Monomerization of a Rhenium(V) Dimer by Ligation

Josemon Jacob, Ga´**bor Lente, Ilia A. Guzei, and James H. Espenson***

Ames Laboratory and Department of Chemistry, Iowa State University of Science and Technology, Ames, Iowa 50011

*Recei*V*ed April 6, 1999*

Stoichiometric and catalytic oxygen atom transfer reactions involving Re(V) and Re(VII) oxides and their derivatives have received great attention in recent years. $1-3$ Our recent work has focused on elucidating the mechanisms of these reactions, in particular those involving methyltrioxorhenium(VII), MTO, and its reduced forms. $4-6$ A yellow dimeric dithiolato(oxo)rhenium-(V) compound, designated **D** in Chart 1, has been prepared from MTO and the dithiolate, **1**. The synthesis and characterization of **D** have been reported.7 We have found that reactions between **D** and prospective ligands (L) cause its monomerization. With the resulting family of compounds designated as **^M**-L, the net reaction is represented by eq 1. The structural formulas of the participants are given in **Chart 1**. Examples of ligand-induced monomerization reactions are rare, although ones somewhat similar to reaction 1 are known for the dimer $[Rh(CO)_2Cl]_2^8$ and for certain proteins⁹ as well.

$$
D + 2L \rightarrow 2M - L \tag{1}
$$

To learn about the mechanism of reaction 1, experiments along several lines were carried out in toluene and benzene, with $L =$ $PPh₃$ and Me₂SO; each ligand elucidates a separate facet of the mechanism. We have characterized the products and, in the case of dmso, have isolated the intermediate and characterized it by X-ray crystallography. These results are presented herein.

In the reaction between D and PPh_3 in toluene, a few hours is needed to complete the formation of the green complex M -PPh₃ $(\lambda_{\text{max}} 606 \text{ nm}, \epsilon 190 \text{ L mol}^{-1} \text{ cm}^{-1}, \delta = 2.97 \text{ ppm} \text{ for } \text{ReCH}_3),$ whose crystal structure we reported earlier.⁷ The reaction rate is first-order with respect to [**D**]. The pseudo-first-order rate-constant *k*obs varies nonlinearly with [PPh3], as shown in Figure 1. The rate law is made up of two terms with first-order and secondorder dependences on [PPh₃]:

$$
\frac{\mathrm{d}[M - PPh_3]}{\mathrm{d}t} = 2\{k_a[PPh_3] + k_b[PPh_3]^2\} \cdot [D] \tag{2}
$$

These values at $25.0 \degree C$ in toluene were found by least-squares fitting: $k_a = (8.2 \pm 0.2) \times 10^{-3}$ L mol⁻¹ s⁻¹ and $k_b = (5.2 \pm 0.2)$ $(0.2) \times 10^{-2}$ L² mol⁻² s⁻¹.

One possible reaction scheme features a $D \rightleftharpoons 2M$ interconversion, followed by the step $M + PPh_3 \rightarrow M-PPh_3$. Such a

- (1) Romão, C. C.; Kühn, F. E.; Herrmann, W. A. *Chem. Rev.* **1997**, 97, 3197-3246. 3197–3246.
Espenson J
- (2) Espenson, J. H.; Abu-Omar, M. M. *Ad*V*. Chem. Ser.* **¹⁹⁹⁷**, *²⁵³*, 99- 134.
- (3) Conry, R. R.; Mayer, J. M. *Inorg. Chem.* **¹⁹⁹⁰**, *²⁹*, 4862-67. (4) Abu-Omar, M. M.; Appleman, E. H.; Espenson, J. H. *Inorg. Chem.* **1996**,
- (5) Espenson, J. H. Chem. Commun. 1999, 479-88.
- (5) Espenson, J. H. *Chem. Commun.* **¹⁹⁹⁹**, 479-88*.* (6) Abu-Omar, M. M.; Espenson, J. H. *Inorg. Chem.* **¹⁹⁹⁵**, *³⁴*, 6239-40.
- (7) Jacob, J.; Guzei, I. A.; Espenson, J. H. *Inorg. Chem.* **¹⁹⁹⁹**, *³⁸*, 1040- 1041.
- (8) Rollmann, L. D. *Inorg. Chim. Acta* **¹⁹⁷²**, *⁶*, 137-140 and references therein.
- (9) Horiike, K.; Shiga, K.; Isomoto, A.; Yamano, T. *J. Biochem. (Tokyo)* **¹⁹⁷⁷**, *⁸¹*, 179-186 and references therein.

