Experimental and Theoretical Characterization of the Oxygen-Coordinated Donor-**Acceptor Adducts of COCl2, COClF, and COF2 with AsF5 and SbF5**

Berthold Hoge,†,§ Jerry A. Boatz,‡ Joachim Hegge,† and Karl O. Christe*,†,‡

Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, and Air Force Research Laboratory, Edwards Air Force Base, California 93524

*Recei*V*ed February 8, 1999*

When reacted with an excess of the corresponding carbonyl halides, $ASF₅$ and $SbF₅$ form the following 1:1 adducts: COCl₂'AsF₅, COCl₂'SbF₅, COClF'AsF₅, COClF'SbF₅, COF₂'AsF₅, and COF₂'SbF₅. All adducts are unstable at ambient temperature, and their dissociation enthalpies were determined from the dissociation pressure curves. Vibrational and multinuclear NMR spectra and theoretical calculations show that all compounds are oxygencoordinated donor-acceptor adducts, and that the strengths of the oxygen bridges increase from COF₂ to COCl₂ and from $\text{As}F_5$ to $\text{Sb}F_5$. Full normal coordinate analyses of the adducts demonstrate that the bridging modes occur below 100 cm⁻¹, justifying the frequently used approximation of analyzing similar weak adducts in terms of their separate donor and acceptor molecules.

Introduction

In the course of an investigation of halocarbonyl cations, $¹$ it</sup> became necessary to study the competing Lewis base-Lewis acid interactions of the dihalocarbonyl compounds, COCl₂, COCIF, and COF_2 , with AsF₅ and SbF₅. Although the individual dihalocarbonyl and Lewis acid molecules are well characterized, little is known about their interactions.²

For COCl₂, no reports on the $\text{AsF}_5/\text{COCl}_2$ system were found, and the only report on the $SbF₅/COCl₂$ system consists of a brief comment³ that with a 5-fold excess of $SbF₅$ in $SO₂ClF$ solution at -78 °C a new signal was observed in the ¹³C NMR spectrum, which was correctly attributed to the $COCl⁺$ cation.¹ Other Lewis acids, which were studied in connection with COCl₂, include BF₃, BCl₃, AlCl₃, AlBr₃, GaCl₃, SnCl₄, SbCl₅, $MoCl_6$, WCl₆, and PtCl₄,² but only for AlCl₃^{4,5} and possibly SbCl₅^{4,6} was evidence presented for the existence of oxygencoordinated 1:1 donor-acceptor adducts.

For COClF, the only reports on an interaction with Lewis acids are two NMR studies^{3,7} with SbF₅ in SO₂ClF solution. The results from these studies indicate the presence of an oxygen-coordinated donor-acceptor adduct at low temperatures and halogen exchange at higher temperatures.

- ‡ Air Force Research Laboratory.
- § Current address: Institute of Inorganic Chemistry, University of Cologne, Germany.
- (1) Christe, K. O.; Hoge, B.; Boatz, J. A.; Prakash, G. K. S.; Olah, G. A.; Sheehy, J. A. *Inorg. Chem.*, in press.
- (2) For a recent review, see: Ryan, T. A.; Ryan, C.; Seddon, E. A.; Seddon, K. R. *Phosgene and Related Carbonyl Halides*; Topics in Inorganic and General Chemistry, Monograph 24; Clark, R. J H., Ed.; Elsevier: Amsterdam, 1996.
- (3) Prakash, G. K.S.; Bausch, J. W.; Olah, G. A. *J. Am. Chem. Soc*. **1991**, *113*, 3203.
- (4) Christe, K.O. *Inorg. Chem*. **1967**, *6*, 1706.
- (5) Huston, J. L. *J. Inorg. Nucl. Chem*. **1956**, *2*, 128.
- (6) Dehnicke, K. *Z. Anorg. Allg. Chem*. **1961**, *312*, 237.
- (7) Bacon, J.; Dean, P. A. W.; Gillespie, R. J. *Can. J. Chem*. **1971**, *49*, 1276.

For COF₂, the presence of thermally unstable, oxygencoordinated donor-acceptor complexes with SbF_5 and AsF_5 were first demonstrated by low-temperature ¹⁹F NMR measurements,⁷ and subsequently confirmed by low-temperature Raman spectroscopy.8 However, no physical properties were reported for these adducts, and no reports could be found on other COF₂^{*} Lewis acid adducts.

Experimental Section

Materials and Methods. Carbonyl chloride (Matheson), COF₂ (PCR) Research Chemicals), and AsF₅ (Ozark Mahoning) were used as received. Antimony pentafluoride (Ozark Mahoning) was distilled prior to use. The COClF was prepared by a literature method.11

The volatile materials were handled in a stainless steel vacuum line equipped with Teflon-FEP U-traps, 316 stainless steel bellows seal valves, and a Heise pressure gauge.⁹ Nonvolatile materials were handled in the dry nitrogen atmophere of a glovebox. Raman spectra were recorded on a Cary model 83 GT using 1.5 W of the 488 nm exciting line of an Ar ion laser and flame-sealed Pyrex tubes as sample containers. A previously described¹⁰ device was used for the recording of the low-temperature spectra. Infrared spectra were recorded on a Midac M FTIR spectrometer. NMR spectra were measured on a Varian Unity 300 MHz NMR spectrometer equipped with a 5 mm variabletemperature broad band probe. Sealed capillaries, which were filled with acetone- d_6 as lock substance, TMS as ¹³C reference, and CFCl₃ or $C_6H_5CF_3$ as ¹⁹F reference, were placed inside the NMR tubes with the listed 19F shifts referenced to CFCl3. For the NMR measurements, the corresponding adducts were prepared in 0.5" o.d. Teflon ampule using an excess of carbonyl halide, followed by removal of the excess at low temperature, transfer of the solid at -196 °C into an NMR tube in the dry box and addition of the solvent on the vacuum line.

