Room Temperature Syntheses of AuF_6^- and PtF_6^- Salts, $\text{Ag}^+\text{AuF}_6^-$, $\text{Ag}^{2+}\text{PtF}_6^{2-}$, and $\text{Ag}^{2+} \text{PdF}_6{}^{2-}$, and an Estimate for $\text{E(MF}_6{}^{-})$ [M = Pt, Pd]

O. Graudejus, S. H. Elder, G. M. Lucier, C. Shen, and N. Bartlett*

Chemical Sciences Division, Lawrence Berkeley National Laboratory, and Chemistry Department, University of California, Berkeley, California 94720

*Recei*V*ed December 7, 1998*

Solutions of AuF₄⁻ or PtF₆²⁻ salts, prepared from the metals at ∼20 °C, in liquid anhydrous hydrogen fluoride (aHF), made basic with alkali fluorides, are further oxidized by photodissociated F_2 (visible or near-UV light) to give AuF₆⁻ or PtF₆⁻ salts, including O_2 ⁺AuF₆⁻ (with O_2 in the F₂). Similar photochemical oxidation of PdF₆²⁻ salts does not occur. This new synthetic approach has provided $LiAuF_6$ and $LiPtF_6$ for the first time, each of which has the LiSbF₆ type (*R*3) structure with (hexagonal cell): LiAuF₆, $a = 4.9953(9)$ Å, $c = 13.704(3)$ Å, V/Z $= 98.71(6)$ Å³; LiPtF₆, $a = 5.0236(7)$ Å, $c = 13.623(2)$ Å, $V/Z = 99.25(5)$ Å³. Interaction of AuF₆⁻ with Ag⁺
gives $A\sigma^{\pm}AvE^{-}(R_3^T)$ $a = 5.283(3)$ Å $c = 15.053(6)$ Å $V/Z = 121.3(2)$ Å³), whereas PtE²⁻ o gives $Ag^{+}AuF_{6}^{-}$ ($R\bar{3}$, $a = 5.283(3)$ Å, $c = 15.053(6)$ Å, $V/Z = 121.3(2)$ Å³), whereas PtF₆² or PdF₆² stabilize
A g^{2+} as $A g^{2+}Pf(Pd)F_{6}^{-}$ ($R\bar{3}$) A $g = 5.049(8)$ Å $c = 14.46(2)$ Å $V/Z = 106.4(5)$ Ag^{2+} as Ag^{2+} Pt(Pd)F₆² (*R*3; AgPtF₆: *a* = 5.049(8) Å, *c* = 14.46(2) Å, *V*/*Z* = 106.4(5) Å³; and AgPdF₆, *a* = 5.049(4) Å *c* = 14.6(2) Å *V*/*Z* = 105(3) Å³). New cubic modifications (probabl 5.00(4) Å, $c = 14.6(2)$ Å, $V/Z = 105(3)$ Å³). New cubic modifications (probable space group *Ia*3) have been found for AgMF₆ (M, *a* value, Å): Ru, 9.653(10); Os, 9.7318(9); Ir, 9.704(2). The preference for Ag²⁺Pt(Pd)F₆^{2–} over $Ag^+Pt(Pd)F_6$ ⁻ is attributed to a second electron affinity of $Pt(Pd)F_6$, $E(Pt(Pd)F_6^-)$ > 60 kcal mol⁻¹.

Introduction

Recent work in these laboratories¹ showed that gold or the platinum metals, (except rhodium) are able to react at room temperature with F_2 in aHF, containing an alkali fluoride, to provide salts of $\text{Aut}F_4^-$ or MF_6^- (M = Ru, Os, Ir), or $\text{Pt}F_6^{2-}$.
This and similar findings by Holloway and co-workers² for the This, and similar findings by Holloway and co-workers² for the preparation of ammonium salts of the platinum metal fluoroanions, gave broad and easy access to noble-metal fluorocomplexes, but neither AuF_6^- nor PtF_6^- were included, nor other related high oxidation-state salts such as AgF_4^- and NiF_6^{2-} . It was quickly found in these laboratories that photochemical excitation of the F_2 (sunlight or near-UV), the preparative conditions otherwise being similar, gave AuF_6^- or PtF_6^- salts. In addition, it was shown that even the difluorides $AgF₂$ and NiF₂, which are themselves insoluble in aHF, would react with the F atoms in basic aHF to give^{3,4} salts of AgF_4^- and NiF_6^{2-} . Attempts to similarly prepare PdF_6 ⁻ salts have failed.

Although AuF_6^- and PtF_6^- salts were originally prepared at higher temperatures and fluorine pressure in nickel bombs^{5,6} more than twenty-six years ago, this is the first time that the salts LiAuF₆ and LiPtF₆ have been prepared and structurally characterized. This paper gives a description of the syntheses of the AuF_6^- and PtF_6^- salts and compares the new LiAu F_6 and LiPt F_6 with other relatives of the third transition series. It also reports the new $Ag^+AuF_6^-$ salt which is contrasted structurally and chemically with $Ag^{2+}PtF_6^{2-}$ and $Ag^{2+}PdF_6^{2-}$.

- (5) Leary, K.; Bartlett, N. *J. Chem. Soc., Chem. Commun.* **1972**, 903.
- (6) Bartlett, N.; Lohmann, D. H. *J. Chem. Soc.* **1962**, 5253.

The latter salts were first reported but not structurally identified by Müller and Hoppe.⁷ These AgMF₆ salts are compared structurally with others of the same stoichiometry.

The stabilization of Ag^{2+} by PtF₆^{2–} or PdF₆^{2–} indicates that the first ionization potential of these dianions is unusually high for $MF₆^{2–}$ transition element species and an estimate of that energy, expressed as $E(MF_6^-)$, has been attempted.

Experimental Section

Materials. Anhydrous HF and fluorine were supplied by Matheson Gas Products (East Rutherford, NJ), Ag₂O by Lancaster Synthesis Inc. (99+%; Windham, NH) and Au by ROC/RIC (99.99%; Sun Valley, CA). Pd, Pt and Ir were supplied by Engelhard Corp. (East Newark, NJ), Os by Strem Chemicals (Newburyport, MA) and Ru from Johnson Matthey & Co. (London, UK). The alkali fluorides (Allied Chemical, B&A quality, Morristown, NJ) were dried at 150 °C under dynamic vacuum $(<10^{-6}$ Torr).

The noble metals were always used as fine powders. Ruthenium, osmium and iridium were heated (∼700 °C) under hydrogen, to minimize oxide coating, the metals being cooled in hydrogen and otherwise exposed only to dry argon or nitrogen. Otherwise, the metal powders were used as supplied.

