²⁴ ReO₂F₃(CH₃CN) can be stored at room temperature without dissociation to $ReO₂F₃$ and $CH₃CN$, consistent with a stronger $Re-N$ bond and the anticipated greater Lewis acidity of ReO_2F_3 compared to that of TcO₂F₃. When the molar ratio of ReO_2 F₃ to [N(CH₃)₄]- $[ReO₂F₄]$ was increased to 2:1 in CH₃CN solution, there was no evidence for the formation of $[N(CH_3)_4][Re_3O_6F_{10}]$. This is attributed to the stronger Lewis base character of $CH₃CN$ relative to $\text{Re}_2\text{O}_4\text{F}_7$ so that additional Re_2P_3 reacts with the solvent to form the $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$ adduct instead.

Characterization of ReO_2F_4^- , $\text{Re}_2\text{O}_4\text{F}_7^-$, and ReO_2F_3 -**(CH3CN) in Solution by 19F NMR Spectroscopy. [N(CH3)4]-** $[ReO_2F_4]$, $[Cs][ReO_2F_4]$, and $[XeF_5][ReO_2F_4]$. The ¹⁹F NMR spectrum of $[N(CH_3)_4][ReO_2F_4]$ was recorded at 30 °C in CH₃-CN. The spectrum displays two triplets $[^2J(^{19}F_{c,t}-^{19}F_{c,c})] = 87$ Hz] at -53.8 and -64.2 ppm (Figure 1) which are assigned to the fluorine environments trans $(F_{c,t})$ and cis $(F_{c,c})$ to the oxygen ligands, respectively, and establish that the cis geometry is adopted by ReO_2F_4 ⁻ in solution (structure I). The triplet corresponding to the F_{c,c} environment is broadened ($\Delta v_{1/2}$, 10.7 Hz) compared with that of $F_{c,t}$ ($\Delta v_{1/2}$, 5.8 Hz). The broadening is attributed to residual scalar coupling of ^{19}F to the quadrupolar nuclei ¹⁸⁵Re (37.4%, $I = \frac{5}{2}$, $Q = 2.8 \times 10^{-28}$ m²) and ¹⁸⁷Re

 $(62.6\%, I = \frac{5}{2}, Q = 2.6 \times 10^{-28} \text{ m}^2).^{27}$ It is anticipated that $^{1}J(^{185,187}Re^{-19}F_{c,t}) < ^{1}J(^{185,187}Re^{-19}F_{c,c})$ because the Re-F_{c,c} bonds are expected to be more covalent than the $Re-F_{c,t}$ bonds, which are trans to oxygen. The greater length of the $Re-F_{c,t}$ bonds relative to those of $Re-F_{c,c}$ was confirmed in the X-ray crystal structure of $[Li][ReO_2F_4]$ (see X-ray Crystal Structures). The correspondingly smaller ${}^{1}J({}^{19}F_{c,t}-{}^{185,187}Re)$ coupling constants are also expected by analogy with the trend observed in the ¹⁹F NMR spectrum of $TcO_2F_4^{-1}$,²⁴ which consists of a partly quadrupole-collapsed ${}^{1}J(^{99}Tc-{}^{19}F_{c,c})$ coupling on the *cis*-fluorine resonance and a significantly smaller ${}^{1}J(^{99}Tc-{}^{19}F_{c,t})$ coupling on the *trans-*fluorine resonance that is almost completely quadrupole collapsed. The smaller ${}^{1}J(M-{}^{19}F_{c,t})$ couplings are affected to the same extent by quadrupolar relaxation of the M atoms as the larger $\frac{1}{J(M-19F_{c,c})}$ couplings, resulting in a narrower line width for the $F_{c,t}$ resonances in both $TcO_2F_4^-$ and $ReO_2F_4^-$.

The ¹⁹F NMR spectrum of a 1:5 molar ratio of ReO_2F_3 and CsF in HF at 30 °C consists of a singlet at -35.6 ppm ($\Delta v_{1/2}$, 10 Hz) assigned to the $F_{c,c}$ environment of ReO_2F_4 . Only one other resonance was observed at -195.1 ppm ($\Delta v_{1/2}$, 60 Hz) and was assigned to the $F_{c,t}$ environment of $\text{Re}O_2F_4^-$ undergoing rapid fluorine exchange with the solvent. This exchange is slowed sufficiently at -80 °C to observe two triplets at -30.7 ppm ($\Delta v_{1/2}$, 65 Hz) and -135.7 ($\Delta v_{1/2}$, 50 Hz), assigned to the *cis*- and *trans*-fluorines, respectively, and the HF solvent resonance at -190.9 ppm ($\Delta v_{1/2}$, 30 Hz). The exchange behavior parallels that of $[Cs][TcO_2F_4]$ in HF in the presence of excess $CsF²⁴$ and confirms the assignment of the more labile fluorine environment to the fluorines trans to oxygen. As in the case of $TcO_2F_4^-$, the $F_{c,t}$ environment occurs at lower frequency than that of F_{c,c}. The coupling constant, $^{2}J(^{19}F_c^{-19}F_t) = 85$ Hz, is in excellent agreement with that observed for $[N(CH_3)_4][ReO_2F_4]$ in CH3CN. The 19F NMR spectrum of a 1:9 molar ratio of $ReO₂F₃$ and $XeF₆$ in HF at 30 °C consists of a singlet at -31.9 ppm ($\Delta v_{1/2}$, 12 Hz) assigned to F_{c,c} of ReO₂F₄⁻. Only one other resonance was observed at -120.8 ppm ($\Delta v_{1/2}$, 210 Hz) and is assigned to the *trans*-fluorines of ReO_2F_4 ⁻ undergoing rapid fluorine exchange with XeF_6 , XeF_5^+ , and HF. Although the $^{2}J(^{19}F_{c,t}-^{19}F_{c,c})$ coupling constant values obtained in HF and CH3CN solvents are in very good agreement with the value reported by Buslaev et al.¹¹ (89 Hz) for a solution of Re_2O_7 in 60% HF in ethanol $(-32.2$ ppm, triplet; -109.2 ppm, triplet), the 19F chemical shifts are noted to be highly solvent dependent.

ReO2F3(CH3CN). There are three isomers possible for $ReO₂F₃(CH₃CN)$ which would produce the same multiplicities and relative intensities in the 19F NMR spectrum, a *trans-*dioxo isomer and two *cis*-dioxo isomers in which CH₃CN is coordinated trans to an oxygen or trans to a fluorine. The energyminimized structure arrived at by LDFT calculations for gasphase $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$ is a *cis*-dioxo isomer in which CH_3CN is coordinated trans to an oxygen and is the assumed structure (see structure II and Computational Results) and is analogous to the energy-minimized structure predicted for $TcO₂F₃(CH₃–)$ CN).24 Moreover, no examples of pseudooctahedral *trans*-dioxo $d⁰$ species are known.

⁽²⁷⁾ Rehder, D. In *Multinuclear NMR*; Mason, J., Ed.; Plenum: New York, 1987; p 512.

The ¹⁹F NMR spectrum of $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$ was recorded in SO_2CIF solvent in the presence of excess CH₃CN at 30 $^{\circ}C$ (and at -80 °C; values in brackets). The spectrum consists of an AB₂ pattern at 282.409 MHz with the $F_{c,c}$ environment at -23.8 (∆*ν*1/2, 18 Hz) [-24.1 (∆*ν*1/2, 13 Hz)] ppm (doublet) and the Fc,t environment at -25.8 (∆*ν*1/2, 27 Hz) [-34.3 (∆*ν*1/2, 15 Hz)] ppm (triplet) with relative integrated intensities of 2.0:1.0 (structure II) and a two-bond $^2J(^{19}F_{c,t}-^{19}F_{c,c})$ coupling constant of 119 [117] Hz. A similar dependence of the $F_{c,t}$ resonance has been observed for $TcO_2F_3(CH_3CN).^{24}$ The ¹⁹F NMR spectrum of $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$ was also recorded in CH_3CN solvent at 30 °C, yielding an AX_2 pattern at 282.409 MHz with NMR parameters (-24.5 (doublet) and -31.1 (triplet) ppm, ${}^{2}J({}^{19}F_{c,t}-{}^{19}F_{c,c})$ = 115 Hz) very similar to those obtained for the adduct in SO_2CIF solvent. The ¹H NMR spectrum of $ReO₂F₃(CH₃CN)$ recorded in SO₂ClF in the presence of excess CH3CN shows two singlets at 2.40 and 1.81 ppm assigned to complexed and free CH3CN, respectively. The proton-decoupled 13C NMR spectrum of this solution shows the complexed acetonitrile signals at 1.81 (CH₃) and 119.0 (CN) ppm and free CH₃CN at 0.46 (CH₃) and 117.5 (CN) ppm. The ¹H and ¹³C complexation shifts for $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$ with respect to free CH3CN are consistent with Lewis acid-base adduct formation. Moreover, the narrow line widths of the ¹H ($\Delta v_{1/2}$, 5 Hz) and ¹³C ($\Delta v_{1/2}$, 11 Hz) resonances indicate that the rate of exchange between free and complexed CH3CN is slow on the NMR time scale.

 $[N(CH_3)_4][Re_2O_4F_7]$. The ¹⁹F NMR spectrum of a 1:1 molar ratio of ReO_2F_3 and $\text{[N(CH_3)_4][ReO}_2F_4\text{]}$ recorded in CH₃CN solvent at -40 °C is an equilibrium mixture of three species: ReO₂F₃(CH₃CN) [65 mol %; F_{c,c} doublet, -24.3 ppm ($\Delta v_{1/2}$, 15 Hz); F_{c,t} triplet -34.7 ppm ($\Delta v_{1/2}$, 15 Hz); ²*J*(¹⁹F_{c,t} $-$ ¹⁹F_{c,c}), 118 Hz], ReO₂F₄⁻ [12 mol %; F_{c,c} triplet, -66.3 ppm ($\Delta v_{1/2}$, 5
Hz): F₊₁ triplet -52.1 ppm ($\Delta v_{1/2}$, 5 Hz): ²*I*(¹⁹E, -¹⁹E), 87 Hz] Hz); F_{c,t} triplet -52.1 ppm (Δν_{1/2}, 5 Hz); ²*J*(¹⁹F_c-¹⁹F_t), 87 Hz], and $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ (23 mol %) (Figure 2). The ¹⁹F NMR spectrum of the $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ anion (structure III) comprises a doublet of

doublets at -28.8 ppm ($\Delta v_{1/2}$, 9 Hz) assigned to the terminal fluorines cis to the oxygens ($F_{c,c}$), a doublet of triplets at -38.6 ppm ($\Delta v_{1/2}$, 12 Hz) assigned to the terminal fluorines trans to O_c (F_{c,t}), and a triplet of quintets at -141.2 ppm ($\Delta \nu_{1/2}$, 12 Hz) assigned to the bridging fluorine (F_b) . The high shielding of the F_b resonance is characteristic of fluorine-bridged species (e.g., $Mo_{2}O_{2}F_{9}^{-28}$ and $W_{2}O_{2}F_{9}^{-29}$) and is consistent with its more ionic bonding. The coupling constants ${}^{2}J({}^{19}F_{c,t}-{}^{19}F_{c,c})$ and

⁽²⁹⁾ Buslaev, Yu. A.; Kokunov, Yu. V.; Bochkareva, V. A.; Shostorovich, E. M. *J. Struct. Chem.* **1972**, *13*, 491; *Zh. Strukt. Khim.* **1972**, *13*, 526.

Figure 2. ¹⁹F NMR spectrum (282.409 MHz) of $[N(CH_3)_4][Re_2O_4F_7]$ in CH₃CN solvent recorded at -40 °C: (a) fluorines cis (A_{c,c}) and trans $(A_{c,t})$ to oxygens in $ReO_2F_4^-$; (b) fluorines cis $(B_{c,c})$ and trans $(B_{c,t})$ to oxygens in $ReO₂F₃(CH₃CN)$ and fluorines cis $(C_{c,c})$ and trans $(C_{c,t})$ to oxygens in Re₂O₄F₇⁻; (c) fluorine bridge (C_b) in Re₂O₄F₇⁻, where $*, \dagger$, and \dagger denote the individual quintet patterns of the triplet of quintets associated with this resonance.

 $^{2}J(^{19}F_{c,t}-^{19}F_{b})$ are identical within experimental error (105 Hz), while ² $J(^{19}F_{c,c}^{-19}F_b)$ is significantly smaller (75 Hz).

X-ray Crystal Structures. Details of the data collection parameters and other crystallographic information for [Li]- $[ReO_2F_4]$, $[K][Re_2O_4F_7]$, $[K][Re_2O_4F_7]$ [,] $2ReO_2F_3$, $[Cs][Re_3O_6F_{10}]$, and $\text{ReO}_3\text{F}(\text{CH}_3\text{CN})_2$ ·CH₃CN are given in Table 1. Important bond lengths, angles, significant long contacts, and bond valences, as defined by Brown, 33 for individual bonds and anion-cation contacts are given in Table 2.

Table 1. Summary of Crystal Data and Refinement Results for [Li][ReO_{2F4}], [K][Re₂O₄F₇], [K][Re₂O₄F₇]·2ReO₂F₃, [Cs][Re₃O₆F₁₀], and ReO3F(CH3CN)2·CH3CN

	[Li][ReO ₂ F ₄]	$[K][Re2O4F7]$	$[K][Re_{2}O_{4}F_{7}]$ 2ReO ₂ F ₃	$[Cs][Re_3O_6F_{10}]$	$ReO3F(CH3CN)2·CH3CN$
space group	P42 ₁ m	P2/n	C ₂	P1	Pnma
a(A)	4.727(3)	5.4990(11)	27.32(2)	7.011(1)	9.138(3)
b(A)	4.727(3)	5.1530(10)	5.274(5)	9.773(2)	12.518(5)
c(A)	8.880(7)	14.753(3)	5.355(3)	10.331(2)	9.138(4)
α (deg)	90.0	90.0	90.0	113.73(1)	90.0
β (deg)	90.0	95.68(3)	99.53(4)	91.05(2)	90.0
γ (deg)	90.0	90.0	90.0	92.42(2)	90.0
$V(A^3)$	198.4(7)	415.99(14)	760.9(11)	647.4(2)	1045.4(7)
molecules/unit cell	2			2	4
molecular wt $(g \text{ mol}^{-1})$	301.14	608.50	1158.90	977.51	373.34
ρ_{calcd} (g cm ⁻³)	5.040	4.858	5.058	5.018	2.372
$T({}^{\circ}C)$	24	20	-60	-118	-63
μ (cm ⁻¹)	1.648	1.5961	3.217	1.661	1.1625
λ (Å)	0.56086	0.56086	0.710 73	0.56086	0.710 73
final agreement factors ^a	$R_1 = 0.0378$	$R_1 = 0.0473$	$R_1 = 0.0238$	$R_1 = 0.0522$	$R_1 = 0.0198$
	$wR_2 = 0.1029$	$wR_2 = 0.1200$	$wR_2 = 0.0645$	$wR_2 = 0.0529$	$wR_2 = 0.0605$

 $a_R = \sum ||F_o| - |F_c||/\sum |F_o|$ for $I > 2\sigma(I)$. w $R_2 = [\sum [w(F_o^2 - F_c^2)^2]/\sum w(F_o^2)^2]^{1/2}$ for $I > 2\sigma(I)$.

