Articles

Preparation, X-ray Structure, and Spectroscopic Characterization of 1,5-Se₂S₂N₄

Arto Maaninen,^{1a} Risto S. Laitinen,^{*,1a} Tristram Chivers,^{*,1b} and Tapani A. Pakkanen^{1c}

Departments of Chemistry, University of Oulu, Linnanmaa, 90570 Oulu, Finland, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4, and University of Joensuu, P.O. Box 111, 80101 Joensuu, Finland

Received February 16, 1999

The reaction of $[(Me_3Si)_2N]_2S$ with equimolar amounts of SCl₂ and SO₂Cl₂ produces S₄N₄ in a good yield. The new chalcogen nitride 1,5-Se₂S₂N₄ has been prepared in high yield by two different reactions: (a) from $[(Me_3Si)_2N]_2S$ and SeCl₄ and (b) from $[(Me_3Si)_2N]_2S$ with equimolar amounts of SCl₂ and SO₂Cl₂. 1,5-Se₂S₂N₄ has a cage structure similar to those of S₄N₄ and Se₄N₄. The crystal structure is disordered with site occupation factors ca. 50% for selenium in each chalcogen atom position. The 12 eV EI mass spectrum shows Se₂SN₂⁺ as the fragment with highest mass. Both the ¹⁴N and ⁷⁷Se NMR spectra show a single resonance (-238 and 1418 ppm, respectively). These data rule out the possibility that the crystalline sample is a solid solution of S₄N₄ and Se₄N₄. This deduction was further verified by Raman spectroscopy and vibrational analysis.

Introduction

Tetrasulfur tetranitride S_4N_4 is a common starting material for the preparation of a wide variety of cyclic and acyclic sulfur-nitrogen species.² The crystal structure determinations ³ have established that the molecule exhibits a cage structure (1) with unusual bonding features that are still not completely understood.⁴

Two polymorphs are known for crystalline tetraselenium tetranitride $Se_4N_4^6$ one of them being isostructural with S_4N_4 .^{6b} In both polymorphic forms, however, the molecule shows a cage

- (1) (a) University of Oulu. (b) University of Calgary. (c) University of Joensuu.
- (2) (a) Chivers, T. In *The Chemistry of Inorganic Homo- and Heterocycles;* Academic Press Inc.: London, 1987; Vol. 2, pp 793–869. (b) Oakley, R. T. *Prog. Inorg. Chem.* **1988**, 36, 299.
- (3) (a) Clark, D. J. Chem. Soc. 1952, 1615. (b) Sharma, B. D.; Donohue, J. Acta Crystallogr. 1963, 16, 891. (c) DeLucia, M. L.; Coppens, P. Inorg. Chem. 1978, 17, 2336.
- (4) Several MO calculations at different levels of theory have addressed the question of bonding in $S_4N_{4.5}^{-5}$
- (5) (a) Gleiter, R. J. Chem. Soc. A 1970, 3174. (b) Gobinathan, M. S.; Whitehead, M. A. Can. J. Chem. 1975, 53, 1343. (c) Salaneck, W. R.; Lin, J. W.-P.; Paton, A.; Duke, C. B.; Ceasar, G. P. Phys. Rev. B 1967, 13, 4517. (d) Salahub, D. R.; Messmer, R. P. J. Chem. Phys. 1976, 64, 2039. (e) Tanaka, K.; Yambe, T.; Tachibana, A.; Kato, H.; Fukui, K. J. Chem. Phys. 1978, 82, 2121. (f) Millefiori, S.; Millefiori, A. Inorg. Chim. Acta 1980, 45, L19. (g) Chivers, T.; Fielding, L.; Laidlaw, W. G.; Trsic, M. Inorg. Chem. 1979, 18, 3379. (h) Findlay, R. H.; Palmer, M. H.; Downs, A. J.; Egdell, R. G.; Evans, R. Inorg. Chem. 1980, 19, 1307. (i) Millefiori, A.; Millefiori, S. J. Chem. Res. (S) 1980, 244. (j) Suontamo, R. J.; Laitinen, R. S. J. Mol. Struct. (THEOCHEM) 1995, 336, 55.

structure similar to S_4N_4 . Though Se_4N_4 is extremely unstable and therefore difficult to handle in large amounts, it has proven to be a convenient source for both neutral and ionic Se–N species.⁷

The catalytic vapor phase decomposition of S_4N_4 produces cyclic S_2N_2 that polymerizes spontaneously to polymeric sulfur nitride $(SN)_x$.¹¹ It was discovered in 1970s that $(SN)_x$ has anisotropic semiconducting properties and that it becomes a superconductor below 0.33 K.¹² Other routes to produce polymeric sulfur nitride are also known.¹³ The polymer $(SeN)_x$ and mixed chalcogen—nitrogen polymers are also expected to have interesting structural and electrical properties. Their preparation and characterization, however, have not been reported, probably because of the instability of the likely precursors.

