Dimerization of the Octaethylporphyrin *π* **Cation Radical Complex of Cobalt(II): Thermodynamic, Kinetic, and Spectroscopic Studies**

Yaping Ni, Sin Lee, and Bradford B. Wayland*

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323

*Recei*V*ed April 13, 1999*

Introduction

One electron oxidation of cobalt(II) porphyrins can occur from either the cobalt d or porphyrin π orbitals depending on the choice of porphyrin and reaction media.¹⁻¹² Oxidation of (octaethylporphyrinato)cobalt(II), $(OEP)Co^H(1)$, in the presence of ligands such as H2O and CO produces diamagnetic five and six coordinate complexes of cobalt(III).¹⁻⁶ In the absence of additional ligands to coordinate with Co(III) the first oxidation of (OEP)Co^{II} occurs from a porphyrin π MO to produce a π cation radical complex of cobalt(II), $[(OEP)Co^H]^{+}$ (2).^{1,4} Metalloporphyrin π cation radical complexes and dimers of the OEP derivatives have been extensively investigated.¹³⁻³⁰ This article

- (1) Salehi, A.; Oertling, W. A.; Babcock. G. T.; Chang, C. K. *J. Am. Chem. Soc.* **1986**, *108*, 5630.
- (2) Oertling, W. A.; Salehi, A.; Chung, Y. C.; Leroi, G. E.; Chang, C. K.; Babcock, G. T. *J. Phys. Chem.* **1987**, *91*, 5887.
- (3) Erler, B. S.; Scholy, W. F.; Lee, Y. J.; Scheidt, R. W.; Reed, C. A. *J. Am. Chem. Soc.* **1987**, *109*, 2644.
- (4) Schmidt, E.; Zhang, H.; Chang, C. K.; Babcock, G. T.; Oertling, W. A. *J. Am. Chem. Soc.* **1996**, *118*, 2965.
- (5) Gasyna, Z.; Stillman, M. J. *Inorg. Chem.* **1990**, *29*, 5101.
- (6) Mu, X. H.; Kadish, K. M. *Inorg. Chem.* **1989**, *28*, 3743.
- (7) Hu, Y.; Han, B. C.; Bao, L. Y.; Mu, X. H.; Kadish, K. M. *Inorg. Chem.* **1991**, *30*, 2444.
- (8) Sandusky, P. O.; Salehi, A.; Chang, C. K.; Babcock, G. T. *J. Am. Chem. Soc.* **1989**, *111*, 6439.
- (9) Reddy, D.; Reddy, N.; Chandrashekar, T. K.; van Willigen, H. *J. Chem. Soc., Dalton Trans.* **1991**, 2097.
- (10) Pavlovic, D.; Asperger, S.; Ahmetl, X.; Clzmek, B. C.; Jarisic, B.; Veksli, E. *Inorg. Chem.* **1988**, *27*, 1515.
- (11) Reddy, D.; Reddy, N.; Chandrashekar, T. K. *Inorg. Chim. Acta* **1989**, *100*, 147.
- (12) Itoh, K.; Nakahasi, K.; Toeda, H. *J. Phys. Chem.* **1989**, *92*, 1464.
- (13) Fuhrhop, J.-H.; Mauzerall, D. *J. Am. Chem. Soc.* **1969**, *91*, 4174.
- (14) Fajer, J.; Borg, D. C.; Forman, A.; Dolphin, D.; Felton, R. H. *J. Am. Chem. Soc.* **1970**, *92*, 3451.
- (15) Fuhrhop, J.-H.; Wasser, P.; Riesner, D.; Mauzerall, D. *J. Am. Chem. Soc.* **1972**, *94*, 7996.
- (16) Oertling, W. A.; Salehi, A.; Chang, C. K.; Babcock, G. T. *J. Phys. Chem.* **1989**, *93*, 1311.
- (17) Brancato-Buentello, K. E.; Kang, S.-J.; Scheidt, W. R. *J. Am. Chem. Soc.* **1997**, *119*, 2839.
- (18) Lee, S.; Mediati, M.; Wayland, B. B. *J. Chem. Soc., Chem. Commun.* **1994**, 2299.
- (19) Song, H.; Orosz, R. D.; Reed, C. A.; Scheidt, W. R. *Inorg. Chem.* **1990**, *29*, 4274.
- (20) Scheidt, W. R.; Song, H.; Haller, K. J.; Safo, M. K.; Orosz, R.; Reed. C. A.; Debrunner, P. G.; Schulz, C. E. *Inorg. Chem.* **1992**, *31*, 941.
- (21) Song, H.; Reed, C. A.; Scheidt, W. R. *J. Am. Chem. Soc.* **1989**, *111*, 6865.
- (22) Godziela, G.; Goff, H. M. *J. Am. Chem. Soc.* **¹⁹⁸⁶**, *¹⁰⁸*, 2237-2243. (23) Fujii, H. *Inorg. Chem.* **1993**, *32*, 875.
- (24) Schulz, C. E.; Song, H.; Mislankar, A.; Orosz, R. D.; Reed, C. A.; Debrunner, P. G.; Scheidt, W. R. *Inorg. Chem.* **1997**, *36*, 406.
- (25) Schulz, C. E.; Song, H.; Lee, Y.; Mondal, J. U.; Mohanrao, K.; Reed, C. A.; Walker, F. A.; Scheidt, W. R. *J. Am. Chem. Soc.* **1994**, *116*, 7196.
- (26) Nakashima, S.; Ohya-Nishiguchi, H.; Hirota, N.; Fujii, H.; Morishima, I. *Inorg. Chem.* **1990**, *29*, 5207.