Figure 3. Geometry of the ReO_2F_4 ⁻ anion in [Li][ReO_2F_4]. Thermal ellipsoids are shown at the 50% probability level.

[Li][ReO2F4], [K][Re2O4F7], [K][Re2O4F7]'**2ReO2F3, and [Cs][Re3O6F10]. (a) Crystal Packing.** The bilayer packing arrangement of $[Li][ReO₂F₄]$ (Figure 3) is identical to that of [Li][TcO₂F₄]²⁴ with a minimum O \cdots O distance of 3.065 Å (cf. the sum of the van der Waals radii for two oxygen atoms: 2.80, 2.84 Å).³⁴

The crystal structure of $[K][Re₂O₄F₇]$ consists of layers of $[K][Re₂O₄F₇]$ stacked along the *c*-axis. The shortest interatomic distance between the layers is between O(2) and O(1) (2.998 Å) and is at the limit of the sum of the van der Waals radii. The $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ anions are connected to each other within the *ab*-plane through contacts with K^+ cations (Figure S1). There are also several weak contacts between the $Re₂O₄F₇⁻$ anions within the same layer $(F(2)\cdots F(5), 2.904 \text{ Å}, \text{ and } O(2)\cdots F(4),$ 3.023 Å). The crystal structure is similar to that of $[K][Re_2O_4F_7]$ $2ReO₂F₃$ (Figure 4a) which consists of layers of [K][Re₂O₄F₇] and $(ReO₂F₃)_{\infty}$ which alternate along the *a*-axis. The shortest interatomic distance between the two layers is between O(1) and $F(7)$ (2.897 Å) and is also at the limit of the sum of the fluorine and oxygen van der Waals radii $(2.75, 2.82 \text{ Å})^{34}$ Consequently, each component of the structure is considered

^{(33) (}a) Brown, I. D. *J. Solid State Chem.* **1974**, *11*, 214. (b) Brown, I. D. In *Structure and Bonding in Crystals*; O'Keefe, M., Navrotsky, A., Eds; Academic: London, 1981; Vol. 2, p 1. (c) Brown, I. D.; Altermatt, D. *Acta Crystallogr.* **1985**, *B41*, 244.

Figure 4. Crystal structure of [K][Re₂O₄F₇]·2ReO₂F₃ showing thermal ellipsoids at the 50% probability level with views of (a) the $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ anion and (b) the polymeric ReO_2F_3 chain.

distinct and will be discussed separately. In this structure, the $Re₂O₄F₇⁻$ anions are connected to each other within the *bc*plane through contacts with K^+ cations (Figure S2). Weak contacts between the $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ anions also occur within the same plane $(O(2) \cdot \cdot \cdot F(4), 2.910 \text{ Å}, \text{ and } O(2) \cdot \cdot \cdot F(3), 3.008 \text{ Å}).$ The geometrical parameters for $[K][Re₂O₄F₇]$ are identical in both structures and the Re-O and Re-F bond length distortions are reproducible, confirming that they are related to cationanion interactions or packing effects and do not result from positional disorder between F and O (see Experimental Section).

The $\text{Re}_3\text{O}_6\text{F}_{10}$ ⁻ anions (Figure 5) are packed along the *a*-axis, and the shortest secondary contacts occur between $O(1)\cdots O(4)$, 2.768 Å, and $O(3) \cdot \cdot \cdot F(3)$, 2.873 Å.

(b) Anion and Molecular Geometries and Secondary Contacts. The alkali metal cations (M^+) exhibit M^{\bullet} contacts³⁵ with the anions in the crystal structures of [Li][$ReO₂F₄$], [K]- $[Re_2O_4F_7]$, $[K][Re_2O_4F_7]$ ² ReO_2F_3 , and $[Cs][Re_3O_6F_{10}]$. The lithium cation in [Li][$ReO₂F₄$] has six Li \cdots F contacts with the fluorine atoms forming a slightly distorted octahedron. Although the total bond valence around $Li⁺$ arising from these fluorine

^{(34) (}a) Pauling, L. *The Nature of the Chemical Bond*, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 260. (b) Bondi, A. *J. Phys. Chem.* **1964**, *68*, 441.

⁽³⁵⁾ The anion vector contacts are defined as distances which are smaller
or equal to the sum of the ionic radii of the cation $(L⁺ = 1.38 \text{ Å K}^+$ or equal to the sum of the ionic radii of the cation ($Li^+=1.38 \text{ Å}$, $K^+=1.51 \text{ Å}$ and $Cs^+=1.67 \text{ Å}$ for a coordination number of 6, 8, and $= 1.51$ Å, and Cs⁺ $= 1.67$ Å for a coordination number of 6, 8, and 6, respectively) and the van der Waals radius of the F (1.35 or 1.40) \check{A}) or O (1.5 \check{A}) atoms the cation makes contact with.

Table 2. Experimental Bond Lengths (Å), Bond Valences (vu),^a Long Contacts (Å), and Bond Angles (deg) for [Li][ReO₂F₄], [K][Re₂O₄F₇], $[K][Re_2O_4F_7]$ ·2ReO₂F₃, [Cs][Re₃O₆F₁₀], and ReO₃F(CH₃CN)₂·CH₃CN and Calculated Geometries for ReO₂F₄⁻, Re₂O₄F₇⁻, and Monomeric ReO₂F₄⁻, Re₂O₄F₇⁻, and Monomeric ReO_2F_3 , $\text{Re}_3\text{O}_6\text{F}_{10}$ ⁻, and $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})^b$

 $[Li][ReO₂F₄]$

$[Cs][Re₃O₆F₁₀]$

ReO2F3(CH3CN)*^e*

Bond Lengths (Å) and Angles (deg)

bond Lengths (11) and $\lim_{x \to a}$ (acg)					
	LDFT/DZVP		LDFT/DZVP		LDFT/DZVP
$Re-Or$	1.715	$O_t - Re - O_c$	105.5	O_t –Re– $F_{c.c}$	99.1
$Re-Oc$	1.723	O_t –Re– $F_{c,t}$	100.1	O_t –Re–F _{cc}	99.1
$Re-Fc.c$	1.880	O_t –Re–N	174.3	O_c –Re–F _{c.c}	93.4
$Re-F_{c.f.}$	1.949	O_c -Re- $F_{c,t}$	154.3	O_c – Re – $F_{c,c}$	93.8
$Re-F_{c.c}$	1.873	O_c -Re-N	80.2	F_{cc} –Re– F_{cc}	157.9
$Re-N$	2.316	$F_{c.c}$ –Re– $F_{c.t.}$	82.0	$F_{c.c}$ –Re–N	79.5
$N=C$	1.164	$N-Re-Fc.c$	81.1	$N-Re-F_{c}$	74.2
$F_{c,c}$ –Re– $F_{c,t}$	82.5	$Re-N=C$	171.8		

Table 2 (Continued)

 $ReO_3F(CH_3CN)$ ²·CH₃CN

Bond Lengths (Å) and Corresponding Bond Valences (vu)*^a*

a Bond valence units (vu) are defined in ref 33. $R_0 = 1.930$ (Re(VII)=O), $R_0 = 1.836$ (Re(VII)-F), $R_0 = 1.360$ (Li-F), $R_0 = 1.992$ (K-F), $R_0 = 2.132$ (K-O), $R_0 = 2.33$ (Cs-F), $R_0 = 2.06$ (Re-N), and $B = 0.37$ wer $= 2.132$ (K-O), $R_0 = 2.33$ (Cs-F), $R_0 = 2.06$ (Re-N), and $B = 0.37$ were used (Brown, I. D. Department of Physics, McMaster University,
Hamilton Ontario L8S 4M1 Canada private communication) ^b Values in parentheses r Hamilton, Ontario L8S 4M1, Canada, private communication). ^{*b*} Values in parentheses refer to [K][Re₂O4F₇] in [K][Re₂O4F₇] ²ReO₂F₃. *c* Experimental
values for (ReO₂F₂) in [K][Re₂O4F4] 2ReO₂F₂ d'C values for $(ReO_2F_3)_{\infty}$ in $[K][Re_2O_4F_7]$ ⁻²Re O_2F_3 . ^{*d*} Calculated values for monomeric ReO₂F₃ taken from ref 7. *e* The labeling scheme used is defined in structure II. Other observed bond lengths (Å) and bond angles (deg): N-C, 1.136(7); C-C, 1.451(7); C-H, 1.106; C-H, 1.106; C-H, 1.105; N=C-C, 178.9(9); C-C-H, 109.8; C-C-H, 109.5; C-C-H, 110.3; H-C-H, 108.9; H-C-H, 109.2; H-C-H, 109.1.

Figure 5. Geometry of the $\text{Re}_3\text{O}_6\text{F}_{10}$ ⁻ anion in [Cs][$\text{Re}_3\text{O}_6\text{F}_{10}$]. Thermal ellipsoids are shown at the 50% probability level.

contacts $(2.04(3)-2.108(7)$ Å) is significantly less than 1 (0.90 vu), the shortest Li \cdots O distance (3.44(3) Å) and the next shortest Li \cdots F distance (3.45(3) Å) are too long to be considered as contacts (the corresponding bond valences are less than 0.01); the shortest $Li^{...}$ Re(1) distance is 3.20(3) Å and is also too long to be a contact.

The potassium cation in $[K][Re_2O_4F_7]$ forms eight long contacts with two anions, six contacts with terminal fluorine atoms (2.711(8), 2.728(9), and 2.820(8) Å) and two contacts with oxygen atoms cis to the fluorine bridge $(2.922(9)$ Å). The total bond valence for K^+ is 1.01 vu. The bond valence values for the light atoms are reasonable except for F(3) (1.15 vu), which is slightly overbonded, and $O(2)$ (1.55 vu), which is underbonded. There are two longer contacts with the bridging fluorine (3.168(7) Å).

The cesium ion in $[Cs][Re₃O₆F₁₀]$ forms six $Cs \cdot \cdot \cdot F$ contacts with the terminal fluorine atoms of three anions $(3.013(7)$ -3.122(7) Å) providing a total bond valence of 0.94 vu for Cs- (1). The next longest contacts are also with terminal fluorine atoms, namely, F(2), 3.194(7), and F(2A), 3.145(8) Å, and with one of the bridging fluorine atoms, F(4), 3.190(7) Å.

The central Re atom in all four compounds is coordinated to two oxygen atoms and four fluorine atoms in which the oxygen atoms are cis to one another providing a distorted octahedral environment around the Re atom. The preference for the *cis*dioxo-bonded structure is well documented in other *cis*-dioxo species, namely, isoelectronic $WO_2F_4^{2-36}$ and $O_8O_2F_4^{20}$ the [cis -OsO₂F₃] units in the Os₂O₄F₇⁺⁷ cation, the TcO₂F₄⁻,²⁴

 $MoO₂F₄^{2–},³⁷ VO₂F₄^{3–},³⁸ and ReO₂(OTeF₅)₄⁻¹² anions, the [*cis* MO_2F_4$] units of the infinite chain species $TcO_2F_3^2$, $MO_2F_3^{-39}$ and $VO_2F_3^{-13}$ and $MoO_2F_2(bpy)^{40}$ and $WO_2F_2(bpy)^{41}$ and can be understood in terms of the relative spatial orientations of the strong π -donor oxygen p-orbitals and the empty d_{xy} , d_{xz} , and d_{yz} (approximately $d_{t_{2g}}$) orbitals of the d^0 metal required for $p_{\pi} \rightarrow d_{\pi}$ bonding.²⁴

The $\text{Re}_2\text{O}_4\text{F}_7$ anion consists of two symmetry-related, fluorine-bridged $[ReO₂F₄]$ units, while the structure of the $Re₃O₆F₁₀$ ⁻ anion is an open chain with the central bridging *cis*- $ReO₂F₄$ unit linked to the Re atom of two terminal $ReO₂F₃$ groups by bridging fluorine atoms that are cis to one another. The structure of ReO_2F_3 consists of an infinite chain of *cis*fluorine bridged $[ReO₂F₄]$ units running parallel to the *b*-axis.

The bond lengths of all three anions can be classified into five groups: $Re-O_t$ bonds, trans to $Re-F_b$ bridging bonds; $Re O_c$ bonds, cis to $Re-O_t$ bonds and trans to terminal fluorines, $F_{c,t}$; Re- $F_{c,c}$ bonds, cis to Re- O_t and Re- O_c bonds and trans to one another; terminal $Re-F_{c,t}$ bonds, cis to $Re-O_t$ bonds and trans to $Re-O_c$ bonds; bridging $Re-F_b$ bonds, trans to $Re O_t$ bonds.

The Re-O bond lengths are comparable to those in other pseudooctahedral Re(VII) compounds, i.e., ReOF₅ (1.64(4) Å),⁴² ReO(OTeF₅₎₅ (1.68(1) Å),⁴³ Re₂O₇ (1.65(3)-1.73(3) Å),⁴⁴ $\text{ReO}_2(\text{OTeF}_5)_4^-$ (1.664(9) Å),¹² and $\text{ReO}_3\text{Cl}_3{}^{2-}$ (1.704(17) Å),⁴⁵ and to that of the pentagonal bipyramidal $ReOF_6^-$ anion (1.629- $(14)-1.671(7)$ Å)⁴⁶ and are longer than the Re(VII)-O bonds in the Re₂O₂F₉⁺ cation (1.63(2) $\rm \AA$ ¹⁸ and the Re(VI)–O double
bond in ReQ(OTeE_c), E₂Te(OTeE_c), (1.63(7) $\rm \AA$ ³ ⁴³ In Re₂Q₁E₂bond in ReO(OTeF₅)₄·F₂Te(OTeF₅)₂ (1.63(7) Å).⁴³ In Re₂O₄F₇⁻, the Re–O, bond length 1.753(9) (1.766(7)) Å is found to be the $\text{Re}-\text{O}_c$ bond length 1.753(9) (1.766(7)) Å is found to be considerably longer than the $Re-O_t$ bond length 1.663(12) (1.670(8)) Å. This trend has also been observed in and discussed

- (37) Grandjean, D.; Weiss, R. *Bull. Soc. Chim. Fr.* **1967**, No. 549, 3049.
- (38) Leimku¨hler, M.; Mattes, R. *J. Solid State Chem.* **1986**, *65*, 260.
- (39) Mattes, R.; Müller, G.; Becher, H. J. *Z. Anorg. Allg. Chem.* **1972**, *389*, 177.
- (40) Sens, I.; Stenger, H.; Müller, J.; Dehnicke, K. Z. Anorg. Allg. Chem. **1992**, *610*, 117.
- (41) Arnaudet, L.; Bougon, R.; Bau, R.; Charpin, P.; Isabey, J.; Lance, M.; Nierlich, M.; Vigner, J. *Can. J. Chem.* **1990**, *68*, 507.
- (42) Alekseichuk, I. S.; Ugarov, V. V.; Sokolov, V. B.; Rambidi, N. G. *Zh. Strukt. Khim.* **1981**, *22*, 182.
- (43) Turowsky, L.; Seppelt, K. *Z. Anorg. Allg. Chem.* **1990**, *590*, 37.
- (44) Krebs, B.; Muller, A.; Beyer, H. H. *Inorg. Chem.* **1969**, *8*, 436.
- (45) Lis, T. *Acta Crystallogr.* **1983**, *C39*, 961.
- (46) Giese, S.; Seppelt, K. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 461.