For the dissociation pressure measurements, the 1:1 adducts of $\text{As} \text{F}_5$ and SbF₅ with the carbonyl halides were preformed in a Teflon-FEP ampule, which was directly connected to a Heise pressure gauge. The

- (9) Christe, K. O.; Wilson, R. D.; Schack, C. *J. Inorg. Synth*. **1986**, *24*,
- 3. (10) Miller, F. A.; Harney, B. M. *Appl. Spectrosc*. **1969**, *23*, 8.
- (11) Hoge, B.; Christe, K. O. *J. Fluor. Chem*. **1999**, *94,* 107.
- 10.1021/ic990157w CCC: \$18.00 © 1999 American Chemical Society Published on Web 06/11/1999

[†] University of Southern California.

⁽⁸⁾ Chen, G. S. H.; Passmore *J. Chem. Soc., Dalton Trans.* **1979**, 1257.

equilibrium dissociation pressures were established for each temperature, approaching the equilibria from both sides, i.e., higher pressures and lower pressures. The thermochemical properties were derived in the same manner as previously described.12 The method used for the tensiometric titration (vapor pressure-composition isotherm) of the $AsF₅-COF₂$ system has previously been described.⁴

Preparation of COF₂'AsF₅. Arsenic pentafluoride (3.75 mmol) and COF2 (40.0 mmol) were combined in a 3/4′′ o.d. Teflon-FEP ampule at -196 °C. The mixture was stirred at -78 °C for 1 h with a magnetic stirring bar, resulting in a suspension of a white solid in liquid $COF₂$. The excess of COF₂ was pumped off at -126 °C, leaving behind the white, solid COF_{2} ^{\cdot}As F_{5} adduct in quantitative yield. The adduct melts in the range of -45 to -42 °C. Dissociation pressure (temperature [°C], pressure [mm]): $(-100, 2)$, $(-95, 4)$, $(-90, 7)$, $(-85, 13)$, $(-81,$ 20), $(-75, 38)$, $(-71, 58)$, $(-70, 66)$, $(-66, 98)$, $(-65, 108)$, $(-64,$ 119), (-63, 131), (-62, 140), (-60, 168), (-57, 211), (-55, 253). NMR (SO₂ClF, −60 °C) for COF₂·AsF₅: *δ*(¹³C) 137.8 ppm; ¹*J*(¹³C−¹⁹F) 330 Hz; *δ*(¹⁹F) 16 ppm. For COF₂: *δ*(¹³C) 130.0 ppm; ¹*J*(¹³C−¹⁹F) 313 Hz; *δ*(¹⁹F) 23 ppm.

Preparation of COF₂'SbF₅. A mixture of SbF₅ (16.8 mmol) and COF2 (40.0 mmol) was reacted, and the resulting white, solid 1:1 adduct isolated as described for COF_2 ·AsF₅. The yield of COF_2 ·SbF₅ was quantitative.

Preparation of COCIF'AsF₅. A mixture of AsF₅ (1.7 mmol) and COClF (30.2 mmol) was stirred at -78 °C for 1 h. The excess of COClF was pumped off at -110 °C, leaving behind COClF \cdot AsF₅ (1.7 mmol) as a white, solid powder melting in the range -42 to -39 °C. Dissociation pressure (temperature [$°C$], pressure [mm]): $(-87, 3)$, $(-84, 4), (-82, 5), (-80, 6), (-79, 7), (-78, 8), (-77, 9), (-76, 10),$ $(-75, 11)$, $(-74, 14)$, $(-73, 16)$, $(-72, 18)$, $(-71, 20)$, $(-70, 22)$, $(-69, 25)$, $(-68, 28)$, $(-67, 32)$, $(-66, 35)$, $(-65, 39)$, $(-64, 44)$, (-63, 50), (-62, 56), (-61, 62), (-60, 68), (-59, 76), (-58, 85), $(-57, 94)$, $(-56, 104)$, $(-55, 117)$, $(-54, 128)$, $(-53, 140)$, $(-52,$ 157), (-51, 170), (-50, 192), (-49, 224), (-48, 247), (-47, 275), $(-46, 298), (-45, 320), (-44, 342), (-43, 363), (-42, 380).$

Preparation of COCIF·SbF₅. A mixture of SbF₅ (2.3 mmol) and COClF (15.6 mmol) was reacted as described for COClF·AsF₅, resulting in the quantitative formation of the white, solid COClF \cdot SbF₅ adduct. NMR (SO₂ClF, -60 °C) for COClF·SbF₅: δ ⁽¹³C) 163.8 ppm; ¹J⁽¹³C-¹⁹F) 383 Hz; δ (¹⁹F) 73.9 ppm. For COFCl: δ (¹³C) 142.0 ppm; ¹J(¹³C-¹⁹F) 368 Hz; δ ⁽¹⁹F) 59.7 ppm. Dissociation pressure (temperature [°C] pressure [mm]): (-43, 3), (-40, 9), (-38, 11), (-36, 14), (-34, 19), $(-29, 35)$, $(-25, 54)$, $(-23, 70)$, $(-20, 96)$, $(-16, 139)$, $(-15, 152)$, $(-13, 173), (-12, 187), (-11, 194), (-10, 200).$

Preparation of COCl₂'AsF₅. A mixture of AsF₅ (12.0 mmol) and $COCl₂$ (30.0 mmol) was stirred at -78 °C for 1 h. The excess of $COCl₂$ was pumped off at -85 °C, leaving behind 3.2 g of a white solid (weight calcd for 12.0 mmol of $COCl₂·AsF₅ = 3.226$ g), melting at -20 ± 2 ^oC. NMR (SO₂ClF, -60 ^oC) for COCl₂·AsF₅: δ (¹³C) 155.9 ppm. For COCl₂: δ ⁽¹³C) 143.7 ppm. Dissociation pressure (temperature [$\rm{°C}$], pressure [mm]): $(-63, 5)$, $(-60, 9)$, $(-58, 12)$, $(-51, 22)$, $(-44, 49)$, $(-43, 59)$, $(-42, 66)$, $(-40, 85)$, $(-38, 104)$, $(-37, 115)$, $(-35, 143)$, $(-32, 186)$, $(-29, 230)$, $(-28, 260)$, $(-27, 292)$, $(-26, 330)$, $(-25,$ 375), $(-24, 421)$, $(-22, 481)$.