reports on the interconversion of the paramagnetic $(S = 1)$ monomer, $[(OEP)Co^{II}]$ ⁺ (2), with a diamagnetic dimer, $[(OEP)$ - Co^H ₂²⁺ (3), in dichloromethane solvent. ¹H NMR shift and line width studies in CD_2Cl_2 are applied in evaluating the thermodynamic and activation parameters for homolytic dissociation of the diamagnetic dimer (**3**).

Experimental Methods and Analysis

Dichloromethane-*d*² (99.6 atom % D) was placed in a vacuum transfer tube containing P_2O_5 to scavenge for residual water and then degassed by multiple freeze-pump-thaw cycles. (OEP)Co^{II} and (OEP)- Zn^{II} were purchased from Aldrich, and anhydrous $AgBF_4$ was purchased from Alfa and stored in an inert-atmosphere box under argon prior to use. Solutions of $[(OEP)Co^H]$ ⁺BF₄⁻ were prepared by mixing (OEP)- Co^{II} and AgBF₄ in dicholoromethane using the published procedure for the formation of $[(OEP)Co^H]$ ⁺ClO₄⁻.¹ Solid samples of $(OEP)Co^H$ $(1.0-1.7 \text{ mg})$ and a stoichiometric quantity of solid anhydrous AgBF₄ were weighed in an inert-atmosphere box and placed in 507 PP Wilmad NMR tubes equipped with a stopcock and then attached to a vacuum line for evacuation. Solution samples were prepared by vacumm transfer of 0.35 mL of dried, degassed dichloromethane-*d*² into the NMR tubes, which were subsequently flame sealed.

Activation parameters for dissociation of the diamagnetic dimer $[({\rm OEP}){\rm Co}^{\rm II}]_2^{\rm 2+}$ into paramagnetic monomers $[({\rm OEP}){\rm Co}^{\rm II}]^+$ were determined from the temperature dependence of the ¹H NMR line width. The expression that relates the ¹H NMR line width changes to the rate of dissociation of the diamagnetic dimer is given by eq $1.^{31-35}$

$$
\pi \Delta \nu_{1/2(ex)} = T_{2(ex)}^{-1} = \tau_d^{-1} [(A \tau_p / 2)^2][1 + (A \tau_p / 2)^2]^{-1}
$$
 (1)

Equation 1 reduces to $T_{2(ex)}^{-1} = \tau_d^{-1}$ for nuclei in paramagnetic cies where the mean lifetime (τ) is long and the electron-nuclear species where the mean lifetime (τ_p) is long and the electron-nuclear coupling constant (*A* radians s⁻¹) is large $((A\tau_p/2)^2 \gg 1)$. The apparent mean lifetime for the diamagnetic species (τ_1) that results from the mean lifetime for the diamagnetic species (τ_d) that results from the observed $T_{2\text{(ex)}}^{-1}$ yields the rate constant $(\tau_d^{-1} = k_{app})$ for bond homolysis events that result in paramagnetic species that produce efficient pucker events that result in paramagnetic species that produce efficient nuclear relaxation $((A\tau_p/2)^2 \gg 1)$.