- (8) (a) Awere, E. G.; Passmore, J.; White, P. S.; Klapötke, T. J. Chem. Soc., Chem. Commun. 1989, 1415. (b) Awere, E. G.; Passmore, J.; White, P. S. J. Chem. Soc., Dalton Trans. 1993, 299.
- (9) (a) Kelly, P. F.; Slawin, A. M. Z.; Williams, D. J.; Woollins, J. D. J. *Chem. Soc., Chem. Commun.* **1989**, 408. (b) Kelly, P. F.; Parkin, I. P.; Slawin, A. M. Z.; Williams, D. J. *Angew. Chem., Int. Ed. Engl.* **1989**, 28, 1047.
- (10) (a) Adel, J.; Dehnicke, K. *Chimia* **1988**, 42, 413. (b) Adel, J.; El-Khodi, A.; Willing, W.; Müller, U.; Dehnicke, K. *Chimia* **1988**, 42, 70.
- (11) (a) Mikulski, C. M.; Russo, P. J.; Saran, M. S.; MacDiarmid, A. G.; Garito, A. F.; Heeger, A. J. J. Am. Chem. Soc. **1975**, 97, 6358. (b). Cohen, M. J.; Garito, A. F.; Heeger, A. J.; MacDiarmid, A. G.; Mikulski, C. M.; Saran, M. S.; Kleppinger, J. J. Am. Chem. Soc. **1976**, 98, 3844.
- (12) Labes, M.; Love, P. Nichols, L. F. Chem. Rev. 1979, 79, 1.
- (13) Kennett, F. A.; MacLean, G. K.; Passmore, J.; Rao, M. N. S. J. Chem. Soc., Dalton Trans. 1982, 851.

 ^{(6) (}a) Bärnighausen; von Volkmann, T.; Jander, J. Acta Crystallogr. 1961, 14, 1079; 1962, 15, 615. (b) Folkerts, H.; Neumüller, B.; Dehnicke, K. Z. Anorg. Allg. Chem. 1994, 620, 1011.

⁽⁷⁾ For instance, the oxidation of Se₄N₄ with AsF₅ leads to the cations Se₃N₂²⁺.and (Se₃N₂^{•+})₂.⁸ Se₄N₄ has also been utilized in the preparation metal complexes of Se₃N⁻ and Se₂N₂²⁻ anions ⁹ as well as in the synthesis of metal complexes containing a NSeCl ligand.¹⁰

In this paper we describe in detail convenient syntheses for S_4N_4 and 1,5-Se₂S₂N₄.¹⁴ They rely on the reagents [(Me₃-Si)₂N]₂S and [(Me₃Si)₂N]₂Se, which are readily prepared¹⁵ and can be used as a source of the NEN (E = S, Se) fragment. We have previously reported that the reaction of [(Me₃Si)₂N]₂Se and SeCl₄ provides a route to Se₄N₄.¹⁶ We now find that treatment of [(Me₃Si)₂N]₂S with a mixture of SCl₂ and SO₂Cl₂ produces S₄N₄ in good yields. The analogous reactions involving [(Me₃Si)₂N]₂S and SeCl₄ or [(Me₃Si)₂N]₂Se with a mixture of SCl₂ and SO₂Cl₂ result in the formation of 1,5-Se₂S₂N₄. This new hybrid chalcogen nitride has been identified by X-ray crystallography, Raman spectroscopy, NMR spectroscopy (⁷⁷-Se and ¹⁴N), and mass spectroscopy.

Experimental Section

General. All reactions were carried under an argon atmosphere. (Me₃Si)₂NH (Aldrich), *n*-butyllithium (2.5 M in hexanes, Aldrich), and selenium tetrachloride (SeCl₄, E. Merck GmbH) were used without further purification. Sulfur dichloride (SCl₂, Fluka Chemie AG) was distilled over PCl₃, and sulfuryl chloride (SO₂Cl₂) was distilled over P4O₁₀ under an argon atmosphere. Se₂Cl₂ was prepared as described by Fehér.¹⁷ [(Me₃Si)₂N]₂S and [(Me₃Si)₂N]₂Se were prepared from (Me₃-Si)₂NH by utilizing the methods of Wolmershäuser et al.^{15a} and Roesky et al.,^{15b} respectively. Both compounds were purified by distillation. Dichloromethane (E. Merck GmbH) and carbon disulfide (E. Merck GmbH) were dried by distillation under a nitrogen atmosphere over P₄O₁₀ before use.

Preparation of S₄N₄. *Caution!* Samples of S_4N_4 may be explosive under the influence of heat or mechanical stress. The solid crystalline product should be handled with great care. The reaction should not be carried out in a large scale.