Preparation of COCl₂'SbF₅. Antimony pentafluoride (4.3 mmol) was dissolved at -78 °C in 5 mL of liquid COCl₂. After 5 min the solution became turbid and a precipitate formed. After 1.5 h, the excess of COCl₂ was pumped off at -78 °C, leaving behind 4.3 mmol of $COCl₂·SbF₅$ in the form of a white powder. Dissociation pressure and NMR data could not be measured due to rapid F-Cl exchange resulting in COClF formation.

Computational Methods. The optimized geometries, vibrational spectra and NMR chemical shifts of the O-coordinated carbonyl halide \cdot MF₅ (M = As, Sb) adducts were calculated using density functional methods. The B3LYP hybrid functional¹³ and the Stevens, Basch, Krauss, Jasien, and Cundari effective core potentials and the corre-

(13) Becke, A. D. *Chem. Phys*. **1993**, *98*, 5648.

sponding valence double- ζ basis sets¹⁴ were used. The basis set was augmented with a diffuse s+p shell15 and a single Cartesian d polarization function on each atom.16 These calculations, hereafter denoted as B3LYP/SBK+(d), were performed using Gaussian 94 and 98.17 The calculated Hessian matrixes (second derivatives of the energy with respect to Cartesian coordinates) were converted to symmetryadapted internal coordinates for further analysis with the program systems GAMESS¹⁸ and Bmtrx.¹⁹

Results and Discussion

Synthesis and Properties of the COX_2 **[']MF₅ (X = Cl, F;** $M = As$, Sb) Adducts. Both SbF₅ and AsF₅ form with an excess of either COCl2, COFCl or COF2 exclusively O-coordinated 1:1 donor-acceptor complexes (eq 1).

$$
MF_5 + \text{COX}_2 \xrightarrow{-78 \text{ °C}} \text{COX}_2 \cdot \text{MF}_5 \tag{1}
$$

$$
(X = F, \text{Cl}; M = \text{As}, \text{Sb})
$$

The 1:1 compositions were established by the observed material balances and for the $\text{COF}_2/\text{AsF}_5$ system by a tensimetric titration (vapor pressure-composition isotherm)⁴ at -78 °C which gave evidence only for a 1:1 adduct. The resulting adducts are white solids which are thermally unstable and decompose reversibly to the starting materials, except for the $COCl₂/SbF₅$ system for which rapid irreversible fluorine-chlorine exchange is observed $(eq 2).¹¹$ MF₅ + COX₂ $\frac{\text{COX}_2}{-78 \text{ °C}}$
compositions were ess and for the COF₂/As

$$
COCl_2 \cdot SbF_5 \rightarrow COClF + \text{``SbF}_4Cl''
$$
 (2)

The oxygen-bridged nature of these adducts was established by vibrational and multinuclear NMR spectroscopy and the results

- (15) The diffuse s+p function exponents used for Sb, As, Cl, F, O, and C were 0.0259, 0.0287, 0.0483, 0.1076, 0.0845, and 0.0438, respectively.
- (16) The d function exponents used for As, Sb, and Cl were 0.293, 0.211, and 0.75, respectively. An exponent of 0.8 was used for F, O, and C.
- (17) (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; *Gaussian 94*, Revision E.2; Gaussian, Inc. Pittsburgh, PA, 1995. (b) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, J. N.; Strain, M.c.; Farkas, O.; Tomasi, J.; Barone, V.; Cossie, M.; Cammi, R.; Mennucci, B.; Pomelli, C. Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liaschenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople J. A. *Gaussian 98*, Revision A.4; Gaussian, Inc.: Pittsburgh, PA, 1998.
- (18) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. *J. Comput. Chem*. **1993**, *14*, 1347.
- (19) Komornicki, A. *Bmtrx*, version 2.0; Polyatomics Research Institute: Palo Alto, CA, 1996.

^{(12) (}a) Christe, K. O.; Guertin, J. P. *Inorg. Chem*. **1965**, *4*, 905. (b) Christe, K. O.; Sawodny, W. *Inorg. Chem*. **1967**, *6*, 1783; **1969**, *8*, 212.

^{(14) (}a) Melius, C. F.; Goddard, W. A. *Phys. Re*V*. A* **¹⁹⁷⁴**, *¹⁰*, 1528. (b) Kahn, L. R.; Baybutt, P.; Truhlar, D. G. *J. Chem. Phys*. **1976**, *65*, 3826. (c) Krauss, M.; Stevens, W. J. *Annu. Re*V*. Phys. Chem*. **¹⁹⁸⁵**, *35*, 357. (d) Stevens, W. J.; Basch, H.; Krauss, M. *J. Chem. Phys*. **1984**, *81*, 6026. (e) Stevens, W. J.; Basch, H.; Krauss, M.; Jasien, P. *Can. J. Chem*. **1992**, *70*, 612. (f) Cundari, T. R.; Stevens, W. J. *J. Chem. Phys*. **1993**, *98*, 5555.

Table 1. Thermochemical Data for the Dissociation of the $X_2CO \cdot MF_5$ Donor-Acceptor Adducts and Their Heats of Formation

	H_d° ^a kcal/mol	$T(1 \text{ atm})^b$ ^o C	P_{298} ^c atm	$F^{\circ}{}_{\gamma98}{}^d$ kcal/mol	$S^{\circ}{}_{298}$ e cal/deg mol	H° _{r298} $(X_2CO \cdot ASF_5)$ kcal/mol
$Cl_2CO \cdot ASF_5$	22.75	-16.8	22.78	-2.882	85.98	-370.81
CIFCO•ASF ₅	19.15	-34.5	56.15	-3.951	77.49	-416.61
$F_2CO \cdot ASF_5$	16.17	-41.5	50.19	-3.818	67.05	-464.33
CIFCO·SbF ₅	3.91	0.6	8.07	-0.826	49.41	-433.15