Thermodynamic values for the dissociation of $[(OEP)Co^H]_{2}^{2+}(BF_{4})_{2}$ were obtained from analysis of ¹H NMR chemical shift measurements at a series of temperatures (300-360 K) where **²** and **³** are in limiting fast interchange. Nonlinear least squares curve fitting of the measured δ _{obs} values at a series of temperatures to eq 2 gives the best fit values

$$
\delta_{\rm obs} = \delta_{\rm D} + \delta_{\rm D} / (4 \text{[M]}_i) [e^{-\Delta H^\circ / RT} e^{\Delta S^\circ / R} - (e^{-2\Delta H^\circ / RT} e^{\Delta S^\circ / R} + 8 \text{[M]}_i e^{-\Delta H^\circ / RT} e^{\Delta S^\circ / R})^{1/2}] + 1 / (4 \text{[M]}_i) [-e^{-\Delta H^\circ / RT} e^{\Delta S^\circ / R} + (e^{-2\Delta H^\circ / RT} e^{2\Delta S^\circ / R} + 8 \text{[M]}_i e^{-\Delta H^\circ / RT} e^{\Delta S^\circ / R})^{1/2}] (C_M T^{-1} + \delta_{\rm Mo})
$$
(2)

for ∆*H*° and ∆*S*° for dissociation of the dimer (D) and the slope of the temperature dependence (C_M) for the contact shift of the paramagnetic monomer (M).

- (27) Gans, P.; Buisson, G.; Duee, E.; Marchon, J.; Erler, B. S.; Scholz, W.; Reed, C. A. *J. Am. Chem. Soc.* **1986**, *108*, 1223.
- (28) Song, H.; Rath, N. P.; Reed, C. A.; Scheidt, W. R. *Inorg. Chem.* **1989**, *28*, 1839.
- (29) Barkigia, K.; Renner, M. W.; Fajer, J. *J. Phys. Chem. B* **1997**, *101*, 8398.
- (30) Renner, M. W.; Barkigia, D. M.; Smith, K. M.; Fajer, J. *Inorg. Chem.* **1996**, *35*, 5120.
- (31) McConnell, H. M.; Berger, S. B. *J. Chem. Phys.* **1957**, *27*, 230.
- (32) Johnson, C. S., Jr. *Ad*V*ances in Magnetic Resonance*; Academic: New York, 1965; Vol. I, p 33.
- (33) Williams, D. J.; Kreilick, R. *J. Am. Chem. Soc.* **1968**, *90*, 2775.
- (34) Wayland, B. B.; Gridnev, A. A.; Ittel, S. D.; Fryd, M. *Inorg. Chem.* **1994**, *33*, 3830.
- (35) Woska, D. C.; Wayland, B. B. *Inorg. Chim. Acta* **1998**, 197.

Results and Discussion

Oxidation of (OEP) Co^{II} **by AgBF₄ in CH₂Cl₂. Reaction of** AgBF₄ with (OEP) $Co^H(1)$ in rigorously dried dichloromethane results in the one-electron oxidation of **1** to produce [(OEP)- Co^H ⁺BF₄⁻ (2), which is formulated as a porphyrin π cation radical complex of cobalt(II) on the basis of prior studies.¹ Large downfield 1H NMR paramagnetic shifts are observed for the methylene (CH_2) and methine $(=CH)$ protons in **2**. Assuming that the paramagnetic shifts are dominated by contact terms from π spin density, the paramagnetic shifts indicate that there is positive π spin density on the pyrrole carbons and negative π spin density on the methine carbons. Negative π spin density on the methine carbons is a clear indication that the π molecular orbital that contains the unpaired electron has a node at the methine carbon which is a defining characteristic for the a_{1u} porphyrin π MO.^{14,36,37} ¹H NMR contact shifts for **2** thus support the assignment of an unpaired electron to the a_{1u} porphyrin π MO of $[(OEP)Co^H]$ ⁺BF₄⁻¹⁶ rather than the a_{2u} ⁵. The most probable electron configuration for **2** places an unpaired electron in both the a_{1u} porphyrin π and a_{1g} cobalt (II) d_z ² orbitals, which corresponds to an ${}^{3}A_{1u}$ ground state.