[(Me₃Si)₂N]₂S (0.352 g, 1.00 mmol) was dissolved in dichloromethane (10 mL), and a mixture of SCl₂ (0.103 g, 1.00 mmol), and SO₂Cl₂ (0.135 g, 1.00 mmol) in dichloromethane (10 mL) was added dropwise at -78 °C. The reaction mixture was stirred overnight and allowed to warm slowly to room temperature. After the brown solution was filtered and the solvent removed by evaporation, an orange-brown powder was obtained. The crude product was recrystallized from toluene to give pale orange crystals. The total yield of S₄N₄ was 75% (0.138 g, 0.75 mmol).¹⁸ The ¹⁴N NMR spectrum showed only one resonance at -256 ppm.¹⁹ IR: 928 vs, 768 w, 727 m, 700 vs, 630 w, 553 vs, 548 vs, 529 w. Raman: 763 vw, 719 m, 559 s, 519 w, 347 m, 215 vs, 197 vs.²¹

Preparation of Se₂S₂N₄. *Caution! Dry Se₂S₂N₄ is explosive under the influence of heat or mechanical stress. The product should be stored*

- (14) For preliminary reports, see: (a) Chivers, T.; Laitinen, R. S.; Maaninen, A.; Pyykkönen, S.; Siivari, J. Univ. Oulu Rep. Ser. Chem. 1993, 42, P18. (b) Maaninen, A.; Laitinen, R. S.; Chivers, T. Phosphorus Sulfur Silicon Relat. Elem. 1997, 124/125, 457.
- (15) (a) Wolmerhäuser, G.; Brulet, C. R.; Street, G. B. *Inorg. Chem.* 1978, *17*, 3586. (b) Bjorgvinsson, M.; Roesky, H. W.; Pauer, F.; Stalke, D.; Sheldrick, G. M. *Inorg. Chem.* 1990, *29*, 5140.
- (16) Siivari, J.; Chivers, T.; Laitinen, R. S. Inorg. Chem. 1993, 32, 1519.
- (17) Feher, F. In *Handbuch der pr\u00e4parativen Anorganischen Chemie*, 3rd ed.; Brauer, G., Ed.; Ferdinand Enke Verlag: Stuttgart, 1975; Vol. 1, p 415.
- (18) The preparation of [(Me₃Si)₂N]₂S from (Me₃Si)₂NH and n-BuLi proceeds via the formation of (Me₃Si)₂NLi.^{15a} S₄N₄ was also prepared directly by treating 0.668 g (4.00 mmol) of (Me₃Si)₂NLi dissolved in 20 mL of CH₂Cl₂ with a mixture of 0.412 g (4.00 mmol) of SCl₂ and 0.270 g (2.00 mmol) of SO₂Cl₂ dissolved in 10 mL of CH₂Cl₂ at -78 °C. The solution was allowed to warm slowly to room temperature. After filtration of the orange-red solution, evaporation of the solvent and recrystallization from toluene, 0.055 g [30% yield based on the initial amount of (Me₃Si)₂NH] of S₄N₄ was obtained as pale orange crystals.
- (19) The ¹⁴N chemical shift is virtually identical with that reported by Chivers et al.²⁰
- (20) Chivers, T.; Oakley, R. T.; Scherer, O. J.; Wolmershäuser, G. Inorg. Chem. 1981, 20, 914.
- (21) Both the IR and Raman spectra are consistent with those reported earlier for $S_4 N_4$.²²

and handled under hydrocarbon solvents, and its preparation limited to amounts of ≤ 1.0 g.

Reaction a. A solution of $[(Me_3Si)_2N]_2S$ (0.352 g, 1 mmol) in CS_2 (10 mL) was added to a suspension of SeCl₄ (0.221 g, 1 mmol) in CS_2 (20 mL) at -70 °C. The reaction mixture was stirred overnight and allowed to warm slowly to room temperature to give a dark red, slightly soluble precipitate. The precipitate was removed by filtration and washed three times with CH_2Cl_2. The yield was 0.105 g (76% based on Se_2S_2N_4).^{23}

Reaction b. Se₂S₂N₄ was also prepared by treating 10 mL of a CH₂-Cl₂ solution of $[(Me_3Si)_2N]_2Se$ (0.400 g, 1 mmol) with 10 mL of a CH₂Cl₂ solution containing 0.103 g (1 mmol) SCl₂ and 0.135 g (1 mmol) SO₂Cl₂ at -70 °C. The reaction mixture was stirred overnight and the dark red slightly soluble precipitate was filtered and washed three times with CH₂Cl₂. The yield was 0.10 g (72% based on Se₂S₂N₄).²³

Single crystals of $Se_2S_2N_4$ were obtained by carrying out reaction **b** at room temperature. The solution was allowed to stand for 3 days during which orange, almost spherical, crystals were formed. These crystals were used for the mass spectroscopic, vibrational spectroscopic, ¹⁴N and ⁷⁷Se NMR spectroscopic, and crystallographic identification of the product, as discussed below.

Spectroscopy. The ¹⁴N and ⁷⁷Se NMR spectra were recorded on a Bruker DPX 400 spectrometer operating at 28.911 and 76.410 MHz, respectively. The spectral widths were 10.42 and 114.94 kHz, yielding the respective resolutions of 1.24 and 1.75 Hz/data point. The ¹⁴N pulse width was 5.70 μ s, and that for ⁷⁷Se 6.70 μ s, corresponding to nuclear tip angles of 21 and 46°, respectively. The ¹⁴N accumulations contained ca. 100 000 transients, and those for selenium contained ca. 35 000 transients. D₂O was used as an external ²H lock and CH₃NO₂ and a saturated solution of SeO₂ as external references. The ¹⁴N chemical shifts are reported relative to the external reference, and the ⁷⁷Se chemical shifts relative to neat Me₂Se [δ (Me₂Se) = δ (SeO₂) + 1302.6].