^a Enthalpies of dissociation, calculated from the slope of the log *P* vs *T*-¹ curves. *^b* Extrapolated temperatures at which the dissociation pressures of the solid adducts would reach a dissociation pressure of 760 mm. *^c* Extrapolated dissociation pressures at 298 K. *^d* Values for the free energy change at 298 K. *^e* Values for the entropy changes at 298 K. *^f* Standard heats of formation of the solid adducts using the dissociation enthalpies of this work and the following literature values for the heats of formation: $H_f^{\circ}{}_{298}(COCl_{2(g)}) = -52,600; H_f^{\circ}{}_{298}(COFl_{2(g)}) = -102.00; H_f^{\circ}{}_{298}(COFl_{2(g)})$ $=$ -152.700; H_1° ₂₉₈(AsF_{5 (g)}) = -295.461; H_1° ₂₉₈(SbF_{5 (l)}) = -317.248 kcal/mol.

from the theoretical calculations. Only for COClF with at least a 3-fold excess of SbF_5 does the formation of ionic salts containing the $C⁺$ cation become energetically more favorable (eq 3).¹

$$
COCIF + 3SbF_5 \rightarrow CICO^+Sb_3F_{16}^-
$$
 (3)

The preferential formation of oxygen-coordinated 1:1 donoracceptor adducts in these systems is in accord with the previous Raman study of the COF₂ \cdot MF₅ (M = As, Sb) systems,⁸ a ¹⁹F NMR study of the COClF \cdot SbF₅ system,⁷ and a tensimetric and IR spectroscopic study of the $COCl₂/AlCl₃$ system.⁴

Thermochemical Properties. Based on the vapor pressure data given in the Experimental Section, plots of log *P* versus T^{-1} for the heterogeneous equilibria (eqs 4 and 5) give straight lines,

$$
COX_2 \cdot AsF_5(s) \rightleftharpoons COX_2(g) + AsF_5(g) \tag{4}
$$

$$
COCIF-SbF5(s) \rightleftharpoons COCIF(g) + SbF5(s)
$$
 (5)

which can be described by the following equations:

 $COCl_2$ **·**AsF₅ (210-251 K): log *P* (mm) = $-2486.13/T$ (K) $+12.5768$

 $COCIF·AsF₅ (186-231 K): log P (mm) =$ $-2092.67/T$ (K) $+11.649$

 COF_2 AsF_5 (173-218 K): log *P* (mm) = $-1767.12/T$ (K) $+10.5084$

 $COCIF-SbF_5 (230-263 \text{ K}):$ log $P \text{ (mm)} =$ $-3038.9/T$ (K) $+13.98$

The thermochemical properties, derived from these data by standard procedures, 12 are summarized in Table 1. Literature values were used for the required heats of formation of AsF_5 ²⁰ SbF_5 ²¹ and the carbonyl halides.²² Table 1 shows that the stability of the COX_2 ⁻MF₅ adducts decreases from SbF₅ to AsF₅, as expected for the decrease in Lewis acidity, and from COCl₂ to COF_2 , as expected from a decreasing basicity of the oxygen with increasing electron density withdrawal by the more electronegative fluorine ligands. The decrease in the dissociation energy ΔH _d° from COClF·AsF₅ to COClF·SbF₅ should not be mistaken as an indication of a weaker adduct. The decrease in ΔH_d° is caused by the fact that at the investigated dissociation temperatures the SbF5 decomposition product is a solid and not a gas. Therefore, the value of ∆*H*d° is only one-half of that expected for the formation of 2 mol of gas from 1 mol of solid. The slopes of the log P versus T^{-1} curves, which are independent of the number of moles of gas in the decomposition products, reflect the expected stability trends, i.e., $COCl₂$ \cdot AsF₅ > COClF \cdot AsF₅ > COF₂ \cdot AsF₅ and COClF \cdot SbF₅ > COClF \cdot AsF5. The same stability trend is also displayed by the extrapolated temperature values at which the adducts would reach a dissociation pressure of one atmosphere (see Table 1). A comparison of the data of Table 1 with the previously reported⁴ dissociation pressure of 440 mm at 25 $^{\circ}$ C for COCl₂. AlCl₃ suggests that the stability of the $COCl₂$ ⁻AlCl₃ adduct is significantly higher than that of $COCl₂·AsF₅$.

NMR Spectra. The results of our ¹³C and ¹⁹F NMR study are summarized in Table 2. In agreement with a previous observation,7 difficulties were encountered in observing well resolved signals for some of the systems at low temperatures due to exchange phenomena. Table 2 shows that on formation of the donor-acceptor adducts both the ${}^{13}C$ and ${}^{19}F$ signals of the free carbonyl halides are shifted to lower fields, as expected from a deshielding of these nuclei by the electron-withdrawing effect of the Lewis acids. These shifts vary from about 5 to 20 ppm and appear to be larger for the stronger Lewis acid SbF₅. The magnitudes and directions of these shifts were confirmed by our theoretical calculations at the B3LYP/vdz+p level of theory using the GIAO method (see Table 2).

Since our NMR measurements were carried out at temperatures at which some of the adducts exhibit significant dissociation pressures, the possibility that the signals, observed for the carbonyl halide part of the adducts, might represent exchange-averaged spectra for an equilibrium mixture of COX2 and COX_2 ·SbF₅ had to be considered. For the COF_2-SbF_5 and $COCIF-SbF₅$ systems it was found that the observed shifts and coupling constants of the signals, attributed to the free carbonyl halides and their SbF₅ adducts, remained unchanged whether an excess of carbonyl halide or $SbF₅$ was used, and only their relative intensities varied. Furthermore, in the 19F spectrum of COF_2 ·SbF₅ in SO₂ClF solution at -100 °C a well-resolved AX₄ pattern, characteristic for coordinated SbF5, ⁷ was observed (*δ* -109.3 , doublet, area of 4; δ -142.4, quintet, area of 1; ¹*J*(F- F) = 96 Hz), indicating that the observed COF_2 SbF_5 spectrum was not influenced by exchange processes. In addition to the $COF_2 SbF_5$ signals, a separate resonance due to free nonexchanging COF_2 was observed at -179 ppm in the ¹⁹F spectrum.

The previously reported^{3,7} NMR data are for the most part ambiguous. Thus, the report³ on the COClF \cdot SbF₅ adduct in SO₂ClF at -80 °C listed only ¹³C data with a wide shift range of 150-175 ppm which do not permit a meaningful comparison with the signal of free COClF.

