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Introduction

Iron(III) porphyrin complexes have been used as model
compounds to mimic the chemistry of cytochrome P-450
enzymes that are capable of catalyzing a wide range of oxidation
reactions including the remarkably difficult hydroxylation of
unactivated C-H bonds of alkanes.1 Previous studies for iron-
(III) porphyrin complex-catalyzed alkane hydroxylation reac-
tions have been conducted extensively with oxidants such as
PhIO, KHSO5, NaOCl, ROOH, O2, and ozone.2,3 However, as
far as we have been able to discern,radical-free (enzyme
mimetic) hydroxylation of alkanes with a biologically important
oxidant (i.e., H2O2) has been rarely observed in iron porphyrin-
catalyzed oxygenation reactions.4-6 Moreover, although high-
valent iron(IV) oxo porphyrin cation radical species have been
generally proposed as a reactive intermediate responsible for

the C-H bond activation in cytochrome P-450 enzymes and
iron porphyrin systems1,2 and the presence of a high-valent iron
oxo intermediate has been detected during the catalytic hy-
droxylation of ethylbenzene by ozone,3 direct hydroxylation
reactions by “isolated” high-valent iron(IV) oxo porphyrin cation
radical complexes have been rarely reported.7 In this note, we
report that an electronegatively-substituted iron porphyrin
complex efficiently catalyzes the hydroxylation of alkanes by
H2O2 via radical-freeoxidation reactions in aprotic solvent (i.e.,
CH3CN) and that an “isolated” high-valent iron(IV) oxo
porphyrin cation radical intermediate of the iron porphyrin
complex is capable of activating C-H bonds of alkanes to give
oxygenated products efficiently even at low temperature. We
also present strong evidence that the hydroxylating intermediate
generated in the catalytic H2O2 reaction is the high-valent iron-
(IV) oxo porphyrin cation radical species.

Results and Discussion

The reactions of Fe(TF4TMAP)5+ (1, TF4TMAP ) meso-
tetrakis(2,3,5,6-tetrafluoro-4-N,N,N-trimethylaniliniumyl)por-
phyrinato)8 with H2O2 (30% aqueous) in the presence of alkanes
efficiently yielded the corresponding alcohols as major products
with high alcohol to ketone ratios9 in acetonitrile solution (Table
1). Interestingly, when the hydroxylation of cyclohexane was
performed with18O-labeled hydrogen peroxide in air,10 we found
that the source of the oxygen incorporated into cyclohexanol
was the oxidant H218O2, not molecular oxygen (eq 1). The alkane

hydroxylation reactions were found to be highly stereospecific,
since the hydroxylations ofcis- and trans-1,2-dimethylcyclo-
hexane afforded tertiary alcohol products with>99% retention.11

Also, the kinetic isotope effect (KIE) for the cyclohexanol
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formation by1/H2O2 was determined to be 3.7( 0.3 (Table
2),12 indicating that the C-H bond activation is involved in the
rate-determining step.13 All of the results14 presented above
clearly demonstrate that the reactive intermediate generated in
the reaction of1/H2O2 is distinct from those found in typical
radical-type of oxidation reactions (i.e., alkane hydroxylation
by hydroxyl radical).9a

We also attempted the hydroxylation of alkanes by the high-
valent iron(IV) oxo porphyrin cation radical complex of1.
Surprisingly, we found that the iron oxo porphyrin complex
[(TF4TMAP)+•FeIVdO]5+, 2, is able to hydroxylate alkanes with
high product yields at-40 °C (Table 1). In the alkane

hydroxylations by2, we observed high alcohol to ketone ratios
and stereospecific hydroxylations ofcis- andtrans-1,2-dimeth-
ylcyclohexane, as observed in the catalytic H2O2 reactions. The
KIE value for the cyclohexanol formation by2 was determined
to be 6.6( 0.5 at-40 °C (Table 2).

We then focused our efforts on characterizing the nature of
the reactive intermediate responsible for the hydroxylation of
alkanes by1/H2O2. We first performed isotopically labeled
water, H2

18O, experiments, since it has been shown previously
that high-valent iron oxo porphyrin complexes exchange oxygen
atoms with H2

18O, resulting in the incorporation of18O into
oxygenated products.15 When the hydroxylation of cyclohexane
by H2O2 was performed in the presence of H2

18O,16 we observed
40% 18O-incorporation from the labeled H218O (95% 18O
enriched) into the cyclohexanol product (eq 2), suggesting that
a high-valent iron oxo intermediate is generated as a reactive
species responsible for the cyclohexane hydroxylation.15 Further

supporting evidence for the intermediacy of2 in the 1/H2O2

reaction comes from the results of reactivity studies such as
kinetic isotope effects (kH/kD)13 and competitive hydroxylations.
Since the reactions with2 and 1/H2O2 were run at different
temperatures (i.e.,-40 °C for 2 and 25°C for 1/H2O2), we
considered temperature effect on the activation of C-H bonds.13