MS-EI mass spectra were recorded by using a Kratos MS 80 spectrometer at 12 eV of electron energy. The Raman spectra were obtained from solid samples at ca. -100 °C by using a Bruker IFS-66 spectrometer equipped with a FRA-16 Raman unit and a Nd:YAG laser.

Fundamental vibrations were calculated for Se_4N_4 and $1,5\text{-}\text{Se}_2\text{S}_2\text{N}_4$ by using a general valence force-field approach.²⁴ The *F* matrix of Se_4N_4 contained six diagonal force constants and nine off-diagonal interaction force constants. The analogous force field for $1,5\text{-}\text{Se}_2\text{S}_2\text{N}_4$ contained 18 force constants. The molecular geometry for Se_4N_4 was taken from the crystal structure determination²⁵ and that for $1,5\text{-}\text{Se}_2\text{S}_2\text{N}_4$ was estimated on the basis of the structural data taken from S_4N_4 and Se_4N_4 .^{3,6} The initial values of the force constants were estimated from those of S_4N_4 ^{22a} and SeS_3N_2 .²⁶ They were refined by adjusting the observed frequencies to the calculated values until no further change was observed.

X-ray Crystallography. Crystal data and details of the structure determination are given in Table 1. Diffraction data were collected on a Siemens *R3m* diffractometer at 293 K using graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The unit cell parameters were determined by the least-squares refinement of 25 automatically centered reflections. Two reference reflections were used to monitor the stability of the crystal. Their intensities were recorded periodically after each

- (23) The ⁷⁷Se NMR spectra indicated that Se₈ (615 ppm) is formed as a side product in both reactions a and b. The spectral assignment (see Results and Discussion) led to a product distribution of 91% of Se₂S₂N₄ and 9% of Se₈ in both reactions. Anal. Calcd for this mixture: N, 16.45; S, 18.8; Se, 64.8. Found: N, 16.52 [reaction a] and 16.45 [reaction b].
- (24) McIntosh, D. F.; Peterson, M. R. General Vibrational Analysis Programs Utilizing the Wilson GF Matrix Method for a General Unsymmetrized Molecule; QCPE Program No. 342; University of Indiana: Bloomington, IN, 1977.
- (25) The bond parameters observed in the crystal structures⁶ were averaged to preserve the ideal symmetry of D_{2d} .
- (26) Maaninen, A.; Siivari, J.; Suontamo, R. J.; Konu, J.; Laitinen, R. S.; Chivers, T. *Inorg. Chem.* **1997**, *36*, 2170 and references therein.

 ^{(22) (}a) Steudel, R. Z. Naturforsch. 1981, 36A, 850. (b) Butler, I. S.; Sawai, T. Can. J. Chem. 1977, 55, 3838. (c) Gowik, P. K.; Klapötke, T. M. Spectrochim. Acta 1990, 46A, 1371.

Table 1. Crystal Data and Structure Refinement for 1,5-Se₂S₂N₄

,	
molecular formula	Se ₂ S ₂ N ₄
fw	278.08
cryst syst	monoclinic
a (Å)	8.818(2)
<i>b</i> (Å)	7.387(1)
c (Å)	8.981(2)
β (deg)	93.14(3)
$V(Å^3)$	584.1(2)
Ζ	4
space group	$P2_1/n$
T(K)	293(2)
λ (Mo K α) (Å)	0.710 73 Å
ρ_{calc} (g/cm ³)	1.60
$\mu (\text{mm}^{-1})$	13.259
F(000)	512
crystal size (mm)	$0.20 \times 0.20 \times 0.15 \text{ mm}$
θ range for data collection (deg)	3.15-25.00
index ranges	$0 \le h \le 10, 0 \le k \le 8, -10 \le l \le 10$
no. of reflens collected	1100
no. of indep reflcns	1031 [R(int) = 0.0448]
no. of obsd reflcns $[I > 2\sigma(I)]$	649
refinement method	full-matrix least-squares on F^2
no. of data/restraints/parameters	1031/0/78
goodness-of-fit on F^2	0.924
\tilde{R} indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0541$, w $R_2 = 0.1279^b$
R indices (all data) ^a	$R_1 = 0.0994, wR_2 = 0.1424^b$
largest diff. peak and hole (e $Å^{-3}$)	0.837 and -0.807

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, wR_{2} = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum wF_{o}^{2}]^{1/2}.$ ${}^{b}w = [\sigma^{2}(F_{o}^{2}) + (0.0792P)^{2}]^{-1}, \text{ where } P = \{\max(F_{o}^{2}, 0) + 2F_{c}^{2}\}/3.$

batch of 98 data. The decay of the crystal appeared to be negligible during the data collection. The total number of 1031 independent reflections were collected in the 2θ range $6-50^{\circ}$ of which 649 were considered observed [$I > 2\sigma(I)$]. Their net intensities were corrected for Lorentz and polarization effects.