⁽³⁶⁾ Chaminade, J. P.; Moutou, J. M.; Villeneuve, G.; Couzi, M.; Pouchard, M.; Hagenmuller, P. *J. Solid State Chem.* **1986**, *65*, 27.

Table 3. Experimental and Calculated Raman Frequencies, Assignments, and Mode Descriptions for ReO_2F_4 ⁻ $fracuonic (cm-1)$

			$ncquences$ (cm)				
expt ^a				$DZVP2^b$			
Li^c	$Na^{c,d}$	$K^{d,e}$	$Cs^{c,d,f}$	$NCH_3)_4^{c,g}$	LDFT	NLDFT	assgnts C_{2v} point sym
1011 (100)	1011 (100) [1005]	987, s [991]	973 (100) [983]	972 (100)	945 (106)	936(111)	$v_1(A_1)$, $v_{sym}(ReO_2)$
$1004(4)$, sh	$1005(4)$, sh						
$998(2)$, sh	$997(1)$, sh						
	983 (9)						
984 (3)	$981(8)$, sh						
			$949(16)$, sh	947 $(20)^h$			
973 (20)	973 (25) [975]	951, m [958]	939 (16) [946]	939 (19)	920 (203)	917 (200)	$v_9(B_1)$, $v_{as}(ReO_2)$
962(2)	$964 \, (< 1)$						
661 (10)	664 (8) [650]	649, m [645]	649 (5), sh [637]	636(8)	630 (81)	584 (93)	$v_2(A_1), v_{sym}(ReF_{2c,c} + ReF_{2c,t})$
640(1)	648 (1) [624]	606, vvw [609]	634 (8) [608]	$605(1)$, sh	619 (246)	552 (221)	$\nu_{13}(B_2)$, $\nu_{as}(ReF_{2c,c})$
523(1)	525 (1) [507]	525, s [523]	535 (1), br [536]	538(1)	565 (75)	506(43)	$v_3(A_1)$, $v_{sym}(ReF_{2c,c} - ReF_{2c,t})$
	[453]	489, s [488]	$503 (-1)$, br [500]	502(1)	546 (88)	502 (80)	$v_{10}(B_1)$, $v_{as}(ReF_{2c,t})$
406(7)	407(7)	410, m	$405(8)$, sh	$419(2)$, sh	363(8)	361(2)	$\nu_4(A_1), \delta_{sciss}(ReO_2)$
$400(4)$, sh	$392(1)$, sh		398 (11)	402(8)			
			381(3)				
$344(3)$, sh	$340(2)$, sh			$344(4)$, sh			$v_5(A_1)$, sym comb of <i>cis</i> - and
332 (41)	326(12)	325, s	326(28)	318(16)	264(13)	310(18)	<i>trans</i> - $\text{Re}F_2$ scissor
320(6)			318(13)	$309(9)$, sh	273(31)	287(31)	$v_{11}(B_1)$, sym comb of OReF _{ct} sciss
							and $\text{Re}F_{2c,c}$ sciss
	280(1)	278, m	$292(1)$, sh	$293(2)$, sh	333 (34)	334(14)	$v_{14}(B_2), \delta_{rock}(ReF_{2c,c}) + \delta_{rock}(ReO_2)$
253(1)	258(1)		$229(1)$, br	223 (>0)	324(0)	321(0)	$v_7(A_2)$, ReO ₂ + ReF _{2c,t} torsion
245(2)			$203(1)$, br	192(1)	287 (29)	242 (58)	$v_{15}(B_2)$, $\delta_{rock}(ReF_{2c,t})$
	$184(2)$, sh						$\nu_6(A_1)$, antisym comb of <i>cis</i> - and
177(23)	173(5)	180, m	$157(4)$, br	164(2)	183(0)	220(12)	$trans\text{-}Ref2 scissor$
115(1)	97(2)	115 , vvw		145(5)	165(0)	83 (0)	$v_{12}(B_1)$, antisym comb of scissor
110(2)							$ReOF_{c,t}-ReF_{2c,c}$
83 (2)	79(3)			$75 (>0)$, sh	167(0)	109(0)	$v_8(A_2)$, ReF _{2c.t} -ReO ₂ torsion
76(1)				47(2)			lattice vibration

a Spectra recorded on a single randomly orientated crystal in a Lindemann capillary $(Lⁱ⁺)$ and on microcrystalline solids $(Na⁺, Cs⁺, NCH₃)₄$ ⁺) in rotating Pyrex glass capillaries at 23 °C using 514.5-nm excitation. Values in parentheses denote relative Raman intensities. Symbols denote the following: shoulder (sh), broad (br), strong band (s), weak (w), medium (m), and very very weak (vvw). Other weak unassigned peaks were observed for [Li][ReO₂F₄] at 947 (1), 937 (1), and 917 (1) cm⁻¹; [Na][ReO₂F₄] at 945 (<1), 937 (<1), and 914 (<1) cm⁻¹; [Cs][ReO₂F₄] at 766 $($ < 1), 884 (2), 902 (2), and 1010 (\leq 1) cm⁻¹; and [N(CH₃₎₄][ReO₂F₄] at 837 (1) and 779 (2) cm⁻¹. *b* Infrared intensities, in km mol⁻¹, are given in parentheses. *^c* Unbracketed values are from this work. *^d* Values given in brackets are infrared frequencies obtained from ref 26. *^e* Unbracketed values are Raman frequencies and intensities from ref 10 except unbracketed values for *ν*³ and *ν*10, which are infrared frequencies from ref 10.*^f* The spectrum of [Cs][ReO₂F₄] was also recorded in HF solution (1.0 g/mL of HF) in an FEP sample tube with bands at 1002 (100, p), $v_1(A_1)$; 972 (51, dp), *ν*9(B1); 654 (18, dp), *ν*2(A1); 402 (42, p), *ν*4(A1); 327 (41, p), *ν*5(A1); and 293 (24), *ν*4(B2), overlaps with an FEP line, 209 (2), *ν*15(B2), and 168 (5) , $\nu_6(A_1)$ cm⁻¹. Bands arising from the FEP sample tube were observed at 293 (24), 386 (22), 576 (3), 599 (3), 733 (50), and 751 (6) cm⁻¹. The symbols denote the following: polarized (p) and depolarized (dp). ^{*g*} The N(CH₃)₄⁺ cation modes were observed at 374 (4), *v*₈(E); 459 (8), *v*₉(T₂); 742 (8, sh); 752 (13), *ν*3(A1); 1177 (2), *ν*7(E); 1287 (1), *ν*17(T2); 1418 (3), *ν*16(T2); 1450 (1, sh), 1463 (8), 1468 (9), *ν*2(A1); and 2823 (4), 2887 (2, sh), 2929 (8), 2968 (11), 2993 (8), 3041 (16), $\nu_5(E)$ cm⁻¹ (see ref 55). *h* This band overlaps with $\nu_{18}(T_2)$ of N(CH₃)₄⁺.

for the isoelectronic $Os_2O_4F_7^+$ cation $(Os-O_c(1.750 \text{ Å}) \geq Os-O_c(1.750 \text{ Å}))^7$. The difference is presumably enhanced in the O_t (1.676 Å)).⁷ The difference is presumably enhanced in the present structure by significant interaction with K^+ at 2.97(1) $(2.925(8))$ Å and long contacts between F atoms of neighboring anions with the O_c atom, whereas no such interactions exist for the O_t atom. This trend is also observed in $\text{Re}_3\text{O}_6\text{F}_{10}$ ⁻ for the two $Re-O_t$ and $Re-O_c$ bond lengths associated with the terminal rhenium atoms (Table 3), whereas the two central $Re-O_t$ bond lengths are equal within experimental error (3 σ). The $Re-O$ bond lengths are generally shorter than the $Os-O$ bond lengths in the $\text{Os}_2\text{O}_4\text{F}_7^+$ cation.⁷ The d orbitals in all three rhenium anions and polymeric ReO_2F_3 are expected to be less contracted and, hence, more available for $p_{\pi}-d_{\pi}$ interactions between ligand filled 2p orbitals and empty metal d*xy*, d*xz*, and d_{yz} orbitals than they are in the Os(VIII) cation, $Os_2O_4F_7^+$, which contains a more electronegative metal center.

The $Re-F_{c,c}$ and $Re-F_{c,t}$ bond distances of all three anions and of polymeric ReO_2F_3 are generally in good agreement with the terminal Re-F bond distances in ReO₃F (1.859(8) Å),⁴⁷ ReOF₆⁻ (ax, 1.894(11)-1.927(10); eq, 1.862(2)-1.917(7) Å),⁴⁶
ReOF₆ (1.810(7) Å) ⁴² ReO_FF5 (calculated: ax, 1.876; eq. 1.894 ReOF₅ (1.810(7) Å),⁴² ReO₂F₃ (calculated: ax, 1.876; eq, 1.894

(47) Lotspeich, J. F.; Javan, A. *J. Chem. Phys.* **1959**, *31*, 633.

Å),⁷ (ReOF₄·SbF₅)₂ (1.841(15) Å),⁴⁸ and ReOF₄ (1.86(4) Å),¹⁵ except in ReO_2F_4^- where the $\text{Re}-\text{F}_c$, bond distances in ReOE_4 (2.14(4) agreement with the $Re-F_b$ bond distances in $ReOF_4$ (2.14(4) Å; range, $1.99(4) - 2.28(4)$ Å)¹⁵ and in Re₂O₂F₉⁺ (2.060(4) Å).¹⁸
In both ReQ₂E₁- and Re2O₂E₁₂- the Re–E₁, bonds trans to In both ReO_2F_4^- and $\text{Re}_3\text{O}_6\text{F}_{10}^-$, the $\text{Re}-\text{F}_{c,t}$ bonds trans to the oxygen atoms are significantly longer than the $\text{Re}-\text{F}_{c,t}$ bonds the oxygen atoms are significantly longer than the $Re-F_{c,c}$ bonds trans to fluorine atoms, a feature in common with $OsO₂F₄,²⁰$ $TcO_2F_4^{-1}$,²⁴ the [OsO₃F₃], [TcO₂F₄], and [MoOF₅] units of the infinite chain polymers $OsO₃F₂,⁴⁹ TcO₂F₃,⁹$ and MoOF₄,¹⁴ the [TcOF₅] unit of trimeric TcOF₄,¹⁶ and the [*cis*-OsO₂F₄] unit of $Os_2O_4F_7^+$.⁷ The difference has been attributed to the trans influence of the $M-O$ double bonds of the $d⁰$ metal, for which there are significant $p_{\pi} \rightarrow d_{\pi}$ interactions.^{7,9,24} As a consequence, the $M-F_{c,t}$ bond lengths resemble those of $M-F_b$ bonds.

The $Re-F_{c,c}$ and $Re-F_{c,t}$ bonds are also longer and more polar than the corresponding $Os-F_c$ and $Os-F_t$ bonds in the $Os_2O_4F_7^+$ cation⁷ and in neutral $Os_2F_4^{20}$ whereas the Re-O
bonds are somewhat shorter than the Os-O bond lengths of bonds are somewhat shorter than the Os-O bond lengths of the aforementioned Os(VIII) oxide fluorides. The polarities of the metal-fluorine *^σ*-bonds are expected to be more affected

⁽⁴⁸⁾ Fawcett, J.; Holloway, J. H.; Russell, D. R. *J. Chem. Soc., Dalton Trans.* **1981**, 1212.

⁽⁴⁹⁾ Bougon, R.; Buu, B.; Seppelt, K. *Chem. Ber.* **1993**, *126*, 1331.

by charge than the metal-oxygen π -bonds. We also note that the Re-F bond lengths are also influenced by interactions of the F atoms with the M^+ cations (see Computational Results).

The Re-F_b bond distance in Re₂O₄F₇⁻ (2.150(3) Å) is
mparable to those in [Cs][Re₂O₂F₁₂] (2.213(9)-2.148(8) Å) comparable to those in [Cs][Re₃O₆F₁₀] (2.213(9)–2.148(8) Å), and the bridging angle of $143.3(6)$ ° is very similar to that in $[H_3O][W_2O_2F_9]^{19}$ (144(2)^o) and approaches the ideal value for hexagonal close packing of the light atoms (132°) .¹⁷

The Re- F_b bond distances in $\text{Re}_3\text{O}_6\text{F}_{10}$ are asymmetric with average $Re-F_b$ bond distances around the central rhenium, $Re (2)$ $(2.061(8)-2.042(6)$ Å), comparable to those observed in the ReO₂F₄⁻ anion (2.001(6) Å) and in (ReOF₄'SbF₅)₂ (2.079-
(15) Å: Re–F₁ trans to a terminal fluorine⁴⁸ but shorter than (15) Å; Re- F_b trans to a terminal fluorine)⁴⁸ but shorter than those around the terminal rhenium atoms, $Re(1)$ and $Re(3)$ $(2.213(9)-2.148(8)$ Å). The Re-F_b bond lengths associated with the terminal rhenium atoms are similar to those of the $Re-F_b$ bonds $(2.231(15)$ Å) in $(ReOF_4 \cdot Sbf_5)_2$ ⁴⁸ which are also trans
to Re–O bonds. The asymmetry among the Re–F, bond lengths to $Re-O$ bonds. The asymmetry among the $Re-F_b$ bond lengths is reflected in their bond valence values (Table 2). As the number of terminal fluorine atoms varies from 2 for the central rhenium atom to 3 for the terminal rhenium atoms, the rhenium bond valence sum must remain constant at or near 7 so that the bridge must elongate to partially compensate for the bond valence contribution of the additional terminal fluorine on each terminal rhenium atom. The difference between the two bridging bond lengths, $Re(1) - F(4)$ and $Re(3) - F(7)$, is attributed to the long $F(4)\cdots Cs(1)$ contact which serves to elongate the Re(1)-F(4) bond.