AgF was prepared from Ag2O through reaction with aHF. The AgF obtained in that way is orange in the solid state and dissolves in aHF yielding a colorless solution with no residue. To avoid photodecomposition it was stored in an FEP tube wrapped with Al foil. $AgF₂$ was synthesized by oxidation of AgF in aHF with F_2 at room temperature.

Li₂PtF₆,¹</sup> AuF₃,⁸ SF₃MF₆⁹ (M = Os, Ir), RuF₅,¹⁰ Ag(BiF₆)₂,¹¹
ME¹ (M = Pd, Pt), Cs-PdE_c¹ O₂AsE_c¹² PdE_c¹³ AgAsEc¹¹ and $K_2 M F_6^1$ ($M = Pd$, Pt), $Cs_2 P dF_6^1$ $Q_2 AsF_6$ ¹² $P dF_4$ ¹³ AgAsF₆¹¹ and $\Delta \sigma P E_4^{11}$ were prepared as previously described $AgPF₆¹¹$ were prepared as previously described.

- (7) Mu¨ller, B.; Hoppe, R. *Z. Anorg. Allg. Chem.* **1972**, *392*, 37.
- (8) Einstein, F. W. B.; Rao, P. R.; Trotter, J.; Bartlett, N. *J. Chem. Soc.* **1967**, 478.
- (9) Jha, N. K. Ph.D. Thesis, University of British Columbia, 1965; p 102. (10) Casteel, W. J., Jr.; Wilkinson, A. P.; Borrmann, H.; Serfass, R. E.;
- Bartlett, N. *Inorg. Chem.* **1992**, *31*, 3124. (11) Lucier, G. M.; Münzenberg, J.; Casteel, W. J., Jr.; Bartlett, N. *Inorg.*
- *Chem.* **1995**, *34*, 2692. (12) Shamir, J.; Binenboym, J. *Inorg. Chim. Acta* **1968**, *2*, 37.

10.1021/ic981397z This article not subject to U.S. Copyright. Published 1999 by the American Chemical Society Published on Web 04/30/1999

⁽¹⁾ Lucier, G.; Elder, S. H.; Chacon, L.; Bartlett, N. *Eur. J. Solid State Inorg. Chem.* **1996**, *33*, 809.

⁽²⁾ Holloway, J. H.; Hope, E. G.; Puxley, C. D. *Eur. J. Solid State Inorg. Chem.* **1996**, *33*, 821.

⁽³⁾ Lucier, G. M.; Whalen, J. M.; and Bartlett, N. *J. Fluor. Chem.* **1998**, *89*, 101.

⁽⁴⁾ Whalen, J. M.; Lucier, G. M.; Chacón, L.; and Bartlett, N. *J. Fluor*. *Chem.* **1998**, *88*, 107.

Apparatus and Technique. A nickel vacuum line, fluorine handling equipment, and Teflon valves were used as previously described.14 For all preparations two $1/2$ - or 1-in. o.d. FEP tubes (CHEMPLAST Inc., Wayne, NJ), each sealed at one end and drawn down to $\frac{3}{8}$ -in. o.d. at the other, were joined at right angles to a Teflon Swagelock T compression fitting. This assembly was joined to a Teflon valve by a small section of $3/8$ -in. o.d. FEP tubing drawn down to $1/4$ -in. o.d. Such a reactor was connected to the vacuum line via an 1-ft. length of $\frac{1}{4}$ -in. o.d. FEP tubing which facilitates the decantation of solutions from one arm to the other. The T reactors were evacuated, passivated with fluorine (2 atm) and evacuated again before use.

Anhydrous HF was condensed from the cylinder into a Teflon-valved reservoir FEP tube containing K_2NiF_6 (Ozark-Mahoning Pennwalt, Tulsa, OK) in order to destroy traces of water.

All solids were manipulated in the dry Ar atmosphere of a Vacuum Atmospheres Corp. DRILAB.

Preparations. General Comments for AMF₆ and A₂MF₆ Salts $(A = \text{Alkali})$. Preparations in aHF can make use of the high solubility of each alkali fluoride in this solvent,¹⁵ the low solubility of the heavier alkali $MF₆⁻$ salts and the moderately good solubility of the LiMF₆. The reverse relationship holds for A_2MF_6 salts, where Li_2MF_6 are usually of low solubility and $A = K$, Cs of *much* higher solubility.

 LiPtF_6 **from Li₂PtF₆** and F₂. Li₂PtF₆ prepared from Pt, 2LiF, and F₂ in aHF at ∼20 °C as previously described¹ is of low solubility in aHF (the statement¹ that it is "very soluble" should read *slightly soluble*). $Li₂PtF₆$ (427.6 mg, 1.324 mmol) was placed in one arm of the T reactor and aHF (5 mL) condensed on it. At ∼20 °C some of the Li₂PtF₆ dissolved to yield a faintly yellow solution. Fluorine to 1500 Torr was added, and the reactor was placed (with agitation) in the sunlight. The color of the solution gradually intensified (repressurized with fluorine after 3 days), and after 9 days the bright yellow solution was decanted and all volatiles removed. The XRDP of the solid from the decantate (287.2 mg; 0.909 mmol) showed only the characteristic pattern of an LiSbF₆-type compound ($a = 5.0236(7)$ Å, $c = 13.623(2)$ Å; see Table S1); that of the residue (137.3 mg; 0.425 mmol) showed only $Li₂PtF₆$.

 O_2AuF_6 from AuF_3 and F_2 (O_2 **Contamination).** An attempt to prepare AuF₅ directly from AuF₃ in aHF employing photo dissociation of F_2 did not succeed but produced O_2AuF_6 (via O_2 , probably from a small leak). AuF₃ (680.2 mg; 2.678 mmol) in aHF (∼13 mL) at ∼20 $^{\circ}$ C was agitated with F₂ (6 mmol) and O₂ impurity, in an FEP T reactor, in the sunlight for 20 days. The bright yellow solution was decanted from unreacted AuF3. The XRDP of the bright yellow solid from the decanted solution revealed that it was O_2AuF_6 ,^{16,17} the residue being unreacted AuF₃.