The other previous report⁷ dealt only with the ¹⁹F spectra of COF_2 ·SbF₅, COFCl·SbF₅ and COF₂·AsF₅ in SO₂ClF solution and also contained some ambiguities. Thus, for $\text{COF}_2\text{·AsF}_5$ no

⁽²⁰⁾ Barin, I.; Knacke, O.; Kubaschewski, O. *Thermochemical Properties of Inorganic Substances*; Supplement, Springer-Verlag: Berlin, 1977. Bougon, R.; Bui Huy, T.; Burgess, J.; Christe, K. O.; Peacock, R. D.

J. Fluor. Chem. **1982**, *19*, 263.

⁽²²⁾ *JANAF Interim Thermochemical Tables*; The Dow Chemical Co.: Midland, MI, 1965, and subsequent revisions.

Table 2. Selected ¹³C and ¹⁹F NMR Parameters for COF₂, COClF, COCl₂, and Some of their Lewis Acid Adducts

chemical shifts (ppm)

a All data are from this study, unless noted otherwise, and were recorded in SO₂ClF solutions at -60° C. *b* Calculated at the B3LYP/vdz+p level using the GIAO method. "vdz+p" denotes a mixed valence double zeta plus polarization basis set, constructed as follows: SBKJC effective core potentials and valence basis sets, augmented with a diffuse s+p shell and a single Cartesian d polarization function, were used for Sb and As. The 6-311G(d) basis set was used for all other atoms. *^c* Data from Gombler, W. *Spectrochim. Acta, Part A* **1981**, *37*, 57. *^d* Data from ref 7. *^e* Isomer in which the fluorine ligand of COCIF points toward the MF₅ molecule. *f* Isomer in which the chlorine ligand points toward the MF₅ molecule. g Recorded in SO₂ClF at -100 °C.

signal for coordinated COF₂ was observed at -100 °C, leading to the incorrect conclusion that even at this low-temperature complexation must be incomplete. Furthermore, for a concentrated COClF/SbF₅ solution at -80 °C, only signals due to free $COF₂$ and $COF₂$. SbF₅ were observed, while for a dilute solution at -95 °C a signal at 59.9 ppm was attributed to COClF \cdot SbF₅. However, this shift is almost identical to that of 59.7 ppm found in our study for free COClF and is quite different from that of 73.9 ppm, found by us for the COCIF \cdot SbF₅ adduct. The previous report by Bacon, Dean, and Gillespie on the COF_2 . SbF₅ adduct in SO₂ClF solution at -100 °C using an excess of SbF₅⁷ is in excellent agreement with our findings (see Table 2) using either excellent agreement with our findings (see Table 2) using either stoichiometric amounts or an excess of COF_2 . In all cases, the shift of the $COF₂$ signal in the adduct was about 21 ppm downfield from that of free COF2. It supports our conclusion that the stronger Lewis acid SbF₅ deshields the fluorine ligands of the coordinated carbonyl halides more strongly than AsF₅. Inspection of the $\frac{1}{I}$ ($\frac{13}{C}$ - $\frac{19}{F}$) coupling constants of Table 2 shows that the C-F coupling increases upon complexation. This is in accord with the increased $C-X$ bond strengths of the adducts, as shown by the valence bond structure (eq 6).

Vibrational Spectra and Theoretical Calculations. Vibrational spectra are well suited to distinguish between ionic salts and covalent donor-acceptor adducts.^{1,23} As shown by the valence bond structures (eq 6), the $C-O$ and $C-X$ bond orders

and, therefore, also their stretching frequencies decrease and the C-X stretching frequencies increase, compared to the free

Figure 1. Raman spectra of solid $COCl₂·AsF₅$ (upper trace) and $COCl₂·$ SbF₅ (lower trace) recorded at -130 °C.

 $COX₂$ molecule. Furthermore, a $COX⁺SBF₅X⁻$ salt should exhibit only 18 normal modes, while a covalent donor-acceptor adduct should possess 24.

The observed low-temperature Raman spectra of the solid 1:1 complexes of Cl_2CO and ClFCO with AsF₅ and SbF₅ are shown in Figures 1 and 2, and the observed frequencies are summarized in Tables 3 and 4. The large number of observed Raman bands, their frequency shifts relative to the free carbonyl halides, 24 and the excellent fit with the calculated frequencies and intensities (see Tables 3 and 4) leave no doubt that these complexes are O-coordinated donor-acceptor adducts.

Traditionally, the vibrational spectra of this type of covalent donor-acceptor adducts have been analyzed in terms of their

⁽²³⁾ Lindquist, I. Inorganic Adduct Molecules of Oxo-Compounds. In *Anorganische und Allgemeine Chemie in Einzeldarstellungen*, Becke-Goehring, M., Ed.; Academic Press Inc.: New York, 1963; Band IV.

Table 3. Calculated (B3LYP/SBK+(d) Vibrational Frequencies and Observed Raman Spectra of the COCl₂'MF₅ (M = As, Sb) Adducts and Their Analyses Based on the Point Groups of the Adducts and the Individual Donor and Acceptor Molecules