The terminal $Re-F_{c,c}$ bond distances in $(ReO_2F_3)_{\infty}$ (average: 1.844(7) Å) are slightly shorter than in [Li][ReO_2F_4], and the Re-F_b bond (average: 2.102(6) Å) is longer than Re-F_{c,c}, as expected for a bridging fluorine. The bridging angle between each ReO_2F_4 unit is 156.0(4)° and is slightly larger than that observed in TcO₂F₃ (148.8(3)°).⁹

The bond valence sum for each rhenium atom is very close to 7 vu in all four structures (Table 2), indicating that all significant contacts to the rhenium atoms have been accounted for. The bond valence values of the Re-O and Re-F in $(ReO₂F₃)_∞$ are very close to the ideal values of 1 for the terminal fluorines, 2 for the oxygens, and 0.5 for the bridging fluorine atom. The differences observed among the anions result from long contacts between selected F or O atoms and the alkali metals which contribute to the bond valence sum to the extent required to fulfill the valence requirements of each Re atom (Table 2). This is supported by the two $Re-F_b-Re$ bond angles in $\text{Re}_3\text{O}_6\text{F}_{10}$, $\text{Re}(1)$ - $\text{Fe}(4)$ - $\text{Re}(2)$ and $\text{Re}(2)$ - $\text{Fe}(7)$ - $\text{Re}(3)$, which differ by almost 40° . The Re(2)-F(7)-Re(3) angle is essentially linear $(178.7(6)°)$, close to the ideal angle for cubic close packing (180°) ,¹⁷ and the corresponding long contact to F(7) is Cs(1)-F(7), 3.749(11) Å, whereas the Re(1)-F(4)- $Re(2)$ angle is $140.5(4)^\circ$, approaching the ideal value for hexagonal close packing (132°) .¹⁷ The Cs(1)-F(4) contact is shorter, 3.189(7) Å, and in this case, the distortion permits a contact between $Cs(1)$ and $F(4)$ which allows the ideal bond valence for F(4) to be achieved.

Although there is considerable variation in the bond lengths around the rhenium atom, the octahedra formed by the light atoms are relatively undistorted, as shown by the average interligand atom distances which are all within the range 2.47- $(1)-2.72(1)$ Å. The average values of the angles in $\text{Re}_2\text{O}_4\text{F}_7^-$,
Re- $\text{O}_2\text{F}_{10}^-$ and $(\text{Re}_2\text{O}_2\text{F}_2)$ are very similar to those found in $\text{Re}_3\text{O}_6\text{F}_{10}$, and $(\text{ReO}_2\text{F}_3)_{\infty}$ are very similar to those found in $ReO₂F₄$ ⁻ (Table 2). The asymmetry of the distortion is also reflected in the angles the light atoms subtend with the rhenium atom(s) and has been rationalized in terms of the VSEPR model

Figure 6. Geometry of ReO₃F(CH₃CN)₂·CH₃CN. Thermal ellipsoids are shown at the 50% probability level.

of molecular geometry⁵⁰ in the infinite chain polymer $TcO_2F_3^9$ and the structurally related $Os_2O_4F_7^+$ cation⁷ and $TcO_2F_4^$ anion.24

ReO3F(CH3CN)2'**CH3CN.** In an attempt to grow crystals of $ReO₂F₃(CH₃CN)$, single crystals of the hydrolysis product, $ReO₃F(CH₃CN)₂·CH₃CN$ (Figure 6), were obtained. The coordination around the Re atom comprises a pseudooctahedral arrangement of three oxygen atoms, a fluorine atom, and two nitrogen-coordinated CH3CN molecules. The oxygen atoms adopt a facial arrangement, which results in the coordination of the fluorine atom and each CH3CN ligand trans to an oxygen atom. The *fac*-isomer is expected to be more stable than the *mer*-isomer because each filled p orbital on an oxygen competes equally for the three available empty $d_{t_{2g}}$ orbitals on the rhenium in the *fac*-isomer rendering it more stable. Similar arguments are used to account for the *cis-*dioxo arrangements described earlier in this paper. Other examples of octahedral oxide halide anions that have facial arrangements include $MoO₃F₃^{3–,51}$ $\text{ReO}_3\text{Cl}_3^2$ ⁻,⁴⁵ and OsO_3F_3 ⁻.⁵²

The Re atom is found to lie below the $[O(1), O(1A), N(1),$ $N(1A)$] plane by 0.054 Å toward $F(1)$ as a result of the greater repulsion between the larger $Re=O$ bond pair domain and the bond pair domains of the neighboring ligands. The lengths of the Re-O bonds trans to the CH₃CN ligands $(1.704(3)$ Å) are comparable to other $Re(VII)$ – O bonds. As expected, the Re – O_t bond trans to the F atom is significantly longer (1.801(6) Å) than the $Re-O_c$ bond and is even longer than the $Re-O_c$ bond in [K][Re₂O₄F₇]. The Re-F(1) bond length (1.883(5) Å) is also affected by the trans influence of the oxo ligand and is intermediate between the $Re-F_{c,c}$ and $Re-F_{c,t}$ bond lengths observed in the related oxo compounds (V*ide supra*). The Re-^N bond length, as well as the geometric parameters for $CH₃CN$, is similar to other d^0 transition metal complexes with CH_3CN (e.g., $[ReO_2(CH_3CN)_3][ReO_4]$,⁵³ Re-N, 2.267(2)-2.289(3) Å, and (*η*²-CH₃CO₂)ReO₃(CH₃CN), Re-N, 2.331(5) Å, N-C, 1.111(8) Å, and C-C, 1.452(9) Å).⁵³ The O-Re-O angle $(104.8(3)°)$ is significantly larger than 90° while the N-Re-N $(77.9(2)°)$ angle is smaller and is presumably the result of the larger oxygen bond pair domains.

When viewed along the *b*-axis, the extended structure of $ReO₃F(CH₃CN)₂$ shows that within an *ab*-plane each molecule

- (51) Griffith, W. P. *J. Chem. Soc. A* **1969**, 211.
- (52) Jones, P. J.; Levason, W.; Tajik, M. *J. Fluorine Chem.* **1984**, *25*, 195.
- (53) Herrmann, W. A.; Roesky, P. W.; Kühn, F. E.; Elison, M.; Artus, G.; Scherer, W.; Romao, C. C.; Lopes, A.; Basset, J.-M. *Inorg. Chem.* **1995**, *34*, 4701.

⁽⁵⁰⁾ Gillespie, R. J.; Hargittai, I. *The VSEPR Model of Molecular Geometry*; Allyn and Bacon: Boston, MA, 1991.

Figure 7. Raman spectra of microcrystalline (a) $[Li][ReO_2F_4]$, (b) $[Na]$ - $[ReO₂F₄]$, (c) $[Cs][ReO₂F₄]$, and (d) the low-frequency range of [N(CH₃)₄][ReO₂F₄] recorded in Pyrex capillaries at 22 °C using 514.5nm excitation.

is rotated 90° with respect to its nearest neighbor, and each molecule is rotated 180° relative to its nearest neighbor in an adjacent plane. This arrangement results in large channels that run in the *b*-direction and which contain disordered CH3CN solvent molecules.

Raman Spectroscopy and Vibrational Assignments of [M]- $[ReO_2F_4]$ $[M = Li, Na, Cs, N(CH_3)_4]$, $(ReO_2F_3)_{\infty}$, ReO_2F_3 -**(CH3CN), [K][Re2O4F7], [K][Re2O4F7]**'**2ReO2F3, and [Cs]-** $[Re₃O₆F₁₀]$. The spectra are reproduced in Figures 7-9, and the assignments are summarized in Tables $3-5$ along with their theoretical values. With the exception of $[Cs][Re₃O₆F₁₀]$ and $(ReO₂F₃)_{\infty}$, the assignments of the observed Raman vibrational frequencies were aided by LDFT and NLDFT calculations. The experimental and calculated vibrational frequencies for monomeric ReO_2F_3 and their assignments have been previously $discussed⁷$ and were also used to aid in the vibrational assignments of the related anions, adducts, and $(ReO₂F₃)_∞$.

Figure 8. Raman spectra of microcrystalline (a) [K][Re₂O₄F₇][•] $2\text{Re}O_2F_3$, (b) $\text{Re}O_2F_3$, and (c) $[Cs][\text{Re}_3O_6F_{10}]$ recorded in Pyrex capillaries at 22 °C using 514.5-nm excitation.

Figure 9. Raman spectrum (low-frequency range) of microcrystalline ReO2F3(CH3CN) recorded in a Pyrex capillary at 23 °C using 514.5 nm excitation.

Vibrational activities of the anions in [Li][ReO₂F₄], [K]- $[Re_2O_4F_7]$, $[K][Re_2O_4F_7]$ ²Re O_2F_3 , and $[Cs][Re_3O_6F_{10}]$ and of $(ReO_2F_3)_{\infty}$ in $[K][Re_2O_4F_7]$ \cdot 2ReO₂F₃ have been determined in their respective unit cells by correlation of the gas-phase symmetries to the crystallographic anion site and unit cell symmetries.⁵⁴ The ReO₂F₄⁻ anion (C_{2v}) , when correlated with the anion site symmetry C_{2v} and the crystal symmetry D_{2d} , is predicted to have all modes Raman and infrared active with only $v_1 - v_6$ split into A₁ and B₂ components in the Raman spectrum. The factor-group analysis for ReO_2F_4 ⁻ is valid for both the $Li⁺$ and Na⁺ salts, which were shown to be isostruc-

⁽⁵⁴⁾ Carter, R. J. *J. Chem. Educ.* **1971**, *48*, 297 and references therein.

Table 4. Experimental Raman Frequencies, Assignments, Mode Descriptions for [K][Re₂O₄F₇], [K][Re₂O₄F₇]·2ReO₂F₃, [Cs][Re₃O₆F₁₀], and
Polymeric ReO₂F₃ and Calculated Frequencies for Re₂O₄F₇⁻

Table 4 (Continued)

^a Values in parentheses denote relative Raman intensities. Symbols denote the following: shoulder (sh) and broad (br). *^b* Spectrum recorded on a randomly orientated single crystal in a Lindemann glass capillary at 22 °C using 514.5-nm excitation. *^c* Values in square brackets denote coincident bands or bands which cannot be uniquely assigned to either $Re_2O_4F_7^-$ or $(ReO_2F_3)_{\infty}$ in $[K][Re_2O_4F_7]$ ⁻²Re O_2F_3 . A broad, unassigned peak was also observed at 800 (<1) cm⁻¹ d^t Infrared intensities in km mo observed at 800 (<1) cm⁻¹. *^d* Infrared intensities, in km mol⁻¹, are given in parentheses. *^e* The labels Re_t and Re_c refer to the terminal and central and central representing to the secondary of ResOcE₄ f rhenium atoms, respectively, of Re₃O₆F₁₀⁻. *f* Where possible, frequency values for the central Re_cO₂F₄-group are aligned with those of the Re_cO₂F₄units in $(ReO₂F₃)_∞$ and frequency values for the terminal Re_tO₂F₃-groups are aligned with those of the Re₂O₄F₇⁻ anion. *g* Several weak, unassigned peaks were also observed at 947 (<1), 934 (<1), 923 (<1), 862 (<1), 822 (<1), and 793 (<1) cm-1. *^h* Spectrum recorded on microcrystalline solid in a Pyrex capillary at 22 °C using 514.5-nm excitation. Several weak, unassigned peaks were also observed at 957 (<1) and 952 (<1) cm⁻¹.
 $\frac{i \delta (Q_{\text{R-B}} - Q_{\text{R-B}})}{i \delta (Q_{\text{R-B}} + Q_{\text{R-B}})}$ $i \delta$ (O_tRe_tF_b - O_tRe_t^T_b). $j \delta$ (O_tRe_tF_b + O_tRe_t^T_b).

Table 5. Experimental and Calculated Raman Frequencies, Assignments, and Mode Descriptions for $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$

	frequencies $(cm-1)$		
solid ^{a,b}	sol $n^{a,c}$	$calc}$	assgnts
3016(3)	e	3082(3)	$v_{\rm as}(CH_3)$
		3077(3)	$v_{as}(CH_3)$
2947 (33)	e	2989 (5)	$\nu_{sym}(CH_3)$
2323 (22)	2324 (14), p	2373 (113)	$\nu(CN)$
2297 (18)	e		
1412(1)	e	1387 (19)	$\delta_{as}(CH_3)$
	e	1381 (20)	$\delta_{as}(CH_3)$
1367 (6)	$1366(7)$, sh, p	1340 (15)	$\delta_{sym}(CH_3)$
	$1041(1)$, dp	1028 (118)	$\nu(\text{ReO}_t) + \nu(\text{ReO}_c)$
1001 (100)	$1002(100)$, p	1006 (117)	$\nu(\text{ReO}_t) - \nu(\text{ReO}_c)$ + $\delta_{\text{rock}}(CH_3)$
$974(2)$, sh	$974(4)$, sh, p	987 (17)	$\delta_{\text{rock}}(CH_3) + \nu(\text{ReO}_c) +$ δ (CCN)
960 (26)	$962(25)$, p	976 (19)	$\nu(\text{ReO}_c) - \nu(\text{ReN}) +$ $\nu(CC) + \delta_{rock}(CH_3)$
944 (13)	943 (15), p	986 (17)	$\delta_{rock}(CH_3) + \nu(CC)$
$679(5)$, sh		676 (53)	$\nu_{sym}(ReF_{2c,c}) + \nu(ReF_{c,t})$
659 (15)	$660(22)$, p	667 (155)	$\nu(\text{Re}F_{c,t}) - \nu(\text{Re}F_{c,c})$
572(3)	571 (2), dp	560 (57)	$\nu(\text{Re}F_{c,t}) - \nu(\text{Re}F_{2c,c})$
423(1)		449 (14)	$\delta(\text{ReO}_2) + \delta(\text{CNRe})$
408(4)	$406(3)$, sh, dp	408(6)	$\delta(\text{ReO}_2) - \delta(\text{CNRe})$
389 (30)	388 (16), p	401(8)	δ (O _t ReN) – δ (CNRe)
366(3)	\boldsymbol{e}	383(3)	δ (O _t ReF _{c,c}) + δ (CNRe)
340(15)	341 (7), dp	347(1)	$\delta(O_cReF_{c,c}) + \delta(F_{c,c}ReF_{c,t})$
307(24)	307 (10), dp	322 (16)	$\delta(F_{c,c}ReO_t) + \delta(F_{c,t}ReF_{c,c}) +$ δ (O _c ReN)
292(4) 278 (2), sh	$290(2)$, p		
272(4)	$272(3)$, p	262 (17)	$\delta(F_{c,c}$ ReO _c $) + \delta(F_{c,c}$ ReO _c $) -$ δ (F _{ct} ReN)
257(2) 252(2)	$253(2)$, dp	257 (23)	δ (F _{c.c} ReN) + δ (OcReF _{c.t})
		221(6)	$\nu(\text{ReN}) + \delta(F_{c,c}\text{ReF}_{c,c})$ toward $F_{c,t}$
		212(10)	$\nu(\text{ReN}) + \delta(F_{c,c}\text{Re}F_{c,c})$ toward $F_{c,t}$
$188(8)$, sh		202(5)	$\delta(F_{c,c}ReF_{c,c})$ toward N
182 (10), sh		183(2)	$\delta(NReF_{c,c}-NReF_{c,c})$
174(11)	$171(7)$, dp	130(1)	δ (CH ₃)–N–(ReO ₂ F ₃) plane 1
$154 (\leq 1)$		114(2)	δ (CH ₃)–N–(ReO ₂ F ₃) plane 2
90(23)		81(6)	τ (CH ₃)