LiAuF₆ (CsAuF₆) from AuF₃ and LiF (CsF). An FEP T reactor was loaded with AuF₃ (654.1 mg, 2.576 mmol for LiAuF₆; 463.0 mg, 1.823 mmol for $CsAuF_6$) in one arm and LiF (99.5 mg, 3.836 mmol) or CsF (450.3 mg, 2.964 mmol), respectively, in the other, and aHF (∼2 mL) was condensed at -¹⁹⁶ °C in each limb of each T reactor. The alkali fluoride was dissolved in the aHF at 20 °C, and the solution was poured onto the AuF_3 (itself insoluble in aHF) to produce a yellow solution of AuF_4^- over some undissolved AuF_3 . F_2 was added to a total pressure of 1500 Torr, and each reactor was placed in the sunlight and agitated for 8 days. Much of the remaining AuF_3 dissolved within 1 day. After 4 days the reactor was repressurized with $F₂$ (1500 Torr) and replaced in the sunlight. In the case of the reaction to produce $LiAuF₆$ already after 1 day the color of the solution intensified to bright lemon yellow while in the case of $CsAuF₆$ the solution color faded because of the low solubility of that product, this solubility being further lowered by the common ion effect of the excess cesium fluoride. Four days later the reactor was re-attached to the vacuum line, the aHF was cooled to -196 °C, and the excess fluorine was pumped off. The solution of $LiAuF_6$ was separated from a small amount of residue (23.2)

mg) by decantation, and all volatiles were removed. The XRDP of the solid obtained from the decanted solution (847.6 mg) showed an $LiSbF₆$ type pattern ($a = 4.9953(9)$ Å; $c = 13.704(3)$ Å; see Table S2). Decantation of the solution of excess CsF left a residue of CsAuF₆ (825.0 mg; 1.859 mmol), the XRDP of which was entirely that of $CsAuF₆.¹⁷$

 $\mathbf{KAuF_6}$ from Au, KF, and $\mathbf{F_2}$. Au (62.7 mg, 0.318 mmol) and KF (21.6 mg, 0.372 mmol) were placed in one arm of an FEP T reactor, and aHF (~3 mL) was condensed at -196 °C. After being warmed to ∼20 °C, the potassium fluoride dissolved and the reactor was pressurized with fluorine. Agitation overnight afforded a yellow solution of KAuF4. The T apparatus was pressurized again with fluorine (1400 Torr) and agitated overnight under UV irradiation (low-pressure Hg lamp). All volatiles were removed under dynamic vacuum. The XRDP of the product showed the pattern of $KAuF₆¹⁷$ with slight $KAuF₄¹⁸$ impurity.

Attempted Fluorination (with UV Irradiation) of K₂PdF₆ and Cs_2PdF_6 . Solutions of Cs_2PdF_6 or K_2PdF_6 in aHF, which were pressurized with F_2 (\sim 1 atm), were irradiated with UV for extended periods ($>$ 24 h). The constant product weights and the negligible F_2 consumption indicated that oxidation had not occurred.

Synthesis of Ag^IM^VF₆ Salts (Table 1 Gives Quantities; M = Os,
An **Bu Bi**) The silver-containing salt (AgE or AgBE) was loaded **Ir, Au, Ru, Bi).** The silver-containing salt (AgF or AgBF4) was loaded into one tube of a passivated FEP T reactor inside the DRILAB. The appropriate noble metal salt (LiAuF₆, $SF₃OsF₆$, $SF₃IrF₆$, $RuF₅$) or bismuth fluoride, BiF₅, was placed in the other tube of the reactor. For the synthesis of AgMF₆ with $M = Au$, Os, Ir, Bi, aHF was condensed onto each of the reagents. Upon warming to room temperature, the salts dissolved completely affording colorless (AgF, AgBF₄, BiF₅, $SF₃OsF₆, SF₃IrF₆$ or yellow (LiAuF₆) solutions. As the respective AgF and AgBF₄ solutions were slowly poured onto the $SF₃MF₆$ (M = Os, Ir) and BiF₅ solution, there was vigorous gas evolution $(SF_4$ or BF_3) and a solid precipitated (orange AgIrF $_6$, colorless AgOsF $_6$, and light yellow AgBiF₆). For the synthesis of AgRuF₆ the AgF solution was poured slowly onto the dry RuF₅. AgRuF₆ formation was immediately evident as the green RuF_5 was replaced by an orange solid (in ≤ 1 min). For the synthesis of $AgAuF_6$, both limbs of the reactor were cooled to about -50 °C (methanol/dry ice), the AgF solution was poured into the other arm to precipitate an orange-brown solid (colorless supernatant), and the mixture was agitated at -50 °C for \sim 10 min.

All $AgMF₆$ salts were insoluble in aHF and were washed with it (typically three times). Volatiles were removed under dynamic vacuum. For AgAuF₆ the tube containing it was always kept at ~-50 °C. Because $AgRuF_6$ was photosensitive, the FEP storage tubes were wrapped in Al foil. The XRDP of the $AgMF_6$ salts gave a cubic unit cell for $M = Ru$, Os, Ir {M, *a* value, Å: Ru, 9.653(10); Os, 9.7318(9); Ir, 9.704(2); see Tables S3-S5}, a trigonal-rhombohedral one for AgAuF₆ { $a = 5.283(3)$ Å, $c = 15.053(6)$ Å; see Table S6} and a tetragonal one for AgBiF₆ { $a = 5.079(2)$ Å, $c = 9.552(3)$ Å; see Table S7}. 11

Preparations of AgPt(Pd)F6 (Table 1 Gives Quantities): (a) Interaction of AgAsF₆ with O₂PtF₆. The yellow solution over solid O₂PtF₆ in aHF was agitated, at ∼20 °C, with the colorless slightly soluble $AgAsF_6$ until the solution color of PtF_6^- had almost disappeared, there being a deep-red insoluble residue. Decantation and washing (several times) provided yellow tinted crystalline $O₂ AsF₆$ (XRDP showing only this). The yellow color probably comes from a small quantity (too small to give an XRDP) of O_2PtF_6 . The XRDP of the deep-red insoluble product gave a pattern that was wholly indexed on the basis of a rhombohedral cell {hexagonal cell with $a = 5.049(8)$ Å, $c = 14.46(2)$ Å; see Table S8}.

(**b**) Interaction of $Ag(BiF_6)$ ₂ with $K_2Pt(Pd)F_6$. Interaction of solid Ag(BiF₆)₂ shaken slowly into a -50 °C solution of K₂Pt(Pd)F₆ produced a brown precipitate. Complete $Ag(BiF_6)$ ₂ transfer was ensured by washing over with two back-distillations of aHF. The brown precipitate was washed with aHF at ∼20 °C (three times). An XRDP of this solid gave a rhombohedral-like pattern as observed in (a) but less crystalline

⁽¹³⁾ Zemva, B.; Lutar, K.; Jesih, A.; Casteel, W. J., Jr.; Bartlett, N. *J. Chem. Soc., Chem. Commun.* **1989**, 346.

⁽¹⁴⁾ Lutar, K.; Jesih, A.; Leban, I.; Zemva, B.; Bartlett, N. *Inorg. Chem.* **1989**, *28*, 3467.

⁽¹⁵⁾ Jache, A. W.; Cady, G. H. *J. Phys. Chem.* **1952**, *56*, 1106.