Since the crystal was isostructural with S_4N_4 ³ and β -Se₄N₄,^{6b} the initial atomic coordinates were taken from the crystal structure determination of S_4N_4 .³ The structure was refined using SHELXL-97.²⁷ It became apparent early in the refinement that the chalcogen atom positions were disordered with sulfur and selenium statistically distributed over the atomic sites. Therefore, the site occupation factors of sulfur and selenium were refined along the positional and thermal parameters. Because of the correlation between the thermal parameters and the occupation factors, the following constraints need to be applied:

$$sof_{Se(i)} + sof_{S(i)} = 1$$

 $U_{Se(i)} = U_{S(i)}$

where $sof_{Se(i)}$, $sof_{S(i)}$, $U_{Se(i)}$, and $U_{S(i)}$ are the site occupation factors and the thermal parameters (isotropic or anisotropic) of selenium and sulfur at the *i*th atomic position. The estimation of the electron density, and thus the site occupation factors of sulfur and selenium at the given chalcogen atom position necessitates the constraining of the corresponding sulfur and selenium atoms in the same position. The scattering factors for the neutral atoms were those incorporated with the programs.

Fractional coordinates, isotropic thermal parameters, anisotropic thermal parameters, and all bond parameters are available as Supporting Information.

Results and Discussion

Preparation of S₄N₄. Tetrasulfur tetranitride can conveniently be prepared in good yields by the reaction of $[(Me_3Si)_2N]_2S$ with SCl₂ and SO₂Cl₂ in CH₂Cl₂:

$$[(Me_3Si)_2N]_2S + SCl_2 + SO_2Cl_2 \rightarrow \frac{1}{2}S_4N_4 + 4 Me_3SiCl + SO_2 (1)$$

Purification by recrystallization from toluene yielded pale orange crystals that were identified as S_4N_4 by ¹⁴N NMR, IR, and

Figure 1. Molecular structure of 1,5-Se₂S₂N₄. Thermal ellipsoids are drawn at 50% probability level. The refined site occupation factors [*sof*_{Se(*i*)}] in disordered chalcogen atom positions [*E*(*i*)] are indicated in the figure (*sof*_{Se(*i*)} = $1 - sof_{Se($ *i* $)}$).

Raman spectroscopy. The ¹⁴N NMR spectrum showed only one resonance at -256 ppm.¹⁹ Both IR and Raman spectra of S₄N₄ are in good agreement with those reported earlier.²²

 S_4N_4 has traditionally been prepared by the treatment of S_2 -Cl₂ with Cl₂ gas in CCl₄ followed by the reaction of the product with NH₃ gas.²⁸ An aqueous workup procedure is necessary to remove NH₄Cl.²⁹ The reduction of various N–S–Cl compounds also leads to S_4N_4 .^{31,32} The synthesis described in this work (see eq 1) provides an attractive route to good yields of S_4N_4 , which utilizes easily prepared starting materials, avoids the use of gaseous reactants, and employs a simple purification procedure.

Preparation, Crystal Structure, and Spectroscopic Characterization of $Se_2S_2N_4$ **.** The reaction of $[(Me_3Si)_2N]_2S$ with SeCl₄ in CH₂Cl₂ produces $Se_2S_2N_4$ as shown in eq 2.

$$[(Me_3Si)_2N]_2S + SeCl_4 \rightarrow \frac{1}{2}Se_2S_2N_4 + 4Me_3SiCl$$
 (2)

The same compound can also be obtained by the reaction of $[(Me_3Si)_2N]_2Se$ with SCl₂ and SO₂Cl₂ in CH₂Cl₂ (eq 3):

$$[(Me_{3}Si)_{2}N]_{2}Se + SCl_{2} + SO_{2}Cl_{2} \rightarrow$$

$$^{1}/_{2}Se_{2}S_{2}N_{4} + 4 Me_{3}SiCl + SO_{2} (3)$$

The product was obtained as dark brown-red powder, which was almost insoluble in organic solvents. Both reactions produce impure $Se_2S_2N_4$ in good yields (ca. 75%). The elemental analysis of the solid product from both reactions indicates a mixture containing $Se_2S_2N_4$ (91%) and Se (9%).²³

The molecular structure of $Se_2S_2N_4$ with the atomic numbering scheme is shown in Figure 1. The molecule has a cage structure similar to those of $S_4N_4{}^3$ and $Se_4N_4{}^6$ The refined site occupation factors of selenium in all chalcogen-atom positions are near 50%. Consequently, all bond lengths [1.75-(1)-1.80(1) Å] show intermediate values between those of S_4N_4

- (29) A procedure has also been described by using CH_2Cl_2 as the solvent instead of CCl_4 .³⁰
- (30) O'Hare, P. A. G.; Awere, E. G.; Parsons, S.; Passmore, J. J. Chem. Thermodyn. **1989**, 21, 153.
- (31) (a) Banister, A. J.; Fielder, A. J.; Hey, R. G.; Smith, N. R. M J. Chem. Soc., Dalton Trans. 1980, 1457. (b) Berthet, M. P.; Vincent, H.; Monteil, Y. Z. Naturforsch. 1980, 35B, 329.
- (32) For example, the treatment of $(NSCl)_3$ with iron turnings in monoglyme produces S_4N_4 in 67% yield. 31a

⁽²⁷⁾ Sheldrick, G. S. SHELXL-97; University of Göttingen: Germany, 1997.