 $[PPh_2]/M$

Figure 1. Dependence of the pseudo-first-order rate constant k_{obs} on the concentration of triphenylphosphine in toluene at 25.0 °C. The solid line represents the least-squares fit based parallel paths with first-order and second-order dependences on phosphine concentration, as expressed by eq 2.

Chart 1

mechanism has been observed for the dimeric Re(V) oxo compound, $(Cp*ReO)₂(\mu-O)₂$, not strictly with a ligand, but with an epoxide.10 That mechanism cannot apply in this instance, however, because the rate law would not have the correct form. The scheme presented in eqs $3-5$ does agree with kinetics. It features a dimeric intermediate, **D**-PPh₃, that is asymmetric with respect to its binding of PPh₃.

The equilibrium constants for direct coordination of $PPh₃$ to **D** are known to be small, since only **D** and M -PPh₃ were detected during the time course. The rate law then agrees with eq 2, with $k_a = k_3 K_1$ and $k_b = k_4 K_1 K_2$. These composite constants cannot be resolved further from the available information.

We next turned to the case of $L = Me₂SO$. The reaction between **D** and dmso is exceptionally rapid. The yellow color of **D** turned pink immediately upon addition of dmso. Stopped-flow

⁽¹⁰⁾ Gable, K. P.; Juliette, J. J. J.; Gartman, M. A. *Organometallics* **1995**, *¹⁴*, 3138-3140.

Figure 2. Perspective view of the asymmetric dinuclear dmso complex, **^D**-L with thermal ellipsoids of 30% probability level. Selected bond lengths (pm) and angles (deg): $Re(2)-O(2)$, 169.4; $Re(2)-C(2)$, 215.0; $Re(2)-S(2), 233.0; Re(2)-O(3), 238.6; Re(2)-S(1), 238.8; Re(2)-S(3),$ 241.8; O(2)-Re(2)-O(3), 171.9; C(2)-Re(2)-O(3), 78.1; S(2)-Re(2)- O(3), 83.4; O(3)-Re(2)-S(1), 75.2; O(3)-Re(2)-S(3), 73.8.

$$
\mathbf{D} + \text{PPh}_3 \xrightarrow[k]{} \mathbf{D} - \text{PPh}_3
$$
 (3)

$$
k_2[PPh_3] \times D(PPh_3)_2 \xrightarrow{k_4} 2 M - PPh_3 \tag{4}
$$

$$
D-PPh_3 \n\begin{cases}\n k_{-2} & + PPh_3 \\
k_3 & \text{fast}\n\end{cases}\n M-PPh_3\n\tag{5}
$$

determinations at the lowest allowable concentrations and temperature (1.0 mM **D** and 8.0 mM dmso in benzene at 280 K) gave evidence only for a completed reaction.11 From that we set k_1 > 3 × 10⁵ L mol⁻¹ s⁻¹. Spectrophotometric and NMR determinations (details in the Supporting Information) gave evidence of the equilibrium written in eq 3, with $K_1 = 120 \pm 6$ L mol⁻¹ (298 K, benzene). From the temperature-dependent values of *K*₁ (283-333 K), ΔH_1 ° = -35.6 \pm 0.8 kJ mol⁻¹ and ΔS_1 ° = -80 ± 3 J mol⁻¹ K⁻¹ were determined.