Dimerization of $[(OEP)Co^H]⁺BF₄$ **in CH₂Cl₂.** Dichloromethane solutions of $[(OEP)Co^H]$ ⁺BF₄⁻ (2) experience changes in the electronic spectrum as the temperature is lowered that are indicative of the dimerization of **2** to $[(OEP)Co^H]_{2}^{2+}$ (3). A multiplicity of peaks including two prominent bands in the Soret region (391 nm, 352 nm) and at least one new broad transition in the near-IR region centered at 870 nm are particularly characteristic features for the electronic spectrum of **3** (see Supporting Information). Similar electronic spectral changes are observed in the dimerization of Zn(II) and Mg(II) octaethylporphyrin π cation radical complexes.^{14,15} Near-IR bands at 920 and 950 nm, respectively, in the cation radical dimers [(OEP)- $Zn]_2^{2+}$ (4)¹⁵ and $[(OEP)Mg]_2^{2+}$ (5)¹⁴ have been assigned to transitions from the filled bonding to the empty antibonding molecular orbitals that result from interporphyrin cation radical $\pi-\pi$ interactions. This assignment has also been suggested for the near-IR bands observed for a series of cationic metalloporphyrin dimers¹⁷ and is the probable origin for the 793 and 870 nm bands in $[(OEP)Rh]_2^{2+}(BF_4^-)_2$ (6)¹⁸ and $[(OEP)Co^H]_2^{2+}$ $(BF_4^-)_2$, respectively.

The methine hydrogen NMR chemical shifts for $[(OEP)Zn]_2^{2+}$ $(\delta = 3.49)$ and $[({OEP})Rh]_2^{2+}$ $(\delta = 4.70)$ are dramatically changed from a typical aromatic OFP position $(\delta \sim 10)$. The changed from a typical aromatic OEP position ($\delta \sim 10$). The methine 1H NMR shift positions in **4** and **6** approach the values for localized olefins ($\delta \sim 3-5$), which is a consequence of interruption of the porphyrin aromaticity and associated *π* electron ring current by cation dimer formation.15,18 The methine hydrogens of **3** experience a large upfield shift (δ = 7.22) relative to normal aromatic porphyrin complexes such as (OEP)- Co-I (δ = 10.47). However, the magnitude of the shift for $[(OEP)Co^H]_{2}^{2+}$ (3) is only about half that observed for $[(OEP)$ - Rh_2^{2+} (6) and $[(OEP)Zn]_2^{2+}$ (4) (Table 1), which indicates that **3** retains more aromaticity and ring current than **4** or **6**.

Activation Parameters for Dissociation of Diamagnetic Dimers into Paramagnetic Monomers from 1H NMR Relaxation Studies. ¹H NMR spectra for the methine hydrogens in the diamagnetic dimer, $[(OEP)Co^H]_{2}^{2+}(3)$, in dichloromethane for the temperature range of 230-260 K manifest exchange broadening that results from dissociation of the diamagnetic

Figure 1. Temperature dependence of the ¹H NMR of [(OEP)- Co^H ₂²⁺(BF₄⁻)₂ in CD₂Cl₂ (225–297 K).

Figure 2. Determination of the activation parameters for dissociation of the diamagnetic dimer $[(OEP)Co^{II}]_2^{2+}$ into paramagnetic $(S = 1)$
monomers $[(OEP)Co^{II}]^+$ in CD₂Cl₂ from the mething ¹H NMR line monomers $[(OEP)Co^H]$ ⁺ in $CD₂Cl₂$ from the methine ¹H NMR line broadening.

Table 1. ¹ H NMR Shifts (*δ* ppm) for [(OEP)M] Complexes in $CD₂Cl₂$

compound	T(K)	$-CH =$	$-CH2$	$-CH3$
$[(OEP)Zn]_{2}^{2+}$	219	3.49	1.42	0.56
$[(OEP)Rh]_2^{2+}$	293	4.70	1.93, 1.52	0.98
$[(OEP)CoH]_{2}^{2+}$	200	7.22	3.16, 2.99	1.26
$(OEP)Co-I$	293	10.47	4.11	1.92
$(OEP)Rh-I$	293	10.31	4.18	1.98

dimer (3) into paramagnetic monomers $[(OEP)Co^H]$ ⁺ (2) (Figure 1). Apparent activition parameters for dissociation of [(OEP)- Co^H ₂²⁺ in CD₂Cl₂ were obtained from the temperature dependence of k_{app} for **3** and the use of transition state theory (ΔH^{\dagger}_{app} $= 18.7± 0.8$ kcal mol⁻¹ and ΔS^{\dagger} _{app} = 27 ± 3 cal K⁻¹ mol⁻¹)² (Figure 2).

The 1H NMR line broadening method was also used to evaluate the kinetics for dissociation of the diamagnetic zinc dimer $[(OEP)Zn]_2^{2+}(BF_4^-)_2$ (4) in CD₂Cl₂. Analysis of the temperature dependence of the methine hydrogen line broadening yields activation parameters of $\Delta H^{\ddagger} = 17.7 \pm 0.8$ kcal mol⁻¹ and $\Delta S^{\dagger} = 23 \pm 3$ cal K⁻¹ mol⁻¹ for dissociation of 4 into the

⁽³⁶⁾ Morishima, I.; Takamuki, Y.; Shiro, Y. *J. Am. Chem. Soc.* **1984**, *106*, 7666.