⁽²⁸⁾ Villena-Blanco, M.; Jolly, W. L. Inorg. Synth. 1967, 9, 98.

Table 2. Calculated and Observed Fundamental Vibrations (cm^{-1}) of S_4N_4 , 1,5-Se₂S₂N₄, and Se₄N₄

$S_4N_4 (D_{2d})^a$			$1,5-Se_2S_2N_4(C_{2\nu})$					Se ₄ N ₄ (D _{2d})				
_	Calc.	Obs. ^b	Assignment (%) °		Calc.	Obs	Assignment (%) °			Calc.	Obs. ^{b,d}	Assignment (%) ^c
<i>a</i> ₁	717	720 m	48 ν _{SN} , 45 δ _{SNS}	► <u>a</u> 1	636	624 vs	47 δ_{NSN} , 26 v_{SeN} , 17 δ_{SNSe}]∙	<i>a</i> ₁	623	621 w	56 δ _{SeNSe} , 30 ν _{SeN}
<i>a</i> ₁	552	558 s	51 ν _{SN} , 25 $δ_{SNS}$, 21 $δ_{NSN}$	- ▶ <i>a</i> ₁	523	517 vw	<u>39 ν_{SeN}, 34 ν_{SN}, 14 δ_{NSeN}</u>]•	<i>a</i> ₁	318	318 w	40 v_{SeN} , 34 v_{SeSe} , 21 δ_{SeNSe}
<i>a</i> 1	229	218 s	54 δ_{NSN} , 33 v_{SS} , 13 δ_{SNS}		255	269 m	30 $\nu_{\text{SS}},$ 22 $\delta_{\text{NSeN}},$ 13 $\nu_{\text{SN}},$ 10 $\delta_{\text{SNSe}},$ 10 τ]•	<i>a</i> ₁	171	154 vs	$\begin{array}{llllllllllllllllllllllllllllllllllll$
<i>a</i> ₂	928	-	100 v _{sn}		839	845 vw	83 ν _{SN} , 14 δ _{SNSe}]∙	<i>a</i> ₂	791	-	100 v _{SeN}
a2	254	-	100 τ	→ <i>a</i> ₂	291	286 m	96 τ]•	<i>a</i> ₂	170	-	100 τ
<i>b</i> ₁	886	-	78 ν _{SN} , 22 δ _{SNS}		597	578 m	73 v _{sen} , 16 v _{sn}]►	b ₁	780	-	53 δ _{SeNSe} , 45 ν _{SeN}
b ₁	227	224 m	86 δ _{SNS} , 13 ν _{SN}	► a ₂	162	160 vs	86 δ _{SNSe}]•	<i>b</i> ₁	150	-	$65 \delta_{\text{SeNSe}}, 34 v_{\text{SeN}}$
b ₂	762	765 m °	73 ν _{SN} , 25 δ _{NSN}	► a ₁	803	802 vw	61 ν _{SN} , 18 δ _{NSeN} , 14 δ _{SNSe}]•	b ₂	538	534 m °	82 ν _{SeN} , 15 δ _{NSeN}
<i>b</i> ₂	549	550 vs ^d	40 δ_{NSN} , 38 τ , 21 ν_{SN}	► a ₁	403	428 m	49 ν _{SeN} , 31 δ _{NSeN} , 12 δ _{SNSe}]♦	<i>b</i> ₂	426	425 m °	69 δ_{NSeN} , 20 τ , 10 v_{SeN}
<i>b</i> ₂	194	201 vs °	58 $\nu_{SS},$ 23 τ 17 δ_{NSN}		199	182 s	69 ν _{SeSe} 11 ν _{SS} , 20 τ]•	<i>b</i> ₂	144	147 m °	56 v _{SeN} , 41 v _{SeSe}
Te	925	925 vs °	82 νωι 13 δωτε		862	856 vw	74 ν _{SN} , 14 δ _{SNSe} , 11 δ _{NSeN}	7	e	788	788 s ^e	57 VSAN, 33 δSANSA
Ľ.			21() x 0 01()	<i>b</i> ₁	727	726 w	84 ν _{SN} , 13 δ _{SNSe}	ſ				
е	708	701 vs ^e	82 ν _{SN} , 13 δ _{SNS}		675 547	692 w 558 m	39 ν _{SeN} , 32 δ _{NSN} , 16 δ _{SNSe} , 10 ν _{SN} 62 ν _{SeN} , 25 ν _{SN} , 10 δ _{SNSe}		e	567	570 vs °	73 ν _{SeN} , 26 δ _{SeNSe}
е	528	524 sh e	54 δ _{NSN} , 23 δ _{SNS} , 18 τ		479	490 m	$\frac{48 v_{\text{SeN}}, 41 \delta_{\text{NSN}}, 10 v_{\text{SN}}}{65 \delta_{\text{MSN}}, 34 v_{\text{SN}}}$		e.	306	310 m °	88 δ _{NSeN}
e	348	344 vs *	44 δ _{SNS} , 33 τ, 18 VSN	b_1	313	309 s	47 δ_{SNSee} 31 τ, 11 δ_{SNS}		e	253	260 s °	49 ν _{SeN} , 29 τ, 16 δ _{SeNSe}
			<u>31907</u> 7 559	b ₂	234	221 w	57 δ _{SNSe} , 32 τ	_ _				