			freq, cm^{-1} , intensities ^{<i>a</i>}				
assignments, approx. mode descript		COCl ₂ ·AsF ₅		$COCl_2 \cdot SbF_5^c$			
$MF_5C_{4\nu}$	COCl ₂ C _{2v}	COCl ₂ ·MF5 C _s	obsd Ra	calcd $(IR)[Ra]$	obsd Ra	calcd (IR) [Ra]	
	$v_1(A_1)$ 1827	$\nu(A')\nu$ C=O	1610[33]	1768(671)[43]	1587[14]	1718(740)[29]	
	$\nu_4(B_1)$ 849	$\nu_2(A')\nu$ as CCl_2	978[11]	896(460)[9.7]	989[3.4]	930(430)[6.1]	
$v_{7(E)}$		$\nu_3(A')\nu$ as MF ₄	770[4]	734(127)[0.35]	708[2]	667(90)[2.2]	
		$\nu_{16}(A'')\nu$ as MF ₄	733[1]	736(152)[0.09]		667(114)[0.13]	
$v_1(A_1)$		$\nu_4(A')\nu$ MF'	757[44]	742(153)[8.3]	683[22]	665(114)[5.5]	
$v_2(A_1)$		$\nu_5(A')\nu$ s MF ₄ in phase	698[100]	663(1.7)[30]	654[100]	617(5.7)[34]	
	$v_2(A_1)$ 567	$\nu_6(A') \nu s CCl_2$	660[52]	597(8.4)[16.4]	676[66]	623(0.27)[3.9]	
$\nu_4(B_1)$		$\nu_{17}(A'') \nu s MF_4$ out of phase	615[15]	597(0.21)[2.8]	608[16]	577(0.34)[2.3]	
	$v_6(B_2)$ 580	$v_{18}(A'') \delta$ MOCCl out of plane	592[2]	582(3.3)[0.02]	600sh	585(3.3)[0.08]	
	$v_5(B_1)$ 440	$\nu_7(A')$ δ MOCCl in plane	538[22]	471(0.25)[4.6]	528[9]	484(2.7)[4.1]	
$v_3(A_1)$		$\nu_8(A')$ δ sciss MF ₄	402[19]	403(0.03)[1.6]	303[0.21]	307(0.12)[1.5]	
$\nu_8(E)$		$\nu_{19}(A'') \delta FMF_4$ out of plane	391[4]	380(47)[0.26]	286[8]	287(53)[0.34]	
		$\nu_9(A') \delta$ FMF ₄ in plane	380[11]	379(42)[0.33]	279[4]	283(46)[0.18]	
	$v_3(A_1)$ 285	$v_{10}(A') \delta$ sciss CCl ₂	360[33]	308(46)[4.2]	394[37]	322(2.7)[5.1]	
$v_6(B_2)$		$v_{11}(A')$ δ umbrella MF ₄	328[15]	331(83)[2.4]	260[2]	262(141)[0.17]	
$\nu_9(E)$		$\nu_{12}(A') \delta$ as MF ₄ in plane	304[29]	276(0.88)[1.7]	236[16]	221(0.90)[1.3]	
		$\nu_{20}(A'') \delta$ as MF ₄ in plane	238[11]	278(0.63)[0.84]		233(0.48)[0.42]	
		$v_{21}(A'') \delta$ wag COCl ₂	181[14]	165(0.20)[0.61]	190[21]	165(0.20)[0.85]	
		$v_{13}(A)$ δ rock COCl ₂	140[13]	125(1.2)[0.55]	146[22]	134(8.4)[0.91]	
$v_5(B_1)$		$v_{22}(A'') \delta$ pucker MF ₄		115(0)[0]		119(0)[0.01]	
		$\nu_{14}(A') \nu M=0$		74(15)[0.04]		104(13)[0.15]	
		$v_{15}(A')$ δ M-O-C		49(1.9)[0.36]		60(0.04)[0.18]	
		$\nu_{23}(A'') \tau C = 0$		38(0.15)[1.2]		45(0.06)[0.88]	
		$v_{24}(A'') \tau M=0$		16(0.09)[1.2]		24(1.0)[1.38]	

a Calculated infrared and Raman intensities in km/mol and \AA ⁴/amu, respectively. *b* Data from ref 24. *c* In the Raman spectrum of solid COCl₂·SbF₅ ^{*a*} Calculated infrared and Raman intensities in km/mol and \AA^4 /amu, respectively. ^{*b*} Data from ref 24. *c* In the Raman spectrum of solid COCl₂·SbF₅ two additional bands were observed at 442[8] and 346[15] cm text).

Figure 2. Raman spectra of solid COClF·AsF₅ (upper trace) and COClF \cdot SbF₅ (lower trace) recorded at -130 °C.

separate components in their original point groups, ignoring the bridge modes and the splittings of degenerate modes caused by the symmetry lowering in the adducts. This approach has generally been quite useful and has permitted the analysis of the gross features of the spectra, particularly when the donoracceptor interactions are relatively weak and the splittings of the degenerate modes are small. However, a rigorous analysis of the finer details of the observed spectra requires a treatment in the correct point group of the adduct, as shown in Table 3. The resulting agreement between the observed and calculated spectra of COCl₂·AsF₅ is very good. The fact that the observed carbonyl stretching frequency is lower and the $CCl₂$ stretching frequencies are higher than those calculated indicates that in the condensed phase the interactions between the carbonyl halides and the Lewis acids are stronger than those predicted for the free gaseous adducts. Therefore, the calculated optimized geometries, shown in Figure 3, are expected to exhibit somewhat longer M-O and shorter C-O bonds than those expected for the condensed phase. The theoretical results furthermore predict that the modes due to the M-O bridge should occur below 100 cm^{-1} and, hence, justify the traditional approach of neglecting the bridge modes in a vibrational analysis. Finally, it should be noted, that our normal coordinate analyses show that, contrary to the previous assignments⁸ and those generally given for closely related C_{4v} MF₄F species,^{25,26} the frequencies of the MF₅ deformation modes decrease in the following order: *δ*(scissor

^{(24) (}a) Shimanouchi, T. *J. Phys. Chem. Ref. Data* **1977**, *6*, 993 and references therein. (b) Shimanouchi, T. *Tables of Molecular Vibrational Frequencies, Consolidated Volume 1*; NSRDS-NBS39, Nat. Stand. Ref. Data Ser.; National Bureau Standards (U.S.): Gaithersburg, MD, 1972, and references therein.

⁽²⁵⁾ Siebert, H. Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie. *Anorganische und Allgemeine Chemie in Einzeldarstellungen*; Becke-Goehring, M., Ed.; Springer-Verlag: Berlin, 1966, Band VII.

⁽²⁶⁾ Nakamoto, K. *Infrared and Raman Spectra of Inorganic and Coordination Compounds* 5th ed.; John Wiley & Sons: New York, 1997; Part A.