We therefore conducted the reactivity studies with1/m-CPBA
(m-chloroperoxybenzoic acid) at-40 and 25°C, for compari-
son. The KIE values determined with2 and1/m-CPBA at-40
°C were 6.6( 0.5 and 6.4( 0.5, respectively, and those
obtained from1/H2O2 and1/m-CPBA at 25°C were 3.7( 0.3
and 3.9 ( 0.3, respectively (Table 2). In the competitive
hydroxylations performed withcis- and trans-1,2-dimethylcy-
clohexane, the ratios ofcis- to trans-1,2-dimethylcyclohexanol
products were determined to be 20 in the reactions of2 and
1/m-CPBA at -40 °C and 10 in the reactions of1/H2O2 and
1/m-CPBA at 25°C (Table 3).17 Since the reactions of1/m-
CPBA at-40 and 25°C afford the formation of2,18 the results
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Table 1. Hydroxylation of Alkanes by1/H2O2 at 25°C and by2 at
-40 °Ca

yield (%)b

substrate products 1 + H2O2
c 2

cyclohexane cyclohexanol 33 40
cyclohexanone 2 3

cyclooctane cyclooctanol 50 60
cyclooctanone 5 8

cis-1,2-dimethyl-
cyclohexane

cis-1,2-dimethylcyclohexanol 54 55

2,3- and 3,4-dimethylcyclohexanold 9 14
trans-1,2-dimethyl-

cyclohexane
trans-1,2-dimethylcyclohexanol 10 8

2,3- and 3,4-dimethylcyclohexanold 24 34

a See Experimental Section for detailed experimental procedures.
Since the hydroxylation reactions were not affected by molecular
oxygen, all the reactions were performed in air.b Based on the amount
of oxidants used.c Less than 10% of the iron porphyrin complex was
destroyed.d The yield of 3,4-dimethylcyclohexanol was determined with
commercially available 2,3-dimethylcyclohexanol, with an assumption
that the response factors for these alcohols are identical.

Table 2. Comparison of KIE Values Obtained in the Reactions
of 1/H2O2 at 25°C, 2 at -40 °C, and1/m-CPBA at 25°C
and-40 °Ca

kH/kD

temp,°C 1 + H2O2
b 2c 1 + m-CPBAd

25 3.7( 0.3 3.9( 0.3
-40 6.6( 0.5 6.4( 0.5

a All reactions were run at least in triplicate, and the data reported
represent the average of these reactions.b Reaction conditions were the
same as described in the Experimental Section (for the reaction of
FeIII (TF4TMAP)5+ + H2O2) except that a 1:5 mixture of cyclohexane
(0.3 mmol) and cyclohexane-d12 (1.5 mmol) was used to improve the
accuracy for measuring the amount of the deuterated cyclohexanol
product.c Reaction conditions were the same as described in the
Experimental Section (for the [(TF4TMAP)+•FeIVdO]5+ reaction) except
that a mixture of cyclohexane (0.03 mmol) and cyclohexane-d12 (0.15
mmol) was used.d Reaction conditions:m-CPBA (7.5× 10-3 mmol,
diluted in a solvent mixture (0.02 mL) of CH3CN/CH2Cl2 (1:1)) was
added to a solution containing Fe(TF4TMAP)(CF3SO3)5 (5 × 10-4

mmol) and substrates (1:5 mixture of cyclohexane (0.08 mmol) and
cyclohexane-d12 (0.4 mmol)) in a solvent mixture (1 mL) of CH3CN/
CH2Cl2 (1:1). The reaction mixture was stirred for 40 min, and PPh3

was added to quench the reaction prior to the product analysis.
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of the reactivity studies, after considering the temperature effect,
strongly support the conclusion that the reaction of1/H2O2

generates2 as a hydroxylating intermediate.19,20

In summary, we have shown that a synthetic iron(III)
porphyrin complex containing highly electron-withdrawing
substituents on the porphyrin ligand is able to conduct biomi-
metic alkane hydroxylations with a biologically important
oxidant (i.e., H2O2)21 and that its high-valent iron(IV) oxo
porphyrin intermediate, prepared in situ by the reaction of the
iron porphyrin complex withm-CPBA at low temperature,
activates C-H bonds of aliphatic hydrocarbons to give alcohol
products efficiently. The latter complex will provide a great
opportunity to elucidate the detailed mechanisms of oxygen atom
transfer from high-valent iron oxo porphyrin intermediates to
alkanes (e.g., oxygen rebound, nonsynchronous concerted, or
“agostic” substrate-catalyst complex mechanism).22

Experimental Section

Materials. Acetonitrile (anhydrous) was obtained from Aldrich
Chemical Co. and used without further purification. All chemicals

obtained from Aldrich Chemical Co. were of the best available purity
and were used without further purification unless otherwise indicated.
H2

18O (95%18O enrichment) andm-CPBA (65%) were purchased from
Aldrich. H2O2 (30% aqueous) was purchased from Fluka. Fe(TF4-
TMAP)(CF3SO3)5

8 was obtained from Mid-Century Chemicals.