⁽¹⁶⁾ Graudejus, O.; Mu¨ller, B. G. *Z. Anorg. Allg. Chem.* **1996**, *622*, 1076.

⁽¹⁷⁾ Bartlett, N.; Leary, K. *Re*V*. Chim. Min.* **¹⁹⁷⁶**, *¹³*, 82.

⁽¹⁸⁾ Hoppe, R.; Homann, R. *Z. Anorg. Allg. Chem.* **1970**, *379*, 194.

⁽¹⁹⁾ Heyns, A. M.; Pistorius, C. W. F. T. *Spectrochim. Acta* **1976**, *32A*, 535.

^a n, mmol in parentheses; *m*, weights, in mg calculated and observed (observed in **bold** type). *^b* These solids were not taken to dryness before they were washed with aHF, hence they were contaminated by (noncrystalline) adsorbed salts.

than it. The two patterns (AgPdF₆ and AgPtF₆) were nearly indistinguishable in line positions $\{a = 5.00(4) \text{ Å}, c = 14.6(2) \text{ Å} \text{ for } \text{AgPdF}_6;$ see Table S9}.

(c) Interaction of AgF with KPtF₆. A solution of AgF in aHF was added to dry KPtF₆, and the mixture was agitated at ∼20 °C (2 h). The red-brown product was washed $(2\times)$ with aHF to remove AgF excess. XRDP of the red-brown product showed a complex pattern akin to that of Ag_2SnF_6 with AgF_2 possibly also present. Fluorination of it in aHF at ∼20 °C (1400 Torr of F2) overnight produced a red-brown (aHF insoluble) product the XRDP of which was a combination of the pattern of rhombohedral-like AgPtF₆ (obtained in (a)) with that of $AgF₂$ {evidently the crystalline component (Ag_2PtF_6) had been fluorinated to AgF_2 and $AgPtF_6$.

(d) Interaction of AgF2 with PdF4 in BrF3/BrF5. Interaction of AgF₂ with PdF₄ in BrF₃/BrF₅ at 90 °C followed by fluorination with F_2 at 250 °C gave a product the powder pattern of which showed the rhombohedral-like pattern of $AgPtF_6$ obtained in (a) together with some weak lines of an unidentified phase.

X-ray powder diffraction samples were prepared as previously described,¹⁴ the X-ray diffraction pattern (XRDP) being recorded on film using Ni-filtered Cu K α radiation (General Electric Co. precision camera, Straumanis loading). The program ERACEL²⁰ was used for the refinement of the lattice parameters which incorporates the Nelson-Riley extrapolation function.²¹ The AgMF₆ salts ($\overline{M} = \overline{Os}$, Ir, Ru) show

(21) Nelson, J. B.; Riley, D. P. *Proc. Phys. Soc. (London)* **1945**, *57*, 160.

a cubic pattern similar to the one of $O_2PtF_6^{16,22}$ (*Ia*3) and the patterns were fully indexed on an *I* cubic unit cell with $Z = 8$ (see Table S3-S5). The observed line intensities match well with those calculated using the $MF₆⁻$ ion positional parameters from the single-crystal structure¹⁶ of O₂PtF₆ with Ag atoms in $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ (8a). These AgMF₆ salts were previously reported to adopt the $KNbF_6$ structure type,²³ however the cubic form (reported here for the first time) is always obtained from aHF solution. The same holds for $KSBF_6$. $Ag^IAu^VF_6$ is isostructural with LiSbF₆ (*R*3) and is so far the only $Ag^+MF_6^-$ salt of a second- or
third-row transition series element known to adopt this structure type third-row transition series element known to adopt this structure type. The XRDP pattern (see Table S6) contained also lines of some AgAuF4 impurity.²⁴ AgPtF_6 and AgPdF_6 are also isostructural with LiSbF₆ (see Table S8 and S9); however, they are to be formulated as $Ag^{II}M^{IV}F_6$ and not Ag^IM^VF₆. The possible departure from rhombohedral symmetry (that could arise from a Jahn-Teller distortion associated with Ag^{2+}) could be largely masked by the breadth of the lines. If so, the departure from rhombohedral symmetry must be subtle. There is a hint of small line splitting in the more crystalline samples of $AgPtF₆$ (obtained from the rather slow interaction of $AgAsF_6$ with O_2PtF_6). $AgBiF_6$ (see Table S7) is isostructural with KNbF₆ (tetragonal, $P\overline{4}2m$) as previously reported for AgMF₆ ($M = Os$, Ir, Ru).²³

- (22) Ibers, J. A.; Hamilton, W. C. *J. Chem. Phys.* **1966**, *44*, 1748.
- (23) Kemmitt, R. D. W.; Russell, D. R.; Sharp, D. W. A. *J. Chem. Soc.* **1963**, 4408.
- (24) Mayorga, S. Ph.D. Thesis, University of California at Berkeley, 1988; p 106; characterized by a tetragonal pattern with $a = 5.798(3)$ Å, $c =$ 10.806 Å, $V = 363.2(5)$ Å³, $Z = 4$.

⁽²⁰⁾ Laugier, J.; Filhol, A. Local version of program CELREF; Nantes, France, 1978.

Table 2. Trigonal Unit Cells for the Rhombohedral $(R3)$ LiMF₆ Salts of the Second and Third Transition Series³¹

a These data were taken from Kemmit et al.²³; all other cell parameters were obtained in this work from XRDP taken with Cu K α radiation (Ni filter), the indexing being carried out with the program ERACEL which refi $\frac{b}{c}$ Eight out of 23 lines in the powder pattern of the compound could not be indexed on the basis of a rhombohedral unit cell; the authenticity of the compound is therefore doubtful.

Magnetic measurements were carried out using a Superconducting Quantum Interference Device (SQUID) as previously outlined.25 The temperature dependence of the magnetic susceptibility was measured for AgPdF₆ and AgAuF₆. AgPdF₆ was found to be a Curie-Weiss paramagnet with $\Theta = 4.4$ K, $\mu = 1.80 \mu$ B. This value is lower than the one previously reported⁷ (μ = 1.97 μ _B). This can be attributed to some diamagnetic contamination (adsorbed KBiF₆) of the sample measured here. **AgAuF₆** was found to be diamagnetic. The magnetic properties of AgOsF₆ (μ = 2.95 μ _B), AgIrF₆ (μ = 1.24 μ _B), and AgRuF₆ (μ = 3.91 μ_B) have been reported previously,^{11,26} indicating that Ag⁺ and M^{5+} (M = Os, Ir, Ru) are present in these compounds.