Table 4. Calculated (B3LYP/SBK + (d)) Vibrational Frequencies and Observed Raman Spectra of the COClF·MF₅ (M = As, Sb) Adducts and Their Analyses Based on the Point Groups of the Adducts and the Individual Donor and Acceptor Molecules

			freq, cm^{-1} , intensities				
assignments, approx mode descript			COCIF·AsF ₅		$COCIF-SbF5$		
$MF_5 C_{4\nu}$	COCIF C_s obsd ^a	COCIF·MF ₅ C _s	obsd Ra	calcd ^c (IR)[Ra]	obsd Ra	calcd ^c (IR)[Ra]	
	$v_1(A')$ 1868	$\nu_1(A')\,\nu$ C=O	1701[40]	1826(695)[38]	1669[8]	1789(751)[25]	
	$v_2(A')$ 1095	$\nu_2(A')\,\nu$ CF	1220[1]	1167(416)[4]	$1257(vs)^{b}$	1208(412)[2.0]	
$\nu_7(E)$		$[\nu_3(A') \nu$ as MF ₄	780[5]	735(147)[0.17]	712[2]	667(112)[2.0]	
		$\nu_{16}(A'')$ v as MF ₄	732[5]	736(160)[0.06]		670(126)[0.22]	
$v_1(A_1)$		$\nu_4(A') \nu M F'$	742[52]	743(173)[5.8]	689[42]	668(106)[4.0]	
$v_2(A_1)$		$\nu_5(A') \nu s MF_4$ in phase	695[100]	663(2.2)[31]	651[100]	621(2.3)[28]	
	$\nu_3(A')$ 776	$\nu_6(A')\,\nu$ CCl	835[35]	781(47)[15]	842[21]	795(50)[13]	
$\nu_4(B_1)$		$\nu_{17}(A'') \nu s MF_4$ out of phase	616[16]	597(0.13)[3.1]	603[15]	578(0.36)[2.6]	
	$\nu_6(A'')$ 667	$v_{18}(A'') \delta$ MO CCl out of plane	580[4]	659(8.5)[0.32]	590[2]	660(2.4)[0.20]	
	$\nu_4(A')$ 501	$\nu_7(A')$ δ MO CCl in plane	453[16]	520(2.1)[5.2]	470[15]	536(6.8)[3.4]	
$\nu_3(A_1)$		$\nu_8(A') \delta$ sciss MF ₄	401[13]	404(0.01)[1.6]	301[18]	308(0.08)[1.6]	
$\nu_8(E)$		$[\nu_{19}(A'') \delta FMF_4$ out of plane	390[4]	380(48)[0.25]	275[3]	287(53)[0.30]	
		$\nu_9(A')$ δ FMF ₄ in plane	382[2]	$379(43)\{0.26\}$		285(49)[0.29]	
	$v_5(A')$ 415	$\nu_{10}(A') \delta$ sciss ClCF	340[9]	420(0.29)[2.3]	337[3]	429(1.9)[2.4]	
$v_6(B_2)$		$v_{11}(A') \delta$ umbrella MF ₄	325[3]	327(125)[1.9]	265[2]	264(134)[0.27]	
$\nu_9(E)$		$[\nu_{12}(A') \delta$ as MF ₄ in plane	306[10]	[276(0.83)[1.0]	240[8]	[223(0.98)[0.79]	
		$\nu_{20}(A'') \delta$ as MF ₄ in plane	233[5]	278(0.69)[0.86]		232(0.77)[0.41]	
		$v_{21}(A'') \delta$ wag COCIF	197[4]	164(0.12)[0.45]	198[20]	165(0.13)[0.73]	
		$v_{13}(A')$ δ rock COCIF	148[17]	137(1.2)[0.13]		146(5.5)[0.60]	
$v_5(B_1)$		$\nu_{22}(A'') \delta$ pucker MF ₄		114(0)[0]		115(0)[0]	
		$\nu_{14}(A') \nu M=0$		76(15)[0.21]		109(14)[0.20]	
		$v_{15}(A') \delta M-O-C$		53(1.6)[0.31]		62(0.05)[0.27]	
		$v_{23}(A'') \tau C = 0$		36(0.13)[1.1]		41(0.06)[0.64]	
		$v_{24}(A'') \tau M=0$		28(0.02)[0.51]		32(0.01)[0.81]	

^a Data from ref 2.4. *^b* Frequency and intensity from the infrared spectrum. *^c* The listed calculated frequencies are for the isomers in which the fluorine atom of the COClF unit is pointed toward MF₅.

Figure 3. Geometries optimized at the B3LYP/SBK+(d) level for COCl₂·MF₅, COClF·MF₅ and COF₂·MF₅ (M = As (Sb)). The optimized geometries of the free carbonyl halides at the same level are as follows: $COCl_2$, $rCO = 1.195$ Å, $rCCl = 1.772$ Å, $\angle OCCl = 123.8^\circ$; COClF, $rCO = 1.192$ Å, *r*CCl = 1.755 Å, *r*CF = 1.345 Å, ∠OCCl = 126.6°, ∠OCF = 123.9°; COF₂, *r*CO = 1.189 Å, *rCF* = 1.332 Å, ∠OCF = 126.2°. As expected, in the adducts the C-O bonds are longer, the C-X bonds are shorter, and the O-C-X angles are smaller than in the free carbonyl halides.

 MF_4 in plane) > δ (FMF₄) > δ (umbrella MF₄) > δ (asym MF₄) in plane).

The observed Raman spectra of $COCl₂·MF₅$ (M = As, Sb) agree very well with the calculations, except for two extra bands observed for $COCl₂$ SbF₅ at 442 and 346 cm⁻¹. These bands occur in the Sb-Cl region and are tentatively attributed to some halogen exchange between $COCl₂$ and $SbF₅$ which is known¹¹ to occur rapidly at slightly elevated temperatures.

