Dimerization of the Octaethylporphyrin π Cation Radical Complex of Cobalt(II): Thermodynamic, Kinetic, and Spectroscopic Studies

Yaping Ni, Sin Lee, and Bradford B. Wayland*

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323

Received April 13, 1999

Introduction

One electron oxidation of cobalt(II) porphyrins can occur from either the cobalt d or porphyrin π orbitals depending on the choice of porphyrin and reaction media.^{1–12} Oxidation of (octaethylporphyrinato)cobalt(II), (OEP)Co^{II} (1), in the presence of ligands such as H₂O and CO produces diamagnetic five and six coordinate complexes of cobalt(III).^{1–6} In the absence of additional ligands to coordinate with Co(III) the first oxidation of (OEP)Co^{II} occurs from a porphyrin π MO to produce a π cation radical complex of cobalt(II), [(OEP)Co^{II}]⁺ (2).^{1,4} Metalloporphyrin π cation radical complexes and dimers of the OEP derivatives have been extensively investigated.^{13–30} This article

- (1) Salehi, A.; Oertling, W. A.; Babcock. G. T.; Chang, C. K. J. Am. Chem. Soc. **1986**, 108, 5630.
- (2) Oertling, W. A.; Salehi, A.; Chung, Y. C.; Leroi, G. E.; Chang, C. K.; Babcock, G. T. J. Phys. Chem. 1987, 91, 5887.
- (3) Erler, B. S.; Scholy, W. F.; Lee, Y. J.; Scheidt, R. W.; Reed, C. A. J. Am. Chem. Soc. 1987, 109, 2644.
- (4) Schmidt, E.; Zhang, H.; Chang, C. K.; Babcock, G. T.; Oertling, W. A. J. Am. Chem. Soc. 1996, 118, 2965.
- (5) Gasyna, Z.; Stillman, M. J. Inorg. Chem. 1990, 29, 5101.
- (6) Mu, X. H.; Kadish, K. M. Inorg. Chem. 1989, 28, 3743.
- Hu, Y.; Han, B. C.; Bao, L. Y.; Mu, X. H.; Kadish, K. M. *Inorg. Chem.* **1991**, *30*, 2444.
 Sandusky, P. O.; Salehi, A.; Chang, C. K.; Babcock, G. T. *J. Am.*
- (8) Sandusky, P. O.; Salehi, A.; Chang, C. K.; Babcock, G. T. J. Am. Chem. Soc. 1989, 111, 6439.
- (9) Reddy, D.; Reddy, N.; Chandrashekar, T. K.; van Willigen, H. J. Chem. Soc., Dalton Trans. 1991, 2097.
- (10) Pavlovic, D.; Asperger, S.; Ahmetl, X.; Clzmek, B. C.; Jarisic, B.; Veksli, E. *Inorg. Chem.* **1988**, *27*, 1515.
- (11) Reddy, D.; Reddy, N.; Chandrashekar, T. K. Inorg. Chim. Acta 1989, 100, 147.
- (12) Itoh, K.; Nakahasi, K.; Toeda, H. J. Phys. Chem. 1989, 92, 1464.
- (13) Fuhrhop, J.-H.; Mauzerall, D. J. Am. Chem. Soc. **1969**, *91*, 4174.
- (14) Fajer, J.; Borg, D. C.; Forman, A.; Dolphin, D.; Felton, R. H. J. Am. Chem. Soc. 1970, 92, 3451.
- (15) Fuhrhop, J.-H.; Wasser, P.; Riesner, D.; Mauzerall, D. J. Am. Chem. Soc. 1972, 94, 7996.
- (16) Oertling, W. A.; Salehi, A.; Chang, C. K.; Babcock, G. T. J. Phys. Chem. **1989**, *93*, 1311.
- (17) Brancato-Buentello, K. E.; Kang, S.-J.; Scheidt, W. R. J. Am. Chem. Soc. 1997, 119, 2839.
- (18) Lee, S.; Mediati, M.; Wayland, B. B. J. Chem. Soc., Chem. Commun. 1994, 2299.
- (19) Song, H.; Orosz, R. D.; Reed, C. A.; Scheidt, W. R. Inorg. Chem. 1990, 29, 4274.
- (20) Scheidt, W. R.; Song, H.; Haller, K. J.; Safo, M. K.; Orosz, R.; Reed. C. A.; Debrunner, P. G.; Schulz, C. E. *Inorg. Chem.* **1992**, *31*, 941.
- (21) Song, H.; Reed, C. A.; Scheidt, W. R. J. Am. Chem. Soc. **1989**, 111, 6865.
- (22) Godziela, G.; Goff, H. M. J. Am. Chem. Soc. 1986, 108, 2237–2243.
 (23) Fujii, H. Inorg. Chem. 1993, 32, 875.
- (24) Schulz, C. E.; Song, H.; Mislankar, A.; Orosz, R. D.; Reed, C. A.; Debrunner, P. G.; Scheidt, W. R. *Inorg. Chem.* **1997**, *36*, 406.
- (25) Schulz, C. E.; Song, H.; Lee, Y.; Mondal, J. U.; Mohanrao, K.; Reed, C. A.; Walker, F. A.; Scheidt, W. R. J. Am. Chem. Soc. 1994, 116, 7196.
- (26) Nakashima, S.; Ohya-Nishiguchi, H.; Hirota, N.; Fujii, H.; Morishima, I. Inorg. Chem. 1990, 29, 5207.