We were able to crystallize the 1:1 adduct of **D** and dmso, **D**-dmso. Its molecular structure is shown in Figure 2.^{12,13} The two Re atoms are different, one being six-coordinate, the other five. A similar asymmetric dmso complex has been reported for

- (12) X-ray crystal data for C₂₅H₄₃O₅Re₂S₇: monoclinic, $P2_1/n$, $a = 14.1515$ -
(12) Å, $b = 10.8017(9)$ Å, $c = 22.9054(19)$ Å, $\beta = 101.503(2)$ °, $V =$ (12) Å, $b = 10.8017(9)$ Å, $c = 22.9054(19)$ Å, $\beta = 101.503(2)^\circ$, $V = 3431.0(5)$ Å³, $Z = 4$, $T = 193(2)$ K, $D_{calc} = 1.975$ Mg/m³, $R(F) = 6.21\%$ for 4862 independently observed $(I \ge 2\sigma(I))$ reflections $(4^\circ \le 2\theta \le$ 53°).
- (13) The software and sources of the scattering factors are contained in the SHELXTL (version 5.1) program library (G. Sheldrick, Bruker Analytical X-ray Systems, Madison, WI). Absorption corrections were carried out using the program DIFABS (Walker, N.; Stuart, D. *Acta Crystallogr.* **1983**, *A39*, 158).

a dimeric $Re(III)$ complex.¹⁴ The geometry around $Re(1)$ in the new compound is best described as distorted square pyramidal with atoms $S(1)$, $S(3)$, $S(4)$, and $C(1)$ in the basal plane and atom $O(1)$ in the apex. Atoms $S(1)$, $S(3)$, $S(4)$, and $C(1)$ are planar within 6 pm while vector $Re(1)-O(1)$ forms an 84.4° angle with this plane. The coordination sphere around Re(2) is severely distorted octahedral due to the coordination of one dmso molecule trans to $O(2)$. The displacement of $Re(2)$ from the plane defined by atoms $C(2)$, $S(1)$, $S(2)$, and $S(3)$ is 49 pm, and the sum of the angles around Re(2) defined by these atoms is 349.6°. These values can be contrasted with the corresponding parameters for the square pyramidal Re(1) which comprised 64 pm and 342.1°, respectively. For the bound dmso, the $Re(2)-O(3)$ distance is 238.6pm and the $Re(1)-O(3)$ distance is 287.4 pm.

The NMR signals of **^D** and **^D**-dmso could not be resolved even at -50 °C. The proximity of the second rhenium to the oxygen atom of dmso in **^D**-dmso raises the possibility of a fast internal exchange of dmso between the two rhenium centers. However, this cannot be claimed unequivocally because the equilibration time in reaction 3 is also very brief.

Much weaker and also very fast coordination of a second dmso yields $D(dmso)_2$. The changes in the UV-vis and NMR spectra were too small to characterize this species reliably. Kinetic studies of the subsequent monomerization reaction gave $K_2 \approx 0.6$ L mol⁻¹ and (for the reaction analogous to eq 4 with dmso in place of PPh₃), $k_4 \approx 7 \times 10^{-5} \text{ s}^{-1}$ (293 K, benzene) with k_3 for dmso being too small to give a measurable contribution to the rate. **^M**-dmso was not detected, however, since subsequent fast redox reactions, including the breaking of the S-O bond, ensued. These events are unrelated to the present subject and will be reported separately.

In summary, we have shown that the monomerization of **D** by ligands goes through an initial 1:1 adduct, which was characterized by X-ray crystallography in the case of dmso. The kinetic role of the analogous adduct is clear in the reaction with PPh_3 , but that adduct is not formed in significant concentrations. We are currently investigating the mechanism of monomerization with other neutral and anionic ligands.

Acknowledgment. This research was supported by a grant from the National Science Foundation (CHE-9625349). Some experiments were conducted with the use of the facilities of the Ames Laboratory. Helpful suggestions made by Professor Albert Haim are acknowledged.

Supporting Information Available: Experimental descriptions and figures showing UV-vis changes, NMR chemical shift changes, temperature dependence accompanying the equilibrium between **D** and dmso, and repetitive scans made during the reaction between **D** and PPh₃ as well as one X-ray crystallogrphic data file for the asymmetric dmso complex **^D**-L, in CIF format. These materials are available free of charge from the Internet at http://pubs.acs.org.

IC990370S

⁽¹¹⁾ Under these conditions the complex formation reaction is not shifted to give the stoichiometric amount of **^D**-L, but is still accompanied by an easily detected absorbance change, ∼0.2 absorbance units at 390 nm.

⁽¹⁴⁾ Hursthouse, M. B.; Malik, K. M. A. *J. Am. Chem. Soc.* **¹⁹⁶²**, *⁸⁴*, 2941- 2944.