Results and Discussion

Since AuF_4^- and PtF_6^{2-} can be made from the elements^{1,2} at 20 $^{\circ}$ C, in aHF made basic with good F⁻ donors, it is evident from the present work that similar conditions will produce AuF_6^- and Pt F_6^- if the F_2 is photodissociated. In practice it is often more convenient to make the quinquevalent salts starting from the AuF₄⁻ and PtF₆²⁻ precursors, but in some cases (e.g. $KAuF_6$) the synthesis can be conveniently managed in one step with high yield since the $KAuF_6$ is of modest solubility compared to KF (and $KAuF₄$) contaminant, which are therefore readily removed, in aHF solution, by decantation from the precipitated $KAuF_6$ salt.

The easy addition of fluorine (as F atoms) to AuF_4^- to generate AuF_6^-

$$
AuF_{4}^{-}{}_{(solv)} + 2F_{(solv)} \rightarrow AuF_{6}^{-}{}_{(solv)} \tag{1}
$$

stands in contrast to the failure¹⁴ to similarly prepare $AgF_6^$ even using the excellent F atom source, $KrF₂$. This facile oxidation of Au(III) is attributable to the weaker binding of the d orbital electrons of the gold, because of the tighter binding of s orbital electrons resulting from the high nuclear charge at the gold nucleus (a relativistic effect). This relativistic effect^{27,28} is much less significant for silver, where the high effective nuclear charge, at least in Ag(III), causes the 4d orbital electrons to be tightly held. This is seen especially in the small size of the $4d_{z}$ ² electron pair of Ag(III) compared²⁹ with Au(III), the latter formula unit volume being 5 Å^3 bigger than the former.

- (26) Hepworth, M. A.; Robinson, P. L.; Westland, G. J. *J. Chem. Soc.* **1954**, 4268.
- (27) Pitzer, K. *Acc. Chem. Res.* **1979**, *12*, 271.
- (28) Pyykö, P.; Desclaux, J.-P. *Acc. Chem. Res.* 1979, 12, 276. Pyykkö, P. *Chem. Re*V*.* **¹⁹⁸⁸**, *⁸⁸*, 563.
- (29) Zemva, B.; Lutar, K.; Jesih, A.; Casteel, W. J., Jr.; Wilkinson, A. P.; Cox, D. E.; Von Dreele, R. B.; Borrmann, H.; Bartlett, N. *J. Am. Chem. Soc.* **1991**, *113*, 4192.

Although the remaining valence electrons of PtF_6^2 constitute a weakly antibonding set of t_{2g} ⁶ symmetry, which has highly favorable exchange energy,30 the F atoms in aHF solution break this configuration and efficiently generate PtF_6^- :

$$
PtF_6^{2-}{}^{\prime}_{(solv)} + F^{\prime}_{(solv)} \rightarrow PtF_6{}^{\prime}{}^{\prime}_{(solv)} + F^{\prime}{}^{\prime}_{(solv)}
$$
 (2)

The analogous reaction with $P dF_6^2$, however, does not occur. Evidently as with Ag(III) the tighter binding of the 4d electrons relative to 5d electrons causes Pd(V) to be inaccessible, at least by this route. The decrease in formula-unit volume with increase in atomic number for the set of $LiMF₆$ salts, given in Table 2, is much more marked in the second transition series than in the third, and clearly indicates that the effective nuclear charge builds up more, with atomic number, across the second than across the third transition series.

The dt_{2g}⁶ valence electron configuration of AuF_6 ⁻ is so stable toward oxidation that the powerful one-electron oxidizer Ag(III) in acidified aHF is unable to release AuF_6 , although that same reagent generates PtF_6 , RuF_6 , and RhF_6 in high yields from their MF_6^- salts.³² This stability of AuF_6^- is in agreement with the large electron affinity, $E(AuF_6)$, calculated by Miyoshi and Sakai³³ of 9.56 eV. The higher nuclear charge of gold must be the most important factor in the greater oxidation resistance of AuF₆⁻ relative to PtF₆⁻ the ionization potential of which³⁴⁻³⁶ () *^E*(PtF6)) is [∼] 8 eV, but the more favorable exchange energy of the dt_{2g}⁶ configuration of Au(V) relative to the dt_{2g}⁵ configuration of Pt(V) must also contribute. The tighter binding of all electrons in AuF_6^- versus PtF_6^- is seen in the smaller effective volume of the former (see Table 2).

These facile syntheses of AuF_6^- and PtF_6^- in aHF provide for the preparation of a wide variety of salts of which the $LiMF₆$ are new. It is also of interest that even $O_2^+ A u F_6^-$ is preparable with this approach using O_2/F_2 mixtures with AuF_3 in aHF. It is plausible that the photochemistry generates 37 O_2 F, which although a weak base in aHF is nevertheless able to generate

- (31) Graudejus, O.; Bartlett, N. To be published.
- (32) Lucier, G.; Shen, C.; Casteel, W. J., Jr.; Chacon, L.; Bartlett, N. *J. Fluor. Chem.* **1995**, *72*, 157. Lucier, G. M. Ph.D. Thesis; LBNL Report No. LBL-37334, University of California, Berkeley, 1995. (33) Miyoshi, E.; Sakai, Y. *J. Chem. Phys.* **1988**, *89*, 7363.
- (34) Nikitin, M. I.; Siderov, L. N.; Korobov, M. V. *Int. J. Mass Spectrom.*
- *Ion Phys.* **1981**, *37*, 13.
- (35) Bartlett, N. *Angew. Chem., Int. Ed. Engl.* **1968**, *7*, 433.
- (36) Bartlett, N.; Okino, F.; Mallouk, T. E.; Hagiwara, R.; Lerner, M.; Rosenthal, G. L.; Kourtakis, K. Adv. Chem. Ser. 1990, 391, 226. Rosenthal, G. L.; Kourtakis, K. *Ad*V*. Chem. Ser.* **¹⁹⁹⁰**, *³⁹¹*, 226. (37) Lucier, G. M.; Shen, C.; Elder, S. H.; Bartlett, N. *Inorg. Chem.* **1998**,
- *37*, 3829.

⁽²⁵⁾ Casteel, W. J., Jr.; Lucier, G.; Hagiwara, R.; Borrmann, H.; Bartlett, N. *J Solid State Chem.* **1992**, *96*, 84.

⁽³⁰⁾ Orgel, L. E. *Introduction to Transition Element Chemistry*, 2nd ed.; J. Wiley & Sons Inc.: New York, 1966.

 O_2 ⁺ salts. The previously observed³⁷ rapid low-temperature oxidation of AuF₄⁻ by O_2 ⁺ or O_2 F in aHF indicate that AuF₆⁻ would be quickly made by either of these oxidizers.