^{*a*} The data are taken from ref 22a. ^{*b*} The observed vibrations are based on the Raman spectra except where otherwise indicated. ^{*c*} The assignment is based on the most significant contributions (>10%) in the potential energy distribution. ^{*d*} References 22c and 36. ^{*e*} IR data.³⁶

and Se₄N₄ and reflect only the composition of the atomic positions (see Supporting Information). This is well exemplified by the transannular chalcogen–chalcogen contacts. In the present structure the two distances are 2.700(3) and 2.705(3) Å (see Figure 1) that fall between the S^{•••}S distances (2.597 and 2.601 Å) found in S₄N₄^{3c} and the Se^{•••}Se distances (2.740–2.742 Å) found in α -Se₄N₄^{6a} and β -Se₄N₄.^{6b,33}

The observed disorder in the chalcogen atom sites indicates that either the lattice contains $Se_2S_2N_4$ molecules that can assume different orientations, or that the crystalline phase is in fact a solid solution containing 50% of both S_4N_4 and Se_4N_4 . From the crystal structure determination alone it is not possible to distinguish between these two alternatives.

The 12 eV mass spectrum is shown in Figure 2. The fragment with the highest mass is $Se_2SN_2^+$. The observed and calculated isotopic distributions are in excellent agreement with each other (see Supporting Information). The fragmentation pattern implied by Figure 2 is also consistent with the molecular composition $Se_2S_2N_4$. The appearance of an $Se_2SN_2^+$ fragment in the mass spectrum rules out the possibility that the crystalline sample is

Figure 2. 12 eV EI mass spectrum of $Se_2S_2N_4$.

a solid solution of S_4N_4 and $Se_4N_4.$ Furthermore, the mass spectrum shows no evidence of the parent peaks for S_4N_4 and $Se_4N_4.$

The ¹⁴N and ⁷⁷Se NMR spectra are recorded in CS₂. The ¹⁴N NMR spectrum shows a single resonance at -238 ppm. This value is reasonable for Se₂S₂N₄ when compared to -256 ppm observed for S₄N₄.¹⁹ The ⁷⁷Se NMR spectrum also exhibits a

⁽³³⁾ The intensity data collections of S₄N₄^{3c} and Se₄N₄⁶ were carried out at -120 °C, while the present structure has been determined at room temperature. The internuclear distances are therefore not exactly comparable.

Table 3. Comparison of Selected Stretching Force Constants of 1,5-Se₂S₂N₄ with Some Related Species (N m⁻¹)

force constant	$1,5$ -Se $_2$ S $_2$ N $_4$	$S_4 N_4{}^a$	$\mathrm{Se}_4\mathrm{N}_4$	$S_4N_2{}^b$	$\mathrm{SeS}_3\mathrm{N}_2{}^b$	$S_7 NH^c$	$S_4(NH)_4^d$	$S_3 N_2^{2+ e}$	$\mathrm{Se_2SN_2^{2+}}^{e}$	$Se_3N_2Cl^{+f}$
$f_{\rm S-N}$	355	376		249	286	398	401	333 ^g	339 ^g	
$f_{\rm Se-N}$	252		252							220,231
$f_{S=N}$				476	424			443^{h}		
$f_{Se=N}$									425	391
f _s s	36	21								
f _{Se} _{Se}	78		76							

^{*a*} Reference 22a. ^{*b*} Reference 26. ^{*c*} Reference 37. ^{*d*} Reference 38. ^{*e*} Reference 39. ^{*f*} Reference 40. ^{*g*} The estimated bond order is 1.6–1.7. ^{*h*} The estimated bond order is 1.95.

Figure 3. The (a) 1,5- and (b) 1,3-isomers of $Se_2S_2N_4$

Figure 4. Raman spectrum of $\text{Se}_2\text{S}_2\text{N}_4$ recorded at ca. -100 °C. The signals marked with an asterisk are due to Se_8 .⁴¹

single resonance at 1418 ppm. The ⁷⁷Se chemical shift of tetraselenium tetranitride has not been recorded owing to the insolubility of the binary material.