reports on the interconversion of the paramagnetic (S = 1) monomer, [(OEP)Co^{II}]⁺ (**2**), with a diamagnetic dimer, [(OEP)-Co^{II}]²⁺ (**3**), in dichloromethane solvent. ¹H NMR shift and line width studies in CD₂Cl₂ are applied in evaluating the thermo-dynamic and activation parameters for homolytic dissociation of the diamagnetic dimer (**3**).

Experimental Methods and Analysis

Dichloromethane- d_2 (99.6 atom % D) was placed in a vacuum transfer tube containing P₂O₅ to scavenge for residual water and then degassed by multiple freeze–pump–thaw cycles. (OEP)Co^{II} and (OEP)-Zn^{II} were purchased from Aldrich, and anhydrous AgBF₄ was purchased from Alfa and stored in an inert-atmosphere box under argon prior to use. Solutions of [(OEP)Co^{II}]⁺BF₄⁻ were prepared by mixing (OEP)-Co^{II} and AgBF₄ in dicholoromethane using the published procedure for the formation of [(OEP)Co^{II}]⁺ClO₄^{-.1} Solid samples of (OEP)Co^{II} (1.0–1.7 mg) and a stoichiometric quantity of solid anhydrous AgBF₄ were weighed in an inert-atmosphere box and placed in 507 PP Wilmad NMR tubes equipped with a stopcock and then attached to a vacuum line for evacuation. Solution samples were prepared by vacumm transfer of 0.35 mL of dried, degassed dichloromethane- d_2 into the NMR tubes, which were subsequently flame sealed.

Activation parameters for dissociation of the diamagnetic dimer $[(OEP)Co^{II}]_2^{2+}$ into paramagnetic monomers $[(OEP)Co^{II}]_2^{+}$ were determined from the temperature dependence of the ¹H NMR line width. The expression that relates the ¹H NMR line width changes to the rate of dissociation of the diamagnetic dimer is given by eq 1.^{31–35}

$$\pi \Delta v_{1/2(\text{ex})} = T_{2(\text{ex})}^{-1} = \tau_{\text{d}}^{-1} [(A\tau_{\text{p}}/2)^2] [1 + (A\tau_{\text{p}}/2)^2]^{-1}$$
(1)

Equation 1 reduces to $T_{2(ex)}^{-1} = \tau_d^{-1}$ for nuclei in paramagnetic species where the mean lifetime (τ_p) is long and the electron-nuclear coupling constant (*A* radians s⁻¹) is large $((A\tau_p/2)^2 \gg 1)$. The apparent mean lifetime for the diamagnetic species (τ_d) that results from the observed $T_{2(ex)}^{-1}$ yields the rate constant $(\tau_d^{-1} = k_{app})$ for bond homolysis events that result in paramagnetic species that produce efficient nuclear relaxation $((A\tau_p/2)^2 \gg 1)$.

Thermodynamic values for the dissociation of $[(OEP)Co^{II}]_2^{2+}(BF_4^{-})_2$ were obtained from analysis of ¹H NMR chemical shift measurements at a series of temperatures (300–360 K) where **2** and **3** are in limiting fast interchange. Nonlinear least squares curve fitting of the measured δ_{obs} values at a series of temperatures to eq 2 gives the best fit values

$$\begin{split} \delta_{\rm obs} &= \delta_{\rm D} + \delta_{\rm D} / (4[{\rm M}]_{\rm i}) [{\rm e}^{-\Delta H^{\circ}/RT} {\rm e}^{\Delta S^{\circ}/R} - ({\rm e}^{-2\Delta H^{\circ}/RT} {\rm e}^{2\Delta S^{\circ}/R} + \\ & 8[{\rm M}]_{\rm i} {\rm e}^{-\Delta H^{\circ}/RT} {\rm e}^{\Delta S^{\circ}/R})^{1/2}] + 1 / (4[{\rm M}]_{\rm i}) [-{\rm e}^{-\Delta H^{\circ}/RT} {\rm e}^{\Delta S^{\circ}/R} + \\ & ({\rm e}^{-2\Delta H^{\circ}/RT} {\rm e}^{2\Delta S^{\circ}/R} + 8[{\rm M}]_{\rm i} {\rm e}^{-\Delta H^{\circ}/RT} {\rm e}^{\Delta S^{\circ}/R})^{1/2}] (C_{\rm M} T^{-1} + \delta_{\rm Mo}) \quad (2) \end{split}$$

for ΔH° and ΔS° for dissociation of the dimer (D) and the slope of the temperature dependence ($C_{\rm M}$) for the contact shift of the paramagnetic monomer (M).