Because the AuF_6 ⁻ has a filled subshell, dt_{2g} ⁶, it has a poor electron affinity, $E(AuF_6^-)$, since an added electron must be placed in an antibonding σ orbital (e_g*). This is in marked contrast to PtF₆⁻, where an additional electron (to give PtF₆²⁻) enters the t_{2g} ⁵ set, filling it, and in the process enhancing the exchange energy for that set by ∼50%. These effects explain the oxidation of Ag^+ by PtF_6^- and the stabilization of Ag^{2+} by PtF_6^{2-} or PdF_6^{2-} and the inability of AuF_6^{-} to oxidize Ag^{+} to Ag^{2+} :

$$
AuF_{6\ (solv)}^{-} + Ag^{+}_{(solv)} \rightarrow Ag^{+}AuF_{6\ (c)}^{-} \tag{3}
$$

$$
Pt(Pd)F_6^{2-}{}_{(solv)} + Ag^{2+}{}_{(solv)} \rightarrow Ag^{2+}Pt(Pd)F_6^{2-}{}_{(c)} \quad (4)
$$

The reactions in eq 4 are especially remarkable since the Ag^{2+} ion in aHF is able to oxidize³² O₂ to O₂⁺ and Xe to Xe(II) salts.³⁸ Interaction of O_2 ⁺PtF₆⁻ with AgAsF₆ to give Ag²⁺PtF₆²⁻

$$
AgAsF_{6(c)} + O_2^+(_{solv)} + PtF_6^-(_{solv)} \rightarrow Ag^{2+}PtF_6^{2-}(c) + O_2^+(_{solv)} + AsF_6^-(_{solv)}(5)
$$

establishes that $P t F_6$ ⁻ is a potent oxidizer. The failure to oxidize PdF_6^2 with F atoms, in the same way as for PtF_6 ⁻ from PtF_6^2 , implies that the unknown PdF_6 ⁻ should be an even more powerful oxidizer than $P tF_6^-$. Although the magnetic properties of AgPt(Pd) F_6 do not discriminate between $Ag^+MF_6^-$ and $Ag^{2+}MF₆²⁻$, since each possesses one unpaired electron, (the $Ag^+MF_6^-$ in the dt_{2g}^5 configuration of the anion, the $Ag^{2+}MF_6^{2-}$, in the d^9 configuration of the cation) there can be no doubt that the appropriate formulation is the latter one. The unit cell size and chemistry establish that the formulation is $Ag^{2+}Pt(Pd)F_6^{2-}$. For $AgAuF_6$, its diamagnetism and unit cell (see Table 3) show unambiguously that it is $Ag^+AuF_6^-$.

Data for the $LiMF₆$ salts of the second and third transition series, given in Table 2, show that the AuF_6 ⁻ has the smallest effective $MF₆⁻$ volume of the third transition series. Evidently because effective nuclear charge increases more with increasing atomic number in the second than in the third transition series, the effective volume of LiRh F_6 is smaller,³¹ and it is the last of that series, PdF_6^- and AgF_6^- being unknown. All other known $LiEF₆$ salts adopt the rhombohedral variant of the (6:6 coordinate) NaCl type arrangement (which is named from the $LiSbF₆$ structure39). This is essentially a hexagonal *close-packed* array of F ligands containing ordered arrangements of E and Li in octahedral holes. The structure can be attributed to the small, hard, and highly polarizing Li^+ strongly attracting, octahedrally, six F ligands of surrounding MF_6^- . The smallest EF_6^- (PF₆⁻) results in a formula unit volume,²³ V_{FU} , of only 88 \AA^3 for LiPF₆, whereas for the largest anion represented so far in this structure type,³¹ TaF₆⁻, V_{FU} (LiTaF₆) = 111 Å³. This gives an approximate estimate for the sizes of the anions since the Li⁺ can be taken estimate for the sizes of the anions since the $Li⁺$ can be taken to contribute very little to the cell volume in each case. This is not so for the Na⁺ ion in the NaEF₆ salts, which also for the most part adopt the same $LiSbF_6$ structure, or cubic relatives (*Pa*3 or *Fm*3*m*), all variants of 6:6 coordination. Generally, for any given LiSbF₆ lattice E, $V_{\text{FU}}(\text{NaEF}_6)$ exceeds $V_{\text{FU}}(\text{LiEF}_6)$ by

(39) Burns, J. H. *Acta Crystallogr.* **1962**, *15*, 1098.

Table 3. Comparison of $Ag^+AuF_6^-$ and $Ag^{2+}[Pt(Pd)F_6]^{2-}$ with some $Ag^+EF_6^-$ Salts

	$CsCl-type(8:8)$ arrangement		NaCl-type (6:6) arrangement	
	$Ag^IRu^VF_6{}^c$	\boldsymbol{d}	$Ag^{II}Pd^{IV}F_6{}^a$	
color	orange		brown	
SG	Ia ₃		R ₃	
$a(\AA)$	9.653(10)		5.00(4)	
$c(\AA)$			14.6(2)	
$V/Z(\AA^3)$	112.4(4)		105(3)	
	$Ag^{I}Os^{V}F_{6}c$	$Ag^{I}Ir^{V}F_{6}^{c}$	$Ag^{II}Pt^{IV}F_6$	$Ag^{I}Au^{V}F_{6}$
color	white	orange	brown	brown
SG	Ia ₃	Ia ₃	R ₃	R ₃
$a(\AA)$	9.7318(9)	9.704(2)	5.049(8)	5.283(3)
c(A)			14.46(2)	15.053(6)
$V/Z(A^3)$	115.21(4)	114.23(8)	106.4(5)	121.3(2)
	AgBiF ₆	AgSbF ₆	AgAsF ₆	$AgPF_6$
color	light yellow	white	white	white
SG	P42m	Ia3	Pa ₃	Pa ₃
a(A)	5.079(2)	$9.857(5)^{2}$	7.773(7)	7.563(4)
c(A)	9.552(3)			
$V/Z(A^3)$	123.2(2)	119.7(2)	117.4(5)	108.2(2)

 a The XRDP of AgPdF₆ was broad-lined and weak, and nearly indistinguishable from that of AgPtF_6 . The V_{FU} is certainly close to the one of AgPtF₆. ^{*b*} The lattice parameters were recalculated from ref 40. *^c* The cubic modification (probable SG *Ia*3) was obtained for the first time. Previously a tetragonal $KNbF_6$ -type structure has been reported for those compounds.²³ d AgRhF₆ has been reported to be black; however, no structural information was given.⁷

 \sim 20 Å³, this being a measure of how much larger Na⁺ is than the octahedral hole in the approximately close-packed F ligand array. Since Ag^+ is similar in size to Na^+ , it might, therefore, have been expected that the $AgEF_6$ salts would also have adopted 6:6 coordination throughout the series, but as the data in Table 3 show, this is not the case.