For the COClF·MF₅ adducts, two conformers are possible because either the fluorine or the chlorine ligand of COClF could

Table 5. Calculated (B3LYP/SBK+(d)) Vibrational Frequencies and Literature^{*a*} Raman Spectra of the COF₂·MF₅ (M = As, Sb) Adducts and Their Analyses

			freq, cm^{-1} , intensities			
assignments, approx mode descript			$COF_2 \cdot ASF_5$		COF_2 ·SbF ₅	
$MF_5 C_{4V}$	$COF2C2vobsdb$	$COF_2 \cdot MF_5C_s$	obsd Ra	calcd $(IR)[Ra]$	obsd Ra	calcd $(IR)[Ra]$
	$v_1(A_1)$ 1928	$v_1(A')v$ C=O	1788[12]	1896(704)[22]	1770[9]	1866(753)[13]
	$\nu_4(B_1)$ 1249	$\nu_2(A')\nu$ as CF_2	1402[5]	1314(407)[4.2]	1436[4]	1360(398)[3.3]
$\nu_7(E)$		$\nu_3(A')\nu$ as MF ₄	776[7]	736(146)[0.48]	716[19]	669(108)[2.0]
		$\nu_{16}(A'')\nu$ as MF ₄	\sim 735[7]	736(117)[0.11]	701[29]	669(108)[0.12]
$v_1(A_1)$		$\nu_4(A')\nu$ MF'	765[18]	746(142)[6.1]	673[82]	671(98)[4.1]
$v_2(A_1)$		$\nu_5(A')\nu$ s MF ₄ in phase	701[100]	664(2.8)[26]	658[100]	622(2.2)[23]
	$v_2(A_1)$ 965	$\nu_6(A') \nu s CF_2$	1037[20]	993(3.7)[9.8]	1050[28]	1013(26)[10]
$\nu_4(B_1)$		$\nu_{17}(A'') \nu s MF_4$ out of phase	615[16]	597(0.28)[3.1]	600[23]	578(0.64)[2.6]
	$v_6(B_2)$ 774	$v_{18}(A'') \delta MOCF_2$ out of plane	792[3]	756(74)[0.56]	774[6]	757(43)[0.52]
	$v_5(B_1)$ 626	$\nu_7(A')$ δ MOCF ₂ in plane	673[4]	623(13)[1.5]	coincid. d	634(16)[3.3]
$v_3(A_1)$		$\nu_8(A')$ δ umbrella MF ₄	406[13]	405(0.02)[1.7]	303[28]	309(0.09)[1.6]
$v_8(E)$		$\nu_{19}(A^{\prime\prime}) \delta$ FMF ₄ out of plane	$351[4]^{e}$	381(48)[0.19]	285[5]	288(52)[0.19]
		$\nu_9(A')$ δ FMF ₄ in plane		380(45)[0.20]		285(50)[0.21]
	$v_3(A_1)$ 584	$v_{10}(A') \delta$ sciss CF ₂	606[4]	575(3.9)[1.0]	606 sh	581(3.0)[1.0]
$v_6(B_2)$		$v_{11}(A') \delta$ sciss MF ₄	328[7]	332(96)[0.68]	265[14]	268(101)[0.19]
$\nu_9(E)$		$\nu_{12}(A') \delta$ as MF ₄ in plane	308[9]	276(0.95)[1.1]	226[14]	222(2.8)[0.98]
		$v_{20}(A'') \delta$ as MF ₄ in plane	238[4]	277(0.84)[1.0]	242[14]	232(1.3)[0.69]
		$v_{21}(A'') \delta$ wag COF ₂		$165(0.05)$ [. 19]	194[19]	167(0.04)[0.37]
		$v_{13}(A') \delta$ rock COF ₂		142 (5.4)[0.07]		163(20)[0.17]
$v_5(B_1)$		$v_{22}(A'') \delta$ pucker MF ₄		108(0)[0]		112(0)[0]
		$\nu_{14}(A') \nu M=0$		87(14)[0.15]		115(7.9)[0.09]
		$v_{15}(A') \delta M - O - C$		55(0.82)[0.01]		65(0)[0.03]
		$\nu_{23}(A'') \tau C = 0$		42(0.01)[0.47]		47(0)[0.40]
		$\nu_{24}(A'') \tau M=0$		24(0.20)[0.27]		34(0.20)[0.25]

^a The observed frequencies were taken from ref 8. *^b* Data from ref 24. *^c* Weak bands shown in the figures but not listed in the tables of ref 8. *d* Coincidence with either 658[100] or 673[82]. *e* Figure 3 of ref 8 shows weak bands in the 380 cm⁻¹ region, which might also belong to *ν*₁₉ and *ν*⁹ of the adduct.

be oriented toward the $MF₅$ group. The two conformers differ only very little in energy (∼0.1 kcal/mol) and their calculated vibrational spectra are almost identical. Therefore, the observed Raman spectra do not allow to distinguish between the two conformers, and the ones with the fluorines pointing toward the $MF₅$ groups were chosen for our analyses (see Table 4). The $MF₅$ bands in their COClF adducts agree well with those of the corresponding COCl₂ adducts, but the deviations between the observed and calculated bands for the COClF part of the adducts are larger than those for the $COCl₂$ adducts.

For the COF₂⁻MF₅ adducts, good quality Raman spectra have previously been reported⁸ by Chen and Passmore, and their experimental data are compared with our calculations in Table 5. Again, the overall agreement is very satisfactory.

A comparison of the relative changes of the carbonyl halide stretching frequencies within the $COCl₂·MF₅, COFCl·MF₅$ and COF_2 ^{\cdot}MF₅ series shows that the strength of the adducts increases from $COF₂$ to $COC₁₂$ and from AsF₅ to SbF₅, i.e., with increasing basicity of the donor and increasing acidity of the acceptor. Hence, $COCl_2$ · SbF_5 is the strongest and COF_2 · AsF_5 the weakest adduct within this series.

Conclusion

Even with strong Lewis acids, such as $AsF₅$ or SbF₅, the carbonyl halides, COCl₂, COFCl, and COF₂, preferentially form O-coordinated donor-acceptor adducts. The stability of the adducts increases with increasing basicity of the donor, i.e., from $COF₂$ to $COCI₂$, and with increasing acidity of the acceptor, i.e., from AsF_5 to SbF_5 . This conclusion is strongly supported by thermochemical measurements, vibrational and multinuclear NMR spectroscopy and theoretical calculations.

Acknowledgment. The authors thank Drs. J. Sheehy and G. Olah for their support and two of us (B.H. and J.H.) the Deutsche Forschungsgemeinschaft for a stipend. The work at USC was supported by the National Science Foundation and that at the Air Force Research Laboratory by the Propulsion Directorate. The computational work was supported in part by a grant of Cray T916 time from the Army Research Laboratory Department of Defense Computing Center and a grant of IBM SP time from the Maui High Performance Computing Center under the sponsorship of the Air Force Research Laboratory.

IC990157W