The appearance of only one resonance in the ¹⁴N NMR spectrum indicates that all nitrogen atoms are equivalent implying the existence of 1,5-Se₂S₂N₄ rather than that of 1,3-Se₂S₂N₄ in the sample solution (see Figure 3).³⁴ In the case of the 1,3-isomer three resonances at the intensity ratio of 1:2:1 are expected in the ¹⁴N NMR spectrum. Both isomers should exhibit only one ⁷⁷Se resonance. The two preparative methods also imply the formation of 1,5-Se₂S₂N₄. The formation of 1,3-Se₂S₂N₄ seems less likely, since it would require extensive rearrangement of the atoms and bonds during the reaction.³⁵

Vibrational analysis provides further verification for the identity of the 1,5-isomer of $Se_2S_2N_4$. The Raman spectrum is shown in Figure 4. The molecule belongs to the point group $C_{2\nu}$ and therefore all 18 fundamental vibrations (6a₁, 4a₂, 4b₁, 4b₂) are both Raman and IR active. The assignment of the spectrum has been carried out by calculating the fundamental vibrations for 1,5-Se₂S₂N₄ using the general valence force field approach.²⁴ These calculations yield a good agreement with the observed Raman lines (see Table 2). The reliability of the assignment can be assessed by comparing it with the assignments for S₄N₄ and Se₄N₄.

Both tetrasulfur tetranitride and tetraselenium tetranitride belong to the point group D_{2d} and show twelve Raman active vibrations (3a₁, 2b₁, 3b₂, and 4e) and seven IR active vibrations (3b₂ and 4e). The two a₂ modes are inactive. Steudel^{22a} has performed an extensive normal coordinate treatment for tetrasulfur tetranitride with a modified Urey–Bradley force field. To date, these calculations yield the most reliable assignment for both Raman and IR spectra of S₄N₄. Our present general valence force field calculations for Se₄N₄ produce an assignment with very similar potential energy distribution for all corresponding fundamental vibrations (see Table 2).

The assignment of the Raman spectrum of 1,5-Se₂S₂N₄ is consistent with those made for both S₄N₄ and Se₄N₄. When the symmetry is lowered from D_{2d} to C_{2v} the symmetry modes transform as follows: $a_1 \rightarrow a_1$, $a_2 \rightarrow a_2$, $b_1 \rightarrow a_2$, $b_2 \rightarrow a_1$, and $e \rightarrow b_1 + b_2$. This leads to the correlation between the fundamental vibrations of S₄N₄, 1,5-Se₂S₂N₄, and Se₄N₄ shown in Table 2. The potential energy distribution in each group of correlated vibrations is rather similar in all three molecules and indicates that the assignments of the vibrational spectra of the three species are consistent with each other. The force field calculations also yield reasonable force constants for 1,5-Se₂S₂N₄ and Se₄N₄. This is demonstrated in Table 3 by comparison of the stretching force constants of the present molecules with those of the related compounds.

Conclusions

The new chalcogen nitride $Se_2S_2N_4$ has been prepared in good yields by two methods. The crystal structure and spectroscopic (¹⁴N and ⁷⁷Se NMR, mass, and Raman) data are consistent with the formation of the 1,5-isomer, which is a potential precursor, via thermolysis, of the four-membered ring $SeSN_2$ and, hence, the mixed chalcogen nitride polymer ($SeSN_x$.

Acknowledgment. The financial support from the Academy of Finland is gratefully acknowledged.

Supporting Information Available: The observed and calculated isotopic distribution factors for $Se_2SN_2^+$ and an X-ray crystallographic file, in CIF format, are available free of charge via the Internet at http://pubs.acs.org.

IC990179I

- (38) Steudel, R.; Rose, F. *Spectrochim. Acta* **1977**, *33A*, 979.
 (39) Brooks, W. V. F.; Cameron, S. T.; Parsons, S.; Passmore, J.; Schriver,
- M. J. Inorg. Chem. 1995, 33, 6230.
 (40) Siivari, J.; Chivers, T.; Laitinen, R. S. Inorg. Chem. 1993, 32, 4391.
- (41) Steudel, R. Z. Naturforsch. 1975, 30A, 1481.

⁽³⁴⁾ In principle the ⁷⁷Se and ¹⁴N chemical shifts could also be assigned to Se₄N₄, but that would necessitate the appearance of the ¹⁴N resonance at -256 ppm due to S₄N₄ in the spectrum.

⁽³⁵⁾ The reaction 2 forms the cyclic eight-atom molecule from two NSN and two Se fragments and the reaction 3 from two NSeN and two S fragments. Therefore, in both cases 1,5-Se₂S₂N₄ should be formed rather than 1,3-Se₂S₂N₄.

⁽³⁶⁾ Adel, J.; Ergezinger, C.; Figge, R.; Dehnicke, K. Z. Naturforsch. 1988, 43B, 639.

⁽³⁷⁾ Steudel, R. J. Phys. Chem. 1977, 81, 343.