Instrumentation. Product analyses were performed on either a
Hewlett-Packard 5890 II Plus gas chromatograph interfaced with a
Hewlett-Packard Model 5989B mass spectrometer or a Donam Systems
6200 gas chromatograph equipped with a FID detector. UV-vis spectra
were recorded on a Hewlett-Packard 8453 spectrophotometer equipped
with anOptostatDN variable-temperature liquid-nitrogen cryostat (Oxford
Instruments). ESR spectra were obtained on a Bruker ESP-300
spectrometer.

Catalytic Hydroxylation of Alkanes by Fe(TF4TMAP) 5+ and
H2O2. In order to avoid the fast reaction of [(TF4TMAP)+•FeIVdO]5+

with H2O2 that leads to the inhibition of hydroxylation of alkanes,21,23

we added H2O2 extremely slowly to increase the yields of products.
H2O2 (0.084 mmol, 30% aqueous, diluted in 1 mL of CH3CN) was
divided into four aliquots. An aliquot (0.021 mmol of H2O2 in 0.25
mL of CH3CN) was slowly added over a period of 10 min to a stirred
CH3CN (2.7 mL, containing 0.1 mL of CH2Cl2) solution containing
Fe(TF4TMAP)(CF3SO3)5 (2.0× 10-3 mmol) and substrate (2.1 mmol),
and the reaction mixture was stirred for 5 min at room temperature.
Subsequently, the second aliquot was added over a period of 10 min
and stirred for 5 min followed by addition of the third and the fourth
aliquots. Total reaction time was 1 h. The reaction mixture was analyzed
by GC or GC/MS with known authentic samples.

Stoichiometric Hydroxylation of Alkanes by [(TF4TMAP) +•FeIVd
O]5+. The reaction of Fe(TF4TMAP)5+ with 1.2 equiv ofm-CPBA in
CH3CN at-40 °C gave the formation of a green intermediate. A UV-
vis spectrum of the intermediate showed a Soret band at 389 nm with
decreased intensity and broad absorption bands around 550-700 nm
(λmax ) 652 nm) (Supporting Information, Figure S1), characteristic
of porphyrin cation radical complexes.7b The green intermediate showed
no strong EPR signals at 10 K in frozen acetonitrile solution. Substrate
(0.2 mmol, dissolved in a solvent mixture (0.2 mL) of CH3CN/CH2Cl2
(1:1)) was added to a solution containing [(TF4TMAP)+•FeIVdO]5+,
which was prepared by reacting Fe(TF4TMAP)5+ (2 × 10-3 mmol)
with m-CPBA (2.4 × 10-3 mmol) in CH3CN (0.5 mL) at-40 °C.
After the reaction solution was stirred for 10 min at-40 °C, PPh3
(0.01 mmol diluted in 0.1 mL of CH2Cl2) was added to quench the
reaction followed by analysis of the resulting solution with GC or GC/
MS.
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Table 3. Product Ratios Determined in the Competitive
Hydroxylation Reactions Performed with1/H2O2 at 25°C, 2 at -40
°C, and1/m-CPBA at 25°C and-40 °Ca

ratio ofcis- to trans-1,2-dimethylcyclohexanol

temp,°C 1 + H2O2
b 2c 1 + m-CPBAd

25 10( 1 10( 1
-40 20( 2 21( 2

a All reactions were run at least in triplicate, and the data reported
represent the average of these reactions.b Reaction conditions were the
same as described in the Experimental Section (for the reaction of
FeIII (TF4TMAP)5+ + H2O2) except that a 1:7 mixture ofcis-1,2-
dimethylcyclohexane (0.3 mmol) andtrans-1,2-dimethylcyclohexane
(2.1 mmol) was used to improve the accuracy for measuring the amount
of the trans-1,2-dimethylcyclohexanol product.c Reaction conditions
were the same as described in the Experimental Section (for the
[(TF4TMAP)+•FeIVdO]5+ reaction) except that a 1:7 mixture ofcis-
1,2-dimethylcyclohexane (0.03 mmol) andtrans-1,2-dimethylcyclo-
hexane (0.21 mmol) was used.d Reaction conditions:m-CPBA (2.4
× 10-3 mmol, diluted in 20µL of CH3CN) was added to a solution
containing Fe(TF4TMAP)(CF3SO3)5 (2.0× 10-3 mmol) and substrates
(1:7 mixture ofcis-1,2-dimethylcyclohexane (0.03 mmol) andtrans-
1,2-dimethylcyclohexane (0.21 mmol)) in a solvent mixture of CH3CN
(0.6 mL) and CH2Cl2 (0.1 mL). The reaction mixture was stirred for
30 min, and PPh3 was added to quench the reaction prior to the product
analysis.
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