For the closed-shell, group 15 $AgEF_6$ salts, there is a switch in structure type,^{23,41} the smaller anions PF_6^- and $AsF_6^$ adopting NaCl-type structures, and the larger (SbF_6^- and BiF_6^-), variants of the CsCl structure type. The cubic forms reported here for AgMF₆ ($M = Ru$, Os, Ir) are new, these having been previously described as having the $KNbF_6$ structure type.²³ The data for the second and third transition series $AgEF_6$ salts show that the switch from NaCl to CsCl type is even more subtly correlated with anion size, since $AgRuF_6$ and $AgIrF_6$ both adopt CsCl type lattices, whereas $AgAuF_6$ has a LiSbF₆ structure (i.e., NaCl relative), even though the V_{FU} of the LiEF₆ relatives (see Table 2) differ by no more than 2 \AA ³. Comparing $V_{\text{FU}}(AgAuF_6)$ $= 121 \text{ Å}^3$ with $V_{\text{FU}}(\text{LiAuF}_6) = 99 \text{ Å}^3$, each of which adopts the NaCl-like LiSbF₆ structure, we see that the Ag⁺ is ~22 Å³ larger than the $Li⁺$ in effective volume (a value close to that already noted earlier for $Na⁺$). A similar comparison of the CsCl-type lattice $V_{\text{FU}}(A g R u F_6) = 112 \text{ Å}^3$ with that of the NaCl type $V_{\text{FU}}(\text{LiRuF}_6) = 101 \text{ Å}^3$ shows that the AgRuF₆ lattice is \sim 11 Å³ more closely packed than if it had adopted the NaCltype lattice. This better packing provided by the AgMF₆ of CsCltype structure holds in general for cations of the size of Ag⁺ or larger. An aspect of the closer packing of the CsCl type arrangement is that it places the nearest like-charged ions closer together than does the NaCl arrangement. This is illustrated well by the cubic $AgRuF_6$ structure (smallest V_{FU} of all salts of CsCltype structure) in which the nearest RuF_6^- are 4.83 Å apart,

⁽³⁸⁾ Zemva, B.; Hagiwara, R.; Casteel, W. J., Jr.; Lutar, K.; Jesih, A.; Bartlett, N. *J. Am. Chem. Soc.* **1990**, *112*, 4846.

⁽⁴⁰⁾ Bode, H. *Z. Anorg. Allg. Chem.* **1951**, *267*, 62.

⁽⁴¹⁾ Babel, D. *Struct. Bonding (Berlin)* **1967**, *3*, 1.

whereas in LiRuF₆ the closest interionic distance of like ions⁴² is 5.075 Å. Even in the smallest NaCl-type LiEF₆ (LiPF₆), the closest like-ion distance²³ is 4.921 Å. It is probable that $EF_6^$ ions in cubic or rhombohedral CsCl-type cells cannot be placed much closer than they are in $AgRuF_6$ since their repulsive interactions would then become severe. When the symmetry is tetragonal, as in the $AgBiF₆$ cell, the octahedra can be stacked more efficiently, each with a 4-fold axis parallel to the *a*,*b* plane and a super imposed octahedron at right angles, such that the two F^- ligands, of one octahedral edge, pack tetrahedrally with the like F ligands of the octahedron packing closely with it (above and below z). This requires $4₂$ axes parallel to z . For octahedrally close-packed spheres of radius *r* the ideal *c* axis for such an arrangement would be $(4 + 2\sqrt{2})r$.

For unmeshed octahedral EF_6 ⁻ species, they are thinnest when measured along a 3-fold axis. Such symmetry is appropriate for the packing of the octahedra in cubic or rhombohedral lattices. For an octahedral collection of spherical F^- ligands of radius *r*, the separation of one 3-fold set of F nuclei from the other is $2r\sqrt{2}/\sqrt{3}$. For the total effective thickness of the octahedral cluster in the 3-fold axis direction, we must add 2*r*. Therefore this effective thickness is $2r(1 + \sqrt{2}/\sqrt{3})$. If the thickness is 4.83 Å, as in AgRuF₆, we have $r = 1.33$ Å. This is slightly less than the commonly accepted value⁴³ (1.36 Å) for the van der Waals radius for the F^- ligand. Clearly, MF_6^- closest distances less than 4.83 Å, would signify strong repulsion. Indeed, in AuF_6^- , where the effective nuclear charge is high enough to raise the ionization potential³³ ~1 eV higher than in the ruthenium ion,³⁵ the AuF_6 ⁻ as a whole must be effectively smaller than RuF_6^- . But at this point the repulsive interactions of AuF_6^- (which would surely be placed less than 4.83 Å apart in a CsCl-type lattice) seem to render that arrangement less favorable than the less well packed NaCl structure. As is indicated in Table 3, this structure has a closest AuF_6^- interionic distance of 5.283(3) Å. The larger EF_6 ⁻ are associated with lower effective nuclear charge at E (e.g., $Ta(v)$), and this in turn must mean that the F ligands of the larger anions are more electron rich and polarizable, i.e. much softer than in the $A u F_6^$ ion. In any case, in the CsCl type structures with large anions, the like ions are further apart than 4.83 Å, the separation distance being (at least approximately) the anion diameter.

Although the XRDP of the (rapidly) precipitated AgPt- $(Pd)F₆$ is broad-lined and of heavy background, the pattern is unmistakably akin to that of $AgAuF_6$, but of cell size much closer to that of PdPtF₆. Indeed direct comparison of XRDP patterns of $\text{AgPt(Pd)}\mathbf{F}_6$ (which were nearly the same in diffraction-line placement) with those of $AgAuF_6$ and $PdPtF_6$ immediately indicated that the platinum and palladium salts belonged to the family of $M^{2+}MF_6^{2-}R_3^2$ materials.⁴⁴ The formula unit volume derived from the indexing of each of the formula unit volume derived from the indexing of each of the patterns was ~106 Å³, which is slightly larger than that⁴⁵ of PdPtF₆ (104 Å³), in harmony with the greater antibonding effect of the d^9 configuration of Ag²⁺ compared to that of the d^8 of Pd^{2+} . Although there could be a Jahn-Teller distortion arising from the d^9 configuration this, if it occurs, must be sufficiently subtle to be masked by the broadening of the lines (as a consequence of small crystallite size; in more crystalline samples