^a Values in parentheses denote relative intensities. Symbols denote the following: shoulder (sh), broad (br), polarized (p), and depolarized (dp). *^b* Spectrum recorded on microcrystalline solid in a rotating Pyrex capillary at 23 °C using 514.5-nm excitation. *^c* Spectrum recorded in CH3CN solution in 3-mm o.d. Pyrex tube at 23 °C using 514.5-nm excitation. Frequency values observed for $CH₃CN$ solvent (23 °C): 3004 (3), *^ν*5(E); 2945 (100), *^ν*1(A1); 2735 (2), 2*ν*3; 2294 (4), *^ν*³ ⁺ *^ν*4; 2254 (67), *ν*₂(A₁); 1447 (<1), *ν*₆(E); 1375 (3), *ν*₃(A₁); 918 (16), *ν*₄(A₁); 379 (5), $\nu_8(E)$. *d* Infrared intensities, in kmol⁻¹, are given in parentheses. *^e* Obscured by a peak from CH3CN solvent (see footnote *c*).

tural. All modes are both Raman and infrared active for $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ (*C*₂), but no factor-group splitting is predicted when correlated to the anion site symmetry C_2 and the unit cell symmetry C_{2h} of [K][Re₂O₄F₇]. All the bands are Raman and infrared active and are expected to be split in both the Raman $(\nu_1 - \nu_{18}$ split into two A components) and infrared spectra (ν_{19} -

 v_{33} split into two B components) when correlated to the anion site symmetry C_2 and the unit cell symmetry C_2 of [K]- $[Re₂O₄F₇][•]2ReO₂F₃$. Correlation of the free molecule symmetry of $(ReO₂F₃)_{\infty} (C_s)$ to the molecule site symmetry $(C₁)$ and the unit cell symmetry (C_2) of $[K][Re_2O_4F_7]$ ² ReO_2F_3 reveals that all the bands are expected to be active and split in both the Raman and infrared spectra into A and B components. Correlation of the free anion symmetry of $\text{Re}_3\text{O}_6\text{F}_{10}$ ⁻ (C_{2v}) to the anion site symmetry (C_1) and the unit cell symmetry (C_i) reveals that all of the bands are Raman and infrared active but are not factor-group split.

 $[M][ReO₂F₄] [M = Li, Na, Cs, N(CH₃)₄].$ Assignments were based on a *cis*-ReO₂F₄⁻ anion having $C_{2\nu}$ symmetry (see X-ray Crystal Structure of Li^{+} ReO₂F₄⁻ and structure I). All 15 vibrational modes having the symmetries $6A_1 + 2A_2 + 4B_1 +$ $3B_2$ (the [O_c, O_c, Re, F_{c,t}, F_{c,t}] plane is taken as the $\sigma_v(xz)$ plane with the *z*-axis as the principal axis) are expected to be Raman and infrared active. Assignments were also made by comparison with $TcO_2F_4^{-24}$ and $OsO_2F_4^{20}$ for which there are also calculated frequencies.

The present assignments for the [M][ReO₂F₄] [M = Li, Na, $Cs, N(CH₃)₄$ are in agreement with those reported by Yagodin et al.,²⁶ who only reported the six highest infrared frequencies for the Na⁺, K⁺, Rb⁺, and Cs⁺ salts. Kuhlmann and Sawodny¹⁰ reported 14 vibrational modes from a Raman and infrared vibrational study of $[K][ReO_2F_4]$, and their assignments for the first seven modes, $v_1 - v_4$, v_9 , v_{12} , and v_{13} , agree with the present assignments. The low-frequency modes have been reassigned in this work and are reported in Table 4. Since no polarization measurements have been reported previously for ReO_2F_4^- , the present work also reports polarization measurements for the cesium salt in HF solution.

The splittings observed for the A₁ modes, v_1 , v_4 , v_5 , and v_6 , of the $Li⁺$ and Na⁺ salts are in agreement with the factor-group analyses. The additional splitting observed for $v_1(A_1)$ likely results from a Fermi resonance between a combination of the totally symmetric $\delta(\text{Re}F_{2c,c}), \nu_2(A_1)$, and $\nu_{sym}(\text{Re}F_{2c,c}), \nu_4(A_1)$, modes with the symmetric ReO_2 stretching mode $v_1(A_1)$ (Li⁺, $332 \text{ cm}^{-1} + 661 \text{ cm}^{-1} = 993 \text{ cm}^{-1}$; Na⁺, 326 cm⁻¹ + 664 $cm^{-1} = 990 cm^{-1}$) giving rise to two groups of bands centered at 1008 (Li^+ and Na^+) and at 991 (Li^+) and 986 (Na^+) cm⁻¹. These lines are each factor-group split into an A_1 and a B_2 component. Fermi resonance is confirmed by the observation of only two bands at 972 and 1002 cm^{-1} for $[Cs][\text{Re}O_2F_4]$ in HF solution.

There is a strong dependency of the frequencies on the polarizing strength of the cation with the frequencies decreasing from $Li⁺$ to $N(CH₃)₄⁺$. A significant increase in frequencies is noted in going from $[Cs][ReO_2F_4]$ solid to $[Cs][ReO_2F_4]$ in HF solution and likely arises from hydrogen bonding interactions. The solvent dependence of the frequencies is consistent with the exchange behavior observed in the 19F NMR spectrum for a solution of $[Cs][ReO₂F₄]$ in HF (see Characterization by NMR Spectroscopy).

 K^+ **Re₂O₄F₇⁻. Vibrational assignments for the Re₂O₄F₇⁻** anion in [K][Re₂O₄F₇] and in [K][Re₂O₄F₇] \cdot 2ReO₂F₃ were made under C_2 symmetry (structure III) for which a total of 33 vibrational modes are predicted $(18A + 15B)$, all of which are Raman and infrared active. Assignments of the anion modes were also made by comparison with the isoelectronic $Os_2O_4F_7^+$ cation.⁷ The spectrum of $[K][ReO_2F_7]$ could only be obtained for the single, randomly orientated crystal used in the X-ray structure determination.

The three Re-O stretches appear at significantly higher frequencies than in the $[K][ReO_2F_4]$ salt, which is consistent with a decrease in the polarity of the Re-O bonds resulting from the greater delocalization of the negative charge afforded by the larger $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ anion. The broad band at 554 cm⁻¹ is tentatively assigned to v_{as} (ReF_bRe'), whereas the corresponding mode in $Os_2O_4F_7^{+7}$ was assigned to a very broad band at 492 (AsF_6^-) and 495 $(Sb_2F_{11}^-)$ cm⁻¹ and is presumed to be lower in the isoelectronic osmium cation because of the higher electronegativity of Os(VIII).

ReO₂F₃. Assignments for $(ReO₂F₃)_{\infty}$ and for $(ReO₂F₃)_{\infty}$ in $[K][Re₂O₄F₇]²ReO₂F₃$ are primarily based on those for $(TcO_2F_3)_{\infty}$,⁹ monomeric ReO₂F₃,⁶ and ReO₂F₄⁻ in which the environment around Re is very similar to that in $(ReO₂F₃)_∞$. Moreover, the $F_{c,t}$ bond lengths in $\text{Re}O_2F_4^-$ are very similar to the $Re-F_b$ bond lengths in the polymer. Coupling between different ReO_2F_4 units in the chains was initially assumed to be weak. For an uncoupled cis -ReO₂F₄ unit of C_{2v} point symmetry, all 15 vibrational modes having the symmetries $6A_1$ $+ 2A_2 + 4B_1 + 3B_2$, with the [O_t, O_t, Re, F_b, F_b] plane taken as the $\sigma(xz)$ plane (structure IV), are expected to be Raman and

infrared active. Additional modes associated with $Re-F_b-Re$ bridges are not accounted for in this analysis. Their expected low frequencies and intensities make their observation and assignment tentative.

The splittings observed for several bands in the spectrum of $(ReO₂F₃)_∞$ in [K][Re₂O₄F₇] \cdot 2ReO₂F₃ are in agreement with the factor-group analysis which takes into account couplings between adjacent (ReO_2F_3). chains in the crystal lattice. A further splitting is observed for the high-frequency band centered at 1021 cm⁻¹ and likely arises from coupling of adjacent $ReO₂F₄$ units within the polymer chains. The majority of the bands are split in the spectrum of $(ReO₂F₃)_{\infty}$, for which, in the absence of a crystal structure, no factor-group analysis could be performed, but it is reasonable to assume that this splitting arises from coupling of ReO_2F_4 units of adjacent polymer chains in the unit cell.

The value observed for the ReO_2 scissoring mode, 412 cm⁻¹, is similar to the one in ReO_2F_4 ⁻ (N(CH₃)₄⁺: 401, 419 cm⁻¹) and is significantly different from that of monomeric ReO_2F_3 .⁶ The difference is likely related to the difference in the O-Re-O angles, with $\delta_{sciss}(ReO_2)$ occurring at lower frequency in the $ReO₂F₃$ monomer, where the O-Re-O angle is more open (110°) than in $(ReO_2F_3)_{\infty}$ (102°).

[Cs][$\text{Re}_3\text{O}_6\text{F}_{10}$]. Assignments are based on those for $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ and (ReO₂F₃)∞. The Re₃O₆F₁₀⁻ anion contains a C_{2v} ReO₂F₄ unit bridging two ReO_2F_3 units, each having C_s symmetry and not related to each other by crystal symmetry (structure V). The

symmetry of the anion is C_1 , with a total of 53 A modes which are Raman and infrared active in the fully coupled system. In general, the frequencies are found to be higher than those of the corresponding modes in ReO_2F_4 ⁻ and $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ and is attributed to the greater charge delocalization in the $\text{Re}_3\text{O}_6\text{F}_{10}^$ anion. Moreover, the vibrational modes associated with the central rhenium atom occur at higher frequencies than those associated with the terminal rhenium atoms and are consistent with more localization of the anion charge on the terminal $ReO₂F₃$ groups (see Computational Results).

ReO2F3(CH3CN). The Raman spectrum was assigned on the basis of the energy-minimized structure determined by LDFT calculations (structure II), solution polarization measurements, and comparison with the Raman spectra of $CH₃CN₅₅$ monomeric ReO_2F_3 ,⁶ ReO_2F_4 ⁻, and $\text{TeO}_2\text{F}_3(\text{CH}_3\text{CN})$.²⁴ The adduct is expected to possess C_s symmetry for which 30 Raman and infrared active vibrational modes are predicted $(19A' + 11A'')$.

The bands occurring at $944-974$ and 1001 cm⁻¹ are similar to the asymmetric and symmetric ReO_2 stretching modes observed in related *cis-*dioxorhenium anions discussed in this paper. Their mode descriptions are complicated by coupling with the C-C and $Re-N$ stretches as well as with CCN and CH₃ deformations. These bands appear at low frequency with respect to the corresponding bands in monomeric ReO_2F_3^6 and at high frequency with respect to that of $[N(CH_3)_4][ReO_2F_4]$, which is consistent with the lower base strength of CH3CN with respect to that of F^- ion. However, LDFT calculations for $TcO_2F_3CH_3$ - CN ²⁴ show that the antisymmetric TcF_{2c,c} stretch is strongly coupled with the $TcF_{c,t}$ stretch. The ReO_2 bending mode is assigned to the strong band at 389 cm^{-1} , which is consistent with what is observed in the model compounds.

The vibrational modes of complexed $CH₃CN$ above 1350 cm^{-1} and that at 944 cm^{-1} are readily assigned by comparison with those of free $CH₃CN$ (Table 5, footnote *c*) and are similar to those observed for $TcO_2F_3CH_3CN^{24}$ and other metal complexes.⁵⁶ The bands assigned at $\nu_5(E)$, 3004; $\nu_1(A_1)$, 2945; $\nu_2(A_1)$, 2254; $\nu_6(E)$, 1447; $\nu_3(A_1)$, 1375; and $\nu_4(A_1)$, 918 cm⁻¹, in free CH3CN are shifted to 3016, 2947, 2297/2323, 1412, 1367, and 944 cm⁻¹, respectively, in $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$ and are generally in accord with frequency shifts observed in metal cation complexes, such as $M(CH_3CN)_6^{2+}$ (M = Sr, Ca, Mn, Fe Co, Ni)⁵⁶ Fe, Co, Ni).56

Computational Results. Density functional theory has been shown to be a good method for predicting the geometries and vibrational spectra for transition metal compounds.57 In our previous studies on osmium and technetium oxide fluorides, ^{20,24} we found that the local level yielded better structural and vibrational predictions than did calculations with gradient (nonlocal) corrections.

Molecular Geometries. The molecular geometries were initially optimized at the local density functional theory (LDFT)

- (55) (a) Gu¨nthard, H. H.; Kova´ts, E. *Hel*V*. Chim. Acta* **¹⁹⁵²**, *¹⁴⁵*, 1191. (b) Yamadera, R.; Kremm, S. *Spectrochim. Acta, Part A* **1968**, *24*, 1677.
- (56) Reedijk, J.; Zuur, A. P.; Groeneveld, W. L. *Rec. Tra*V*. Chim.* **¹⁹⁶⁷**, *86*, 1127.
- (57) Sosa, C.; Andzelm, J.; Elkin, B. C.; Wimmer, E.; Dobbs, K. D.; Dixon, D. A. *J. Phys. Chem.* **1992**, *96*, 6630.

level with a polarized double-*ú* basis set (DZVP) (Table 2). Unless specified, the results discussed are at the LDFT level. In general, and as previously observed for related systems, the NLDFT values for the geometrical parameters are longer than the LDFT values.