⁽³⁷⁾ Dolphin, D.; Forman, A.; Borg, D. C.; Fajer, J.; Felton, R. H. *Proc. Natl. Acad. Sci. U.S.A.* **1971**, *68*, 614.

Figure 3. Points are observed chemical shifts (δ) for the methine (CH) and ethyl $(CH₂$ and $CH₃$) resonances for the limiting fast interchange of **3** and **2** as a function of temperature. The solid lines are calculated from eq 2 using the best fit ∆*H*° and ∆*S*° for dissociation of **3** and the slope (C_M) of the paramagnetic shift for 2.

paramagnetic π cation radical monomer, $[(OEP)Zn]$ ⁺BF₄⁻ (see Supporting Information).

Thermodynamics of Dimerization of [(OEP)CoII]⁺ **by 1H NMR Shift Measurements.** At temperatures greater than 300 K the 200 MHz ¹H NMR for a CD_2Cl_2 solution of 2 and 3 results from the limiting fast interchange of **2** and **3**. Thermodynamic values for the dissociation of $[(OEP)Co^H]₂²⁺(BF₄⁻)₂$ $(\Delta H^{\circ} = 15.9 \pm 0.5 \text{ kcal mol}^{-1}; \Delta S^{\circ} = 43 \pm 3 \text{ cal K}^{-1} \text{ mol}^{-1})$ have been evaluated from the temperature dependence of the

observed fast exchange averaged 1H NMR shifts using eq 2 (Figure 3). The difference of \sim 2.8 kcal mol⁻¹ between the enthalpy of dissociation ($\Delta H^{\circ} = 15.9 \pm 0.5$ kcal mol⁻¹) and the activation enthalpy for dissociation ($\Delta H^{\dagger} = 18.7 \pm 0.8$ kcal mol⁻¹) for **3** is in the range $(2-3$ kcal mol⁻¹) frequently observed for bond homolysis reactions of neutral molecules in low-viscosity media.38 The very large positive entropy change observed for dissociation of **3** into the monocation **2** (ΔS° = 43 cal K^{-1} mol⁻¹) probably results from the dication unit having larger interactions with the anions and solvent than occur for the monocationic monomers.

The activation enthalpy for dissociation of $[(OEP)Co^H]_{2}^{2+}$ $(\Delta H^{\ddagger} = 18.7 \pm 0.8 \text{ kcal mol}^{-1})$ is comparable to that for $[(OEP)Zn]_2^{2+} (\Delta H^{\ddagger} = 17.7 \pm 0.8 \text{ kcal mol}^{-1})$ but substantially smaller than that for $[(OEP)Rb]_2^{2+18}$ The monomer units in smaller than that for $[(OEP)Rh]_2^{2+1.18}$ The monomer units in $[(OEP)Zn]_2^{2+}(4)$ are held together in the dimer exclusively by interporphyrin cation radical $\pi-\pi$ interactions, but the bonding in $[(OEP)Rh]_2^{2+}(6)$ consists of a $Rh^{II}-Rh^{II} (4d_z^2-4d_z^2)$ bond
in addition to interporphyrin $\pi-\pi$ bonding ¹⁸ The diamagnetism in addition to interporphyrin $\pi-\pi$ bonding.¹⁸ The diamagnetism, electronic spectrum, and ¹H NMR of $[(OEP)Co^H]_{2}^{2+}$ are consistent with the presence of both interporphyrin and intermetal bonding, but the $Co^{II}-Co^{II}$ ($3d_z^2-3d_z^2$) bonding is substantially smaller than in $I(OEP)Rh l^2$ and the discupsion of the porphyrin smaller than in $[(OEP)Rh]_2^{2+}$ and the disruption of the porphyrin aromaticity through interporphyrin cation radical $\pi-\pi$ bonding is also less than that in either **4** or **6**.

Acknowledgment. This research was supported by the National Science Foundation Grant CHE-9900436 and the Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, Grant DE-FG02-86ER-13615.

Supporting Information Available: Text giving experimental details and supporting electronic and 1H NMR spectra for **²**-**⁴** are deposited. This material is available free of charge via the Internet at http://pubs.acs.org.

IC9904034

⁽³⁸⁾ Halpern, J. In *Bonding Energetics in Organometallic Compounds*; ACS Symposium Series 428; Marks, T. J., Ed.; American Chemical Society: Washington, DC, 1990; pp 100-112.