of AgPt F_6 a possible line splitting could be present, in which case the true symmetry must be lower than the rhombohedral symmetry assumed here). The pattern is convincingly indexable on the basis of a $LiSbF_6$ type rhombohedral cell. It is clear that if the material were $Ag^+PtF_6^-$ the formula unit volume should be slightly larger than that of AgAuF₆, just as LiPtF₆ is ~0.4 $\rm A^{3}$ larger than LiAuF₆ (see Table 2), i.e., $V_{\rm FU}(Ag^+PtF_6^-) \approx 122$ $A³$. The simple explanation for the observed formula unit volume, of \sim 106 Å³ (which will not be significantly different if the symmetry is lower), is the formulation $Ag^{2+}Pt(Pd)F_6^{2-}$, in which the Coulomb attraction is four times greater than in $Ag^+AuF_6^-$, or what might have been $Ag^+Pt(Pd)F_6^-$. The $Ag^{2+}Pt(Pd)F_6^{2-}$ formulation is also in harmony with the failure of these materials to combine with fluorine. The $Ag^+MF_6^-$ salts $(M = As, Ru, Ir)$ and $Ag^{+}BF_{4}^{-}$, all add fluorine easily to form
 AgF^{+} salts^{11,25} (AgPE₆ gives AgE₂ and PE₅ and AgOsE₆ gives AgF⁺ salts^{11,25} (AgPF₆ gives AgF₂ and PF₅, and AgOsF₆ gives AgF_2 and OsF₆). The salt $AgF^+AuF_6^-$ has also been prepared previously in these laboratories²⁵ and is isostructural with⁴⁶ $AgF^+AsF_6^-$.

It is of interest that each of PtF_6^- and RuF_6^- is able to stabilize^{6,16,47} O_2 ⁺. The salts have similar unit cells^{6,16,47} and stability with respect to dissociation. In harmony with these similarities the electron affinity of RuF_6 should be close to that of PtF₆³⁴⁻³⁶ which is ∼8 eV. It might have been expected, therefore, that the second electron affinity would also have nearly the same value for both ions. But RuF_6^{2-} does not stabilize Ag^{2+} . The close structural relationship of AgRuF₆ to $AgIrF₆$ (each has a CsCl-type cell, such as would also be expected for $\text{Ag}^+\text{PtF}_6^-$) and its reported magnetic behavior^{11,26} establish that the ruthenium salt is $Ag^+RuF_6^-$. This must signify a smaller second electron affinity for RuF_6 than for PtF_6 , since the unit cells of the $AgMF₆$ salts of the same charge must be similar, as is the case for a variety^{1,48} of RuF_6^- compared with PtF₆⁻, and RuF₆²⁻ compared with PtF₆²⁻ salts. The lattice energetics of the ruthenium and platinum relatives must therefore be similar.49 Consequently, it is plausible to assign the greater second electron affinity of PtF_6 to the favorable exchange energy benefit when dt_{2g}^5 becomes dt_{2g}^6 . In the conversion of the ruthenium dt_{2g}^3 to dt_{2g}^4 there is no increase in exchange energy.

The preference of the formulation $Ag^{2+}PtF_6^{2-}$ to that of $Ag^+PtF_6^-$ requires that the electron affinity of PtF_6^- , $E(PtF_6^-)$, and the lattice energy benefit provided by $Ag^{2+}PtF_6^{2-}$ relative to $Ag^+PtF_6^-$ must exceed the ionization enthalpy for conversion of $Ag⁺$ to $Ag²⁺$. The last term⁵⁰ is 496 kcal mol⁻¹. The lattice enthalpy⁴⁹ for $Ag^+PtF_6^-$ based on the anticipated formula unit volume is -139 kcal mol⁻¹. On the basis of the observed volume for Ag²⁺PtF₆²⁻ (of ∼106 Å³) and assuming that the lattice energy of $A^{2+}B^{2-}$ is four times that of $A^{+}B^{-}$, the lattice energy is estimated to be 575 kcal mol⁻¹. The change in lattice energy is therefore \sim 436 kcal mol⁻¹. Therefore *E*(PtF₆⁻) is required to be >60 kcal mol⁻¹ for such an oxidation to occur. This approaches the electron affinity of a fluorine atom,⁵¹ $E(F)$ $= 78.4$ kcal mol⁻¹. It is clear, however, that $E(PdF_6^-)$ must be even larger than $E(PdF_6^-)$ even larger than $E(\text{PtF}_6^-)$.

Acknowledgment. The authors gratefully acknowledge the support of this work by the Director, Office of Energy Research,

- (46) Gantar, D.; Frlec, B. *Acta Crystallogr.* **1987**, *C43*, 618.
- (47) Edwards, A. J.; Falconer, W. E.; Griffiths, J. E.; Sunder, W. A.; Vasile, J. *J. Chem. Soc., Dalton Trans.* **1974**, 1129.
- (48) Casteel, W. J., Jr.; Horwitz, T. *Eur. J. Solid State Inorg. Chem.* **1992**, *29*, 649.
- (49) Shen, C.; Hagiwara, R.; Mallouk, T. E.; Bartlett, N. *Ad*V*. Chem. Ser.* **1994**, *26*, *555*.
(50) Moore, C. E. *NRDS-NBS* (*Washington, DC*) **1970**, 34.
-
- (50) Moore, C. E. *NRDS*-*NBS (Washington, DC)* **¹⁹⁷⁰**, 34. (51) Hotop, H.; Lineberger, W. C. *J. Phys. Chem. Ref. Data* **1975**, *4*, 539.

⁽⁴²⁾ This equals the trigonal cell *a* parameter. The rhombohedral *a* gives the next nearest like-ion neighbor distances.

⁽⁴³⁾ Pauling, L. *The Nature of the Chemical Bond*, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 346.

⁽⁴⁴⁾ Babel, D.; Tressaud, A. In *Inorganic Solid Fluorides*; Hagenmuller, P., Eds.; Academic Press: London, 1985; Chapter 3, pp 97-105.

⁽⁴⁵⁾ Rao, P. R. Ph.D. Thesis, University of British Columbia, 1965. Bartlett, N.; Rao, P. R. *Proc. Chem. Soc.* **1964**, 393.

Room Temperature Syntheses of AuF_6^- and PtF_6

Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract Number DE-AC-03-76SF00098. O.G. also gratefully acknowledges the Alexander von Humboldt Foundation for a Feodor-Lynen-Fellowship, and S.H.E. acknowledges the National Science Foundation for a fellowship under Grant CHE-9302414. We also thank Dr. A. Tressaud for the preparation of $AgPdF_6$ in

BrF3/BrF5 and Dr. M. Whalen for carrying out the attempts to prepare PdF_6^- .

Supporting Information Available: Tables S1-S9, listing measured and calculated 1/*d*² as well as the respective estimated and calculated intensities and (*hkl*) values. This material is available free of charge via the Internet at http://pubs.acs.org.

IC981397Z