The calculated geometric parameters for monomeric $\text{ReO}_2\text{F}_3{}^8$ (structure VI) have been reported previously along with those

of the isoelectronic $O₈O₂F₃⁺$ cation. The structure was predicted to have C_{2v} point symmetry⁵⁸ with the two oxygen atoms and one fluorine atom (F_{eq}) in the equatorial plane of the trigonal bipyramid. These calculated values can now be compared with the observed values for ReO_2F_4^- and those of $(\text{ReO}_2\text{F}_3)_{\infty}$. The $Re-O$ bond distance in $ReO₂F₃$ is predicted to be 1.705 Å in contrast with the shorter experimental Re-O bond distances in ReO_2F_4 ⁻ (1.678(8) Å) and (ReO_2F_3)_∞ (1.676(8) Å). Unlike monomeric TcO_2F_3 , where the $Tc-F_{eq}$ and $Tc-F_{ax}$ bond lengths were predicted to be the same,²⁴ the $\text{Re}-\text{F}_{eq}$ bond (1.894 Å) in $ReO₂F₃$ is predicted to be longer than the $Re-F_{ax}$ bonds (1.876) Å). The Re- F_{eq} bond is comparable to the Re- $F_{c,c}$ bonds in $ReQ_2F_4^-$ (1.867(8) Å) and in (ReQ_2F_3). (1.834(7) and 1.854-(7) Å) while, as expected, the $Re-F_{ax}$ bond is found to be shorter than the Re- $F_{c,t}$ and Re- F_b bond distances in ReO₂F₄⁻ (2.002-
(7) \AA) and in (ReO₂F₄) (2.102(6) \AA) The O-Re-O and F (7) Å) and in $(ReO_2F_3)_{\infty}$ (2.102(6) Å). The O-Re-O and F_{ax} $Re-F_{ax}$ angles differ from the ideal 120 and 180 $^{\circ}$ angles by 10 and 22°, respectively, showing that the O-Re-O angle is closing down and that the axial fluorines are bent away from the oxygens, toward the equatorial fluorine as in ReO_2F_4 ⁻ and $(ReO_2F_3)_{\infty}$. The F_{eq} -Re- F_{ax} , O-Re- F_{ax} , and O-Re- F_{eq} angle values are the averages of their counterparts in the experimental structures of ReO_2F_4 ⁻ and $(\text{ReO}_2\text{F}_3)_{\infty}$. Attempts to optimize the D_{3h} structure of monomeric ReO_2F_3 led to the C_{2v} structure. An approximately optimized D_{3h} structure with an Re –O bond length of 1.78 Å and an Re-F bond length of 1.85 Å is 54.5 kcal mol⁻¹ above the C_{2v} structure at the LDFT level.

The lowest energy structure for ReO_2F_4 ⁻ is the *cis*-dioxo structure (C_{2v} point symmetry) and is 32.2 kcal mol⁻¹ more stable than the *trans-*dioxo structure (*D*⁴*^h* point symmetry) which has three imaginary frequencies. The calculated Re-O bond distance (1.913 Å) is 0.06 Å longer than that of ReO_2F_4 ⁻ in the crystal structure. A similar difference has been found for the TcO_2F_4 ⁻ anion, and the origin of the difference has been previously discussed.²⁴ The calculated $Re-F_{c,t}$ bond lengths (1.965 Å) are longer than the Re $-F_{c,c}$ bond lengths (1.913 Å) following the experimental trend, even though the calculated values for the $\text{Re} - \text{F}_{c,c}$ and $\text{Re} - \text{F}_{c,t}$ bond lengths are 0.046 Å longer and 0.037 Å shorter, respectively, than the experimental values. This suggests that there is a strong interaction between $Li⁺$ and the F_{c,t} atoms trans to the O atoms in the crystal. As expected for a structure to which a fluoride ion has been added, all Re-F bond distances are longer than those in monomeric $ReO₂F₃$. There is good agreement between the calculated and the observed angles, and as noted for $TcO_2F_4^-$, the largest differences occur for the angles involving the most ionic bonds, i.e., the fluorines trans to the oxygens, namely, $F_{c,t}-Re-F_{c,t}$ and $F_{c,t}-Re-F_{c,c}$.

As previously observed for the $TcO_2F_3(CH_3CN)$ adduct,²⁴ the energy-minimized structure for ReO2F3(CH3CN) is a *cis-*dioxo arrangement in which the CH3CN molecule is coordinated trans to an oxygen. The geometrical parameters calculated for the $ReO₂F₃(CH₃CN)$ adduct are very similar to those observed for $(ReO₂F₃)_{\infty}$ with few changes. The bond distances for the Re-O bonds differ by 0.008 Å with the $Re-O_t$ bond trans to the $Re-N$ bond being shorter. The $Re-F_{c,t}$ bond trans to $Re-O_c$ is significantly lengthened (1.949 Å) when compared to the other $Re-F_{c,c}$ bonds (1.872 and 1.880 Å). The CH₃CN moiety is essentially the same as that of free CH₃CN with C-C, 1.440 Å, and C-N, 1.164 Å. The long Re-N bond (2.316 Å) is consistent with a weaker donor-acceptor type interaction as compared to the more ionic interactions of O and F with Re. A similar trend was calculated for the Tc $-N$ bond in TcO₂F₃(CH₃-CN).²⁴ The O_c-Re-O_t angle decreases by about 3° and one $F_{c,t}-Re-O_c$ angle (154.3°) decreases by about 15° with the other $F_{c,t}-Re-O_t$ angle (93.4°) increasing by a similar amount relative to (ReO_2F_3)∞. The $\text{F}_{c,c}-\text{Re}-\text{F}_{c,c}$ angle decreases by only 1°.

The calculated geometry for $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ shows some significant differences when compared to the experimental crystal structure. As expected, the calculated $Re-O_t$ bond is longer than the experimental value by 0.05 Å. However, the calculated value for the $Re-O_c$ bond is shorter than the experimental one by 0.03 Å suggesting that the K^+ counterion is strongly interacting with these oxygens. The calculated value for the $Re-F_{c,c}$ bond is characteristic of other Re(VII)-F bond lengths, on the order of 1.9 Å, and is \sim 0.1 Å longer than the experimental Re(1)– F(3) value (1.783(8) Å; see X-ray Crystal Structures). Within the calculated $Re-F_{c,c}$ and $Re-F_{c,t}$ bonds, the expected trend, $Re-F_{c,c}$ < $Re-F_{c,t}$, is followed. The calculated value for the $Re-F_b$ distance (2.125 Å) is in good agreement with the experimental value of 2.155 Å indicating that the bridging fluoride ion has a significant covalent interaction with both Re atoms. The calculated angles are in reasonable agreement with the experimental values except for the $Re-F_b-Re$ angle where the calculated value is near linear (179.8°) whereas the experimental value is 143.3°. This discrepancy most likely arises from the fact that within the crystal the anions and cations are not isolated but, rather, there are significant electrostatic interactions between the cation and various O and F atoms of the anion. This could easily lead to a distortion of the bridge bond angle to maximize these interactions.

The calculated geometry for $\text{Re}_3\text{O}_6\text{F}_{10}$ is in very good agreement with the experimental crystal structure. As observed for all other related systems, the calculated Re-O and Re-F bond distances are slightly longer than the experimental values, except for $Re(1) - F(4)$ and $Re(3) - F(8)$. The largest discrepancies for the angles are observed for the two $Re-F_b-Re$ angles which are found to be larger by 37° (Re(1)-F(4)-Re(2)) and smaller by 10° (Re(2)-F(7)-Re(3)), respectively. As noted for $Re₂O₄F₇⁻$, these discrepancies most likely reflect the fact that the anion is not isolated in the crystal structure. This point is substantiated by the observation that the largest discrepancies occur for the $Re(1)-F(4)-Re(2)$ bridge angle which is most affected by anion-cation contacts (see X-ray Crystal Structures).

Charges, Mayer Bond Valencies, and Mayer Bond Orders. A complete listing of the calculated charges, valencies, and bond orders is given in Table S10 (Supporting Information). The DZVP2 charges show the rhenium of the ReO_2F_3 monomer to have a charge of $+1.94$ e and negative charges of about -0.40 e on the oxygen and fluorine atoms. The Mayer valencies⁵⁹ show a valency of 5.95 for rhenium with valencies of 2.35 for oxygen

⁽⁵⁸⁾ The nomenclature used for describing the equatorial fluorine (F_{eq}) and axial fluorine (F_{ax}) is identical to that used in ref 8.

and 1.03 and 1.08 for the F_{eq} and F_{ax} atoms, respectively. The Mayer bond order is 1.81 for the Re-O bond showing that this bond is essentially a double bond whereas the Re-F bond orders, 0.77 and 0.79, indicate that these bonds have significant ionic characters.

For ReO_2F_4^- , the addition of a fluoride ion only slightly diminishes the charge on rhenium to $+1.89$ e. Most of the additional negative charge is equally distributed among the oxygen and fluorine atoms with charges ranging from -0.46 to -0.50 e. When compared to monomeric ReO_2F_3 ,⁷ the Mayer
valency at rhenium increases slightly to 6.09, at the DZVP2 valency at rhenium increases slightly to 6.09, at the DZVP2/ PP level. A much larger increase was observed from $TcO₂F₃$ (6.27) to TcO₂F₄⁻ $(6.66).^{24}$ The smaller change for the rhenium compound is consistent with the fact that Re is larger than Tc and hence would be less affected by the number of directly bonded ligands. The empirical bond valency of 7.09 derived using the method of Brown³³ (Table 2) is not in good agreement with the more rigorously derived and calculated Mayer value. The oxygen and fluorine valencies decrease somewhat in the anion to 2.27 (Re-O), 0.93 (Re- $F_{c,c}$), and 0.86 (Re- $F_{c,t}$). The Mayer bond orders also decrease in going from the ReO_2F_3 monomer⁷ to the $ReO₂F₄⁻$ anion with bond orders of 1.73 (Re-
O) and 0.63 (Re-F) and 0.67 (Re-F) O) and 0.63 (Re- $F_{c,t}$) and 0.67 (Re- $F_{c,c}$).

The charges for the $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$ adduct show some changes from that of monomeric ReO_2F_3 with the rhenium having less positive charge, $+1.88$ e as compared to $+1.94$ e in ReO_2 F₃. The valency at rhenium increases from 5.95 in $ReO₂F₃$ to 6.03 in the adduct showing a weak interaction with the nitrogen atom that is consistent with the Mayer bond order of 0.23 for the Re-N bond. All of this behavior is similar to that found for the analogous Tc species.²⁴

For $\text{Re}_2\text{O}_4\text{F}_7$ and $\text{Re}_3\text{O}_6\text{F}_{10}$ (values related to the trimer are given in parentheses), calculations show that $\frac{2}{3}$ of the charge is localized on the bridging fluorine atom(s). The rhenium atom charge is essentially unchanged (1.95 (1.94)) as compared to the charge on rhenium in ReO_2F_3 so that the remaining charge $(1/3)$ is distributed over the four (six) oxygen atoms and the remaining six (nine) fluorine atoms. The Mayer valencies are very similar to those of monomeric ReO_2F_3 except that the terminal $F_{c,t}$ and $F_{c,c}$ atoms have slightly lower valencies. The F_b valency is only 0.50 (0.53), consistent with the long $Re-F_b$ bonds and their high negative charge. The Mayer bond orders are consistent with the bond distances and valencies. We note that, in $\text{Re}_2\text{O}_4\text{F}_7^-$, the $\text{Re}-\text{F}(2)$ bond order is lower than the rest (0.69) and is comparable to the lower $\text{Re}-\text{F}$ bond order in rest (0.69) and is comparable to the lower Re-F bond order in ReO_2F_4 ⁻ (0.63). The Re- F_b bond orders are small, 0.17 (0.12, 0.13) consistent with the long calculated and observed $Re-F_b$ 0.13), consistent with the long calculated and observed $Re-F_b$ bond lengths.

The valence orbital populations on the Re atoms show that the electrons are predominantly in the d orbitals. For monomeric $ReO₂F₃$, there are 4.86 e in the valence d orbitals and 0.17 e in the valence p orbitals at the DZVP2/PP/LDFT level. For $ReO₂F₄$, there are only small changes in the populations on the rhenium atom, consistent with the atomic charges changing mostly on the oxygen and fluorine atoms. For $\text{Re}_2\text{O}_4\text{F}_7$ and $\text{Re}_3\text{O}_6\text{F}_{10}$, the d orbital populations average 4.87 e, showing essentially no change from those of monomeric ReO_2F_3 .

NMR Chemical Shifts. It is now possible to calculate NMR chemical shifts by *ab initio* theoretical methods (Table 6). We have used the GIAO approach⁶⁰ for treating the gauge problem. The standards used for the relative chemical shift calculations $Re₂O₄F₇⁻$

Table 6. ¹⁹F NMR Shifts (ppm) for ReO_2F_3 , ReO_2F_4^- , and

a Recorded at 30 °C in CH₃CN solvent. *b* Recorded at -40 °C in CH3CN solvent.

are CFCl₃ for ¹⁹F (σ = 142.0 ppm calculated) and H₂O for ¹⁷O $(\sigma = 322.1$ ppm calculated). The ¹⁷O chemical shifts of ReO₂F₃ monomer and ReO_2F_4 ⁻ are predicted to be shifted to low frequency relative to the standard by -906 ppm for ReO_2F_4 ⁻
and -882 ppm for the free ReO_2F_3 . The ¹⁹E chemical shifts and -882 ppm for the free ReO_2F_3 . The ¹⁹F chemical shifts also exhibit interesting behaviors. The fluorine resonances in $ReO_2F_4^-$ are predicted at -16.3 ppm for $F_{c,c}$ and 3.9 ppm for $F_{c,c}$ iving a chemical shift difference of 20.2 ppm as compared Fc,t giving a chemical shift difference of 20.2 ppm as compared to the experimental difference of 10.4 ppm. Although the computed shifts for ReO_2F_4 ⁻ are off in absolute magnitude by about 50 ppm, the chemical shift order is as expected; i.e., the fluorines trans to oxygens are shifted to higher frequency relative to the fluorines cis to oxygens. The $19F$ chemical shifts for $ReO₂F₃$ are predicted to be more shielded for the F_{ax} (-93.1) ppm) as compared to $F_{c,c}$ of $ReO_2F_4^-$, whereas the F_{eq} chemical shift is predicted to occur at higher frequency (1.9 ppm), similar to the chemical shift of $F_{c,t}$ in the $ReO_2F_4^-$ anion. The same calculated and experimental 19F chemical shift trends were found for $TcO_2F_4^-$ and TcO_2F_3 ²⁴

Vibrational Frequencies. In general, there is good agreement between the calculated and experimental frequency values for $ReO₂F₄$ even though there is a strong dependence upon the nature of the cation in the experimental spectra (Table 3). The best agreement is observed at the LDFT level and with the $[N(CH_3)_4][ReO_2F_4]$ salt where no or very weak anion cation contacts are expected. Similar results have been obtained for TcO_2F_4 ⁻⁻²⁴ The LDFT and NLDFT values are identical for the modes involving $Re-O$ stretches and $ReO₂$ bend, but they are smaller than the experimental values. This difficulty in predicting the modes involving O atoms was also found in calculations on technetium²⁴ and osmium oxide fluorides^{7,20b} and on monomeric ReO_2F_3^7 and is consistent with there being too little repulsion between the nonbonded O atoms. At the LDFT level, the two highest calculated Re-F stretches are lower than the experimental values whereas the two lowest Re-F stretches are predicted to be higher than the experimental values.

Calculations confirm that the vibrational modes of the fluorine-bridged ReO_2F_3 groups of $\text{Re}_2\text{O}_4\text{F}_7$ are weakly coupled. The Re-O stretches are shifted to higher frequency than in the ReO_2F_4 ⁻ anion, and the splitting in the two types of Re-O stretches has slightly increased. As for all other related compounds, the ReO stretches and ReO_2 bends are found to be

σ

^{(59) (}a) Mayer, I. *Chem. Phys. Lett.* **1983**, *97*, 270. (b) Mayer, I. *Theor. Chim. Acta* **1985**, *67*, 315. (c) Mayer, I. *J. Quantum Chem.* **1986**, *29*, 73. (d) Mayer, I. *J. Quantum Chem.* **1986**, *29*, 477.

^{(60) (}a) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. *J. Chem. Phys.* **1996**, *104*, 5497. (b) London, F. *J. Phys. Radium (Paris)* **1937**, *8*, 397. (c) Ditchfield, R. *Mol. Phys.* **1974**, *27*, 789. (d) Wolinski, K.; Hinton, J. F.; Pulay, P. *J. Am. Chem. Soc.* **1990**, *112*, 8251.

lower than the experimental values. The Re-F stretches show two groups of bands, one near 650 cm^{-1} and one near 580 cm^{-1} . The antisymmetric bridging stretch is predicted to be at 512 cm^{-1} with the symmetric stretch much lower at only 108 cm^{-1} . The high frequency of the antisymmetric $Re-F_b-Re$ stretch shows that the anion does not dissociate readily, but the low frequency of the symmetric stretch shows that the two ReO_2F_3 groups are not strongly coupled. The $\text{Re}O_2$ bends are shifted to higher frequency in $\text{Re}_2\text{O}_4\text{F}_7$ as compared to Re_2F_4 , consistent with the change in the ReO stretching frequencies. Most of the low-frequency modes involve rigid motions of the $ReO₂F₃$ groups.

The calculated vibrational frequencies of the $ReO₂F₃(CH₃–)$ CN) adduct also show good agreement with the experimental values (Table 5). As obtained for $TcO_2F_3(CH_3CN)$,²⁴ the modes associated with the CH₃ group agree and the CN triple bond stretch which is predicted to be at 2373 cm^{-1} compared to the experimental value of 2297 cm^{-1} . The Re-O modes split apart with the $Re-O_t$ mode occurring at higher frequency than the $Re-O_c$ mode. The $Re-N$ stretch occurs at a much lower frequency, i.e., 221 and 212 cm^{-1} , although it also mixes with the $\text{Re}-\text{O}_c$ stretch at 976 cm⁻¹. The remaining bands of the spectrum show good agreement with the ReO_2 bends, again predicted higher than the experimental values.

Fluoride Ion Affinities. The fluoride ion affinity (FA) is defined by analogy with a proton affinity as the negative of the enthalpy change of reaction 9. If the fluoride ion affinity is

$$
A + F^- \to AF^-
$$
 (9)

positive, then this is an exothermic process and A can bind F-. Because of the difficulty in calculating the electron affinity of fluorine, the relative fluoride ion affinities were calculated as shown in reaction 10. If $FA(A)$ is known, then $FA(B)$ can be

$$
AF^- + B \rightarrow A + BF^-
$$
 (10)

calculated. The fluoride ion affinity of COF_2 , $FA(COF_2)$, was chosen as a standard, and it was previously shown that FA- $(COF₂)$ is 49.9 kcal mol⁻¹ on the basis of the revised value of $FA(HF).⁶¹$ Thus, the calculated $FA(ReO₂F₃)$ was found to be 78.0 kcal mol⁻¹ at the DZVP2/PP/LDFT level and 79.3 kcal mol⁻¹ at the DZVP/PP/NLDFT level. These values are slightly larger than $FA(TcO_2F_3)$, which are 74.2 kcal mol⁻¹ at the LDFT level and 75.7 kcal mol⁻¹ at the NLDFT level and are consistent with the higher Lewis acidity of ReO_2F_3 noted in this work toward $CH₃CN$ and $F⁻$ ion.

Conclusions

A new high-yield, high-purity synthesis of ReO_2F_3 was developed and involves the fluorination of Re_2O_7 in anhydrous HF using XeF_6 . The structure of ReO_2F_3 consists of infinite chains of fluorine-bridged ReO_2F_4 units and is analogous to that of TcO₂F₃. The Lewis-acid properties of ReO_2F_3 toward fluoride ion and CH3CN were investigated and resulted in the syntheses of several [M][ReO_2F_4] salts (M = Li, Na, K, Cs, N(CH₃)₄) and the $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$ adduct. Comparison of the Raman and ¹⁹F NMR spectroscopic data indicate that ReO_2F_3 is a stronger Lewis acid than TcO_2F_3 ,²⁴ and this is confirmed by their calculated relative fluoride ion affinities. The ReO_2F_4 ⁻ anion reacts with ReO_2F_3 to form the fluorine-bridged $\text{Re}_2\text{O}_4\text{F}_7$ ⁻ and $\text{Re}_3\text{O}_6\text{F}_{10}$ ⁻ anions. The $\text{Re}_3\text{O}_6\text{F}_{10}$ ⁻ anion only forms when more acidic solvents and cations are used. All three anions, ReO2F3(CH3CN), and ReO2F3 adopt the *cis*-dioxo arrangement

which is a feature in common with all other dioxo species of $d⁰$ transition metals. The trans influence of the oxo ligands is significant in these compounds and results in a lengthening of the Re-F bonds trans to the oxygens as well as enhancement of their lability. The energy-minimized geometries determined from density functional theory calculations are in agreement with the structures determined by X-ray crystallography and by NMR and Raman spectroscopy.

Experimental Section

Apparatus and Materials. Preparative apparatus and procedures have been described previously.²⁴ Single crystals were selected and mounted in glass Lindemann capillaries inside a drybox and then heat sealed. Crystals were stored at -10 °C, unless otherwise indicated, prior to mounting on the diffractometer.

Starting materials which were dried, purified, prepared by standard literature methods, or used without further purification, were the following: [N(CH₃)₄][F],⁶² F₂ (Air Products), H₂ (99.99%, Canadian Liquid Air), O₂ (Canadian Liquid Air, Zero Grade, 99.99%), XeF₆⁶³ (ascertained to be free of XeF4 contaminant using Raman spectroscopy), CsF (Merck, 99+%),⁶⁴ and rhenium powder (Cleveland Refractory Metals, 325 mesh). The solvents, CH3CN (HPLC Grade, Caledon Laboratories Ltd.)⁶⁵ and HF (Harshaw Chemical Co.)⁶⁶ were dried/ purified by the standard literature methods.

 Re_2O_7 . The synthesis of Re_2O_7 was carried out by heating rhenium powder (4.945 g, 2.655 mmol) that had been previously heated to red heat under H_2 and dried under vacuum in an excess of dry O_2 inside a closed quartz reaction tube. The procedure was analogous to that used to prepare Tc_2O_7 .⁹ The yield was 5.900 g, 1.218 mmol (91.7%), and the product was a yellow to yellow green crystalline material.

 ReO_2F_3 . In the drybox, 1.0293 g (2.1249 mmol) of Re_2O_7 was weighed into a T-reactor. The reactor was transferred to a metal vacuum line, and anhydrous HF (6 mL) was condensed into the reactor at -196 $°C$. A known amount of Xe F_6 (0.8149 g, 3.323 mmol) was condensed from an FEP weighing vessel into the reactor at -196 °C. Upon warming of the reactor and its contents to room temperature, a white precipitate of ReO_2F_3 formed immediately. The insoluble product was separated from the soluble byproducts (see reactions $1-3$), by decanting the supernatant into the sidearm of the reactor. The solvent was pumped off on the metal vacuum line while the ReO_2F_3 was cooled to 0 °C to prevent its slow sublimation and was recovered as a friable white solid in the drybox (1.1106 g, 4.0357 mmol, 95.0% yield), melting point ¹¹³-¹¹⁶ °C. *Caution: The XeOF4-containing decantate was disposed of by slowly pouring the cold HF solution (* -78 *°C) into a mixture of ice and NaOH solution inside a fume hood*.

 $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$. In the drybox, ReO_2F_3 (0.2114 g, 0.7682 mmol) was weighed into a $\frac{1}{4}$ -in. o.d. FEP reaction vessel fitted with a Kel-F valve. Dry CH₃CN (ca. 1 mL) was condensed onto the solid which dissolved completely at room temperature to yield a pale yellow solution. The excess CH₃CN was pumped off at 0° C for 12 h, and a white powder was isolated which was stable at room temperature. A sample for NMR spectroscopy was prepared by dissolving 0.0402 g (0.146 mmol) of ReO_2F_3 in 0.0100 g (0.244 mmol) of dry CH₃CN in a 4-mm FEP tube followed by addition of ca. 0.3 mL of SO₂ClF.

 $[M][ReO₂F₄]$ ($M = Li$, Na, Cs) and Crystal Growth of [Li]- $[ReO₂F₄].$ In the drybox, $ReO₂F₃$, 0.3868 g (1.406 mmol), and LiF, 0.0369 g (1.42 mmol), were loaded into one arm of a $\frac{1}{4}$ -in. o.d. FEP T-reactor, and a Kel-F valve was attached. Anhydrous HF (ca. 1 mL) was condensed onto the reactants under static vacuum at -196 °C. At room temperature, a pale, yellow solid in a yellow solution was observed. The yellow solid completely dissolved on addition of more HF. Enough HF was then removed to precipitate ca. 50 mg of solid

- (63) Chernick, C. L.; Malm, J. G. *Inorg. Synth.* **1966**, *8*, 258.
- (64) Christe, K. O.; Curtis, E. C.; Dixon, D. A.; Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **1991**, *113*, 3351.
- (65) Christe, K. O.; Wilson, W. W. *J. Fluorine Chem.* **1990**, *47*, 117.
- (66) Emara, A. A. A.; Schrobilgen, G. J. *Inorg. Chem.* **1992**, *31*, 1323.
- (61) Krespan, C. G.; Dixon, D. A. *J. Fluorine Chem.* **1966**, *11*, 117.

⁽⁶²⁾ Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. A. *J. Am. Chem. Soc.* **1990**, *112*, 7619.

[Li][ReO_2F_4] at 20 °C. Both arms of the T-reactor were heated in water baths to 40 °C, and the yellow solution was decanted from the remaining solid into the free arm of the reactor. Both arms of the reactor were allowed to cool to 20 °C over an 8 h period, at the end of which yellow platelike crystals were obtained in the yellow solution. The supernatant solution was decanted back into the original reaction arm, and the solvent was removed under dynamic vacuum at 20 °C. The crystals showed no signs of decomposition under vacuum, nor did the yellow microcrystalline [Li][ReO2F4] isolated in the other arm of the reaction vessel. After being sealed in Lindemann capillaries, the crystals were stored at room temperature since they were observed to powder below 0 °C. Analogous procedures were used to prepare $[Na][ReO_2F_4]$ $[ReO₂F₃, 0.1597 g (0.5803 mmol), and NaF, 0.0291 g (0.693 mmol)]$ and [Cs][ReO₂F₄] [ReO₂F₃, 0.1422 g (0.5167 mmol), and CsF, 0.0813 g (0.538 mmol)]. Removal of HF at room temperature provided quantitative yields of yellow, microcrystalline $[Na][ReO_2F_4]$ and $[Cs]$ -[ReO_2F_4]. X-ray powder photographs confirmed that the Na⁺ salt was isomorphous with $[Li][ReO_2F_4]$. The data indexed for a tetragonal cell, $a = 5.025(1)$ Å, $c = 9.207(1)$ Å, and $V = 232.5$ Å³.

 $[N(CH_3)_4][ReO_2F_4]$. In the drybox, ReO_2F_3 (0.4053 g, 1.473 mmol) was weighed into a $\frac{1}{4}$ -in. o.d. FEP reactor. A stoichiometric amount of preweighed [N(CH3)4][F] (0.1356 g, 1.456 mmol) was added to the reactor. Anhydrous HF (4 mL) was condensed into the reactor on a metal vacuum line at -196 °C. On being warmed to room temperature, the solids dissolved to give a pale yellow solution. Further addition of HF to the solution did not result in precipitation of ReO_2F_3 . Removal of the solvent under dynamic vacuum resulted in 0.5236 g (1.421 mmol, 97.6% yield) of yellow microcrystalline $[N(CH_3)_4][ReO_2F_4]$.

 $[N(CH_3)_4][Re_2O_4F_7]$. In the drybox, $[N(CH_3)_4][ReO_2F_4]$ (0.0457 g, 0.124 mmol) and ReO_2F_3 (0.0347 g, 0.126 mmol) were loaded into a $\frac{1}{4}$ -in o.d. FEP tube fitted with a Kel-F valve. Approximately 0.5 mL of dry CH3CN was condensed onto the solids, which dissolved completely at room temperature to yield a pale yellow solution. The reactor was then heat-sealed and stored at -196 °C until the NMR experiment was performed.

[K][Re2O4F7] and Crystal Growth of [K][Re2O4F7] and [K]- $[Re_2O_4F_7]$ ['] $2ReO_2F_3$. $[K][Re_2O_4F_7]$. In the drybox, ReO_2F_3 (0.1514 g, 0.5502 mmol) and KF (0.0160 g, 0.2767 mmol) were loaded into a $1/4$ -in o.d. FEP T-reactor fitted with a Kel-F valve. Anhydrous HF (ca. 0.5 mL) was condensed onto the solids, which partially dissolved at room temperature, forming a pale yellow solution and a white residue. The reactor was pressurized to 2 atm with dry nitrogen, and both arms of the reactor were warmed to 40 °C and agitated before decanting the supernatant into the empty arm of the reactor. Colorless plates grew over a 24 h period as the solution was allowed to cool to room temperature. The solution was decanted off the crystals, and the solvent was removed under dynamic vacuum and pumped for a further 24 h before transferring the reactor into a drybox.

 $[K][Re₂O₄F₇]²ReO₂F₃$. In the drybox, $ReO₂F₃$ (0.1573 g, 0.572) mmol) and KF (0.0173 g, 0.298 mmol) were loaded into a bent $\frac{1}{4}$ -in o.d. FEP reactor fitted with a Kel-F valve. Anhydrous HF (ca. 0.3 mL) was distilled onto the solids, which partly dissolved at room temperature, forming a pale yellow solution and a white residue. The reactor was pressurized with dry nitrogen (1100 Torr), warmed to 40 °C, and sonicated for 5 min. The solution was then carefully decanted into the elbow of the reactor and submerged in a water bath at 45 °C and allowed to slowly cool to room temperature. Large colorless, crystalline plates and small needles formed after 48 h. The solution was decanted to the bottom of the reactor and pumped off, and the crystals were dried under dynamic vacuum for 24 h. Only the needles were found to diffract.

[Cs][Re₃O₆F₁₀] and Crystal Growth. In the drybox, ReO₂F₃ (0.2039) g, 0.7409 mmol) and CsF (0.0439 g, 0.289 mmol) were weighed into one arm of a T-reactor fitted with $\frac{3}{8}$ -in. o.d. FEP tubes and a Kel-F valve. Anhydrous HF (4 mL) was condensed onto the solids, and the reactor was pressurized to 2 atm with dry N_2 . The tube containing anhydrous HF was heated to 40 °C and agitated. Over half (by volume) of the solid observed at room temperature dissolved at this point. The colorless supernatant solution was decanted into the free arm of the reactor, which had also been heated to 40 ˚C using a Dewar flask filled with warm water, and allowed to cool slowly to room temperature.

Colorless needles and plates grew over a period of ∼8 h. Following X-ray data collection, the Raman spectrum of the single crystal was obtained.

Crystal Growth of ReO3F(CH3CN)2'**CH3CN.** Crystals of ReO3F- $(CH_3CN)_2$ ^{\cdot}CH₃CN were grown from an NMR sample of ReO₂F₃ in CH3CN by slow hydrolysis apparently resulting from diffusion of water through the thin wall of the FEP tube over a period of several months. The crystalline material that had initially formed was heated to 40 °C in a water bath to give a clear pale yellow solution and allowed to cool to room temperature over a period of 2 days, producing large cubic crystals. The FEP tube was transferred to a glovebag filled with dry nitrogen and cut open. The supernatant solvent was removed using a dry pipet, the tube containing the crystals was inserted into a larger FEP tube which was fitted with a Kel-F valve, and the remaining solvent was removed under dynamic vacuum for ca. 10 s.

Nuclear Magnetic Resonance Spectroscopy. NMR instrumentation and chemical shift referencing are described in ref 24. The 19F NMR spectrum of $[N(CH_3)_4][ReO_2F_4]$ was acquired at 470.599 MHz in a 16 K memory with a spectral setting of 12 kHz, yielding an acquisition time of 0.668 s and data point resolution of 1.45 Hz/data point. The number of transients accumulated was 532; a pulse width of 1.0 *µ*s and a line broadening of 1.0 Hz were used. The 19F NMR spectrum of $[N(CH_3)_4][Re_2O_4F_7]$ was acquired at 282.409 MHz using a pulse width of 11 *µ*s. A total of 500 transients were acquired in a 32K memory using a spectral width setting of 25 kHz, an acquisition time of 0.655 s, and a resolution of 1.53 Hz/data point. The 19F NMR spectrum of $ReO₂F₃(CH₃CN)$ was acquired at 282.409 MHz using a pulse width of 3 *µ*s. A total of 1655 transients were acquired in a 16K memory using a spectral width setting of 10 kHz, an acquisition time of 0.819 s, and a resolution of 1.22 Hz/data point. The 1 H NMR spectrum of ReO₂F₃-(CH₃CN) was acquired at 300.134 MHz using a pulse width of $2 \mu s$. A total of 60 transients were acquired in a 16K memory using a spectral width setting of 3600 Hz, an acquisition time of 2.277 s, and a resolution of 0.44 Hz/data point. The ¹³C NMR spectrum of ReO₂F₃(CH₃CN) was acquired at 75.469 MHz using a pulse width of 2 *µ*s. A total of 13 000 transients were acquired in a 16K memory using a spectral width setting of 25 kHz, an acquisition time of 0.328 s, and a resolution of 3.05 Hz/data point.

X-ray Structure Determinations of [Li][ReO2F4], [K][Re2O4F7], $[K][Re_2O_4F_7]$ ['] $2ReO_2F_3$, $[Cs][Re_3O_6F_{10}]$, and $ReO_3F(CH_3CN)_2$ ['] **CH3CN. Collection and Reduction of X-ray Data.** The crystals of [Li][ReO₂F₄], [K][Re₂O₄F₇], and [Cs][Re₃O₆F₁₀] were centered on a Siemens/Syntex P2₁ diffractometer, using silver radiation monochromatized with a graphite crystal ($\lambda = 0.560 86$ Å). The collection and reduction of the X-ray data as well as the refinement of the structures were carried out in a similar manner for the three data sets. The experimental values for $[K][Re₂O₄F₇]$ and $[Cs][Re₃O₆F₁₀]$, when differing from those of [Li][ReO₂F₄], are given in parentheses and brackets, respectively. Accurate cell dimensions were determined at *T* $= 24$ [-118] °C from a least-squares refinement of the setting angles (*ø*, *φ*, and 2*θ*) obtained from 21 (25) [27] accurately centered reflections (with 15.67 (15.42) $[14.53]$ [°] $\leq 2\theta \leq 28.60$ (29.79) $[24.93]$ [°]) chosen from a variety of points in reciprocal space. Integrated diffraction intensities were collected using a θ -2 θ scan technique with scan rates varying from 1.5 to 14.65°/min (in 2 θ) and a scan range of ± 0.75 (0.5) [0.5]^o. The data were collected with $0 \le h \le 9$ (6) [12], -9 (-6) $[-17] \le k \le 0$ (6) [17], and -16 (-18) [-18] $\le l \le 16$ (17) [18] and $3 \le 2\theta \le 60$ (40) [55]^o. During data collection, the intensities of three standard reflections were monitored every 97 reflections. Over the course of data collection no decay was observed. A total of 2875 (1671) [6490] reflections were collected. A total of 666 (801) [6095] unique reflections remained after averaging of equivalent reflections of which 665 (801) [6026] were used for structure solution. Corrections were made for Lorentz and polarization effects, while absorption corrections were applied using the program DIFABS.67

Data for $[K][Re_2O_4F_7]$ ²Re O_2F_3 and $ReO_3F(CH_3CN)_2$ ²CH₃CN were collected using a P4 Siemens diffractometer, equipped with a Siemens SMART 1K charge-coupled device (CCD) area detector (using the program SMART)⁶⁸ and a rotating anode using graphite-monochro-

mated Mo Kα radiation ($λ = 0.71073$ Å). The crystal-to-detector distance was 3.991 cm, and the data collection was carried out in a 512×512 pixel mode using 2×2 pixel binning. A complete sphere of data was collected, to better than 0.8 Å resolution. Processing was carried out by using the program SAINT,⁶⁸ which applied Lorentz and polarization corrections to three-dimensionally integrated diffraction spots. The program SADABS⁶⁹ was used for the scaling of diffraction data, the application of a decay correction, and an empirical absorption correction based on redundant reflections.

Solution and Refinement of the Structures. Calculations were performed as previously described.24 The program XPREP70 was used to confirm the unit cell dimensions and the crystal lattice. A solution was obtained using Patterson ([Li][ReO₂F₄], [K][Re₂O₄F₇] and [K]- $[Re_2O_4F_7]$ ² ReO_2F_3) and direct ($[Cs][Re_3O_6F_{10}]$) methods which located the Re atoms. The positions of all the fluorine, oxygen, and alkali metal (lithium, potassium, and cesium) atoms were revealed in successive difference Fourier syntheses. The oxygen and fluorine atoms were assigned on the basis of their bond lengths with rhenium. In view of the rather long $Re(1)-O(2)$ and short $Re(1)-F(3)$ bond lengths observed in both $[K][Re_2O_4F_7]$ and $[K][Re_2O_4F_7]$ ²Re O_2F_3 , a model involving a positional disorder between $O(2)$ and $F(3)$ was tentatively used to solve the structure but did not produce a satisfactory result. The final refinements were obtained by using data that had been corrected for absorption and by introducing anisotropic thermal parameters for all the atoms except for the Li atom which was kept isotropic. An extinction parameter was used for $[K][Re_2O_4F_7] \cdot 2ReO_2F_3$. During the final stages of the refinement, all reflections with F^2 < $-2\sigma(F^2)$ were suppressed and weighting factors recommended by the refinement program were introduced. In the final difference Fourier refinement program were introduced. In the final difference Fourier map, the maximum and minimum electron densities were located around the Re atoms.

No reasonable solution could be obtained for $ReO_3F(CH_3CN)_2\cdot CH_3-$ CN in any of the tetragonal space groups proposed by the program XPREP.⁷⁰ The structure was, however, solved in *P*1 and then in $P2₁/$ *m*. It was then apparent that the crystal was twinned as a result of similar *a*- and *c*-axes and that the system was, in fact, orthorhombic. The twinning was modeled, and a solution was obtained in *Pnma* using a Patterson function which located the position of the rhenium atom. Successive difference Fourier syntheses revealed the positions of the light atoms. The hydrogen atoms were refined using a riding model. A positionally disordered solvent molecule was finally located, and the site occupancy factors (sof) were adjusted accordingly. In view of the symmetry of the molecule, a possible fluorine/oxygen positional disorder was considered. This possibility was dismissed because the Re-F bond length has a value characteristic of Re(VII)-F bonds found in other Re(VII) oxide fluoride species. Moreover, a positional disorder between F and O implied that the Re atom laid in the [O(1), O(1A), $N(1)$, $N(1A)$] plane, which was not observed experimentally (see X-ray Crystal Structures). The final refinement was obtained by introducing anisotropic parameters for all the atoms except the hydrogen atoms, an extinction parameter, and the recommended weight factor.

Raman Spectroscopy. Raman spectra were recorded as previously described.24 Holographic gratings were used for the prefilter (600 grooves mm-¹ , blazed at 500 nm) and monochromator (1800 grooves mm-¹ , blazed at 550 nm) stages. An Olympus metallurgical microscope (model BHSM-L-2) was used for focusing the excitation laser to a 1-*µ*m spot on solid samples. Spectra were recorded at room temperature on powdered microcrystalline samples sealed in Pyrex melting point capillaries as well as on a single crystal of $[K][Re₂O₄F₇]$ sealed in a dry Lindemann capillary. The spectra were recorded at laser powers of 50-300 mW and slit settings corresponding to a resolution of 1 cm^{-1} . A total of 15 reads each having 45 s integration times were

summed using a CCD detector. The spectra of $[Cs][ReO_2F_4]$ in HF were obtained directly in the FEP reaction vessel and were collected in the Raman macrochamber using a laser power of 600 mW. A total of 10 reads each having a 60 s integration time were summed. Polarization/depolarization measurements were made on this sample, but no quantitative $\binom{n}{l}$ *I_n* $\binom{l}{l}$ ratio was determined, because the measured radiation had been partially randomized by the FEP tube.

Computational Methods. Calculations were done as described previously.²⁴ The basis sets⁷¹ for the carbon, oxygen, and fluorine atoms are of the form (721/51/1) (DZVP2) with a (7/3/3) fitting set. For hydrogen, the basis set has the form $(4/1/1)$ and a fitting basis set of the form (4). For Re, a basis set in which the Re core electrons are treated with a pseudopotential⁷² (PP) and the remaining electrons are treated with a polarized valence double-ξ basis set (43/4/32) was used with a fitting basis set of the form (5/5/5). This basis set is denoted DZVP2/PP.

Additional NMR calculations on ReO_2F_3 and ReO_2F_4 ⁻ using the GIAO approach for treating the origin problem 60 were done with the program Gaussian94 on SGI computers.73 These calculations were done at the local level with a large basis set denoted as TZ2PF on the oxygen and fluorine, and an effective core potential was used for Re. The basis set for the NMR calculations is of triple- ζ quality⁷⁴ for oxygen and fluorine augmented by two sets of d polarization functions each formed from two Gaussian functions and an f polarization function. The rhenium basis set is from ref 75 and has the form (5s5p4d) with an effective core potential with the 5s, 5p, 5d, and 6s in the valence space.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for support in the form of a research grant and for the award of a graduate scholarship to N.L., the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work under ACS-PRF No. 31198-AC3, and the National Science Foundation (U.S.A.) for the award of a NATO Postdoctoral Fellowship to W.J.C. The density functional theory calculations were performed under the auspices of the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC06- 76RLO 1830 with the Battelle Memorial Institute, which operates the Pacific Northwest National Laboratory, a multiprogram national laboratory operated for the Department of Energy.

Supporting Information Available: Unit cell diagrams for K^+ Re₂O₄F₇⁻ and K^+ Re₂O₄F₇⁻ •2ReO₂F₃, tables of X-ray data and
charges and X-ray crystallographic files in CIF format for the structure charges, and X-ray crystallographic files, in CIF format, for the structure determinations of [Li][ReO₂F₄], [K][Re₂O₄F₇], [K][Re₂O₄F₇] \cdot 2ReO₂F₃, $[Cs][Re₃O₆F₁₀]$, and $ReO₃F(CH₃CN)₂·CH₃CN$. This material is available free of charge via the Internet at http://pubs.acs.org.

IC980695T

- (71) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. *Can. J. Chem.* **1992**, *70*, 560.
- (72) (a) Chen, H.; Kraskowski, M.; Fitzgerald, G. *J. Chem. Phys.* **1993**, *⁹⁸*, 8710. (b) Troullier, N.; Martins, J. L. *Phys. Re*V*. B* **¹⁹⁹¹**, *⁴³*, 1993.
- (73) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*; Gaussian, Inc.: Pittsburgh, PA, 1995.
- (74) Dunning, T., Jr. *J. Chem. Phys.* **1971**, *55*, 716.
- (75) (a) Reed, A. E.; Curtis, L. A.; Weinhold, F. *Chem. Re*V*.* **¹⁹⁸⁸**, *⁸⁸*, 899. (b) Foster, J. P.; Weinhold, F. J. *J. Am. Chem. Soc.* **1980**, *102*, 7211. (c) Reed, A. E.; Weinhold, F. *J. Chem. Phys.* **1983**, *78*, 4066. (d) Reed, A. E.; Weinstock, R. B.; Weinhold, F. *J. Chem. Phys.* **1985**, *83*, 735. (e) Reed, A. E.; Weinhold, F. *J. Chem. Phys.* **1985**, *83*, 1736.

⁽⁶⁸⁾ *SMART* and *SAINT*, release 4.05; Siemens Energy and Automation Inc.: Madison, WI, 1996.

⁽⁶⁹⁾ Sheldrick, G. M. SADABS (Siemens Area Detector Absorption Corrections), personal communication, 1996.

⁽⁷⁰⁾ Sheldrick, G. M. *SHELXTL*, release 5.03; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.