- (27) Gans, P.; Buisson, G.; Duee, E.; Marchon, J.; Erler, B. S.; Scholz, W.; Reed, C. A. J. Am. Chem. Soc. 1986, 108, 1223.
- (28) Song, H.; Rath, N. P.; Reed, C. A.; Scheidt, W. R. Inorg. Chem. 1989, 28, 1839.
- (29) Barkigia, K.; Renner, M. W.; Fajer, J. J. Phys. Chem. B 1997, 101, 8398.
- (30) Renner, M. W.; Barkigia, D. M.; Smith, K. M.; Fajer, J. Inorg. Chem. 1996, 35, 5120.
- (31) McConnell, H. M.; Berger, S. B. J. Chem. Phys. 1957, 27, 230.
- (32) Johnson, C. S., Jr. Advances in Magnetic Resonance; Academic: New York, 1965; Vol. I, p 33.
- (33) Williams, D. J.; Kreilick, R. J. Am. Chem. Soc. 1968, 90, 2775.
- (34) Wayland, B. B.; Gridnev, A. A.; Ittel, S. D.; Fryd, M. Inorg. Chem. 1994, 33, 3830.
- (35) Woska, D. C.; Wayland, B. B. Inorg. Chim. Acta 1998, 197.

Results and Discussion

Oxidation of (OEP)CoII by AgBF₄ in CH₂Cl₂. Reaction of AgBF₄ with (OEP)Co^{II} (1) in rigorously dried dichloromethane results in the one-electron oxidation of 1 to produce [(OEP)- Co^{II}]⁺BF₄⁻ (2), which is formulated as a porphyrin π cation radical complex of cobalt(II) on the basis of prior studies.¹ Large downfield ¹H NMR paramagnetic shifts are observed for the methylene (CH_2) and methine (=CH) protons in 2. Assuming that the paramagnetic shifts are dominated by contact terms from π spin density, the paramagnetic shifts indicate that there is positive π spin density on the pyrrole carbons and negative π spin density on the methine carbons. Negative π spin density on the methine carbons is a clear indication that the π molecular orbital that contains the unpaired electron has a node at the methine carbon which is a defining characteristic for the a_{1n} porphyrin π MO.^{14,36,37} ¹H NMR contact shifts for **2** thus support the assignment of an unpaired electron to the a_{1u} porphyrin π MO of [(OEP)Co^{II}]⁺BF₄⁻¹⁶ rather than the a_{2u} .⁵ The most probable electron configuration for 2 places an unpaired electron in both the a_{1u} porphyrin π and a_{1g} cobalt (II) d_{z^2} orbitals, which corresponds to an ³A_{1u} ground state.

Dimerization of [(OEP)Co^{II}]⁺BF₄⁻ in CH₂Cl₂. Dichloromethane solutions of $[(OEP)Co^{II}]^+BF_4^-(2)$ experience changes in the electronic spectrum as the temperature is lowered that are indicative of the dimerization of **2** to $[(OEP)Co^{II}]_2^{2+}$ (**3**). A multiplicity of peaks including two prominent bands in the Soret region (391 nm, 352 nm) and at least one new broad transition in the near-IR region centered at 870 nm are particularly characteristic features for the electronic spectrum of 3 (see Supporting Information). Similar electronic spectral changes are observed in the dimerization of Zn(II) and Mg(II) octaethylporphyrin π cation radical complexes.^{14,15} Near-IR bands at 920 and 950 nm, respectively, in the cation radical dimers [(OEP)- $Zn_{2^{2^{+}}}$ (4)¹⁵ and [(OEP)Mg]₂²⁺ (5)¹⁴ have been assigned to transitions from the filled bonding to the empty antibonding molecular orbitals that result from interporphyrin cation radical $\pi - \pi$ interactions. This assignment has also been suggested for the near-IR bands observed for a series of cationic metalloporphyrin dimers¹⁷ and is the probable origin for the 793 and 870 nm bands in $[(OEP)Rh]_2^{2+}(BF_4^{-})_2$ (6)¹⁸ and $[(OEP)Co^{II}]_2^{2+}$ -(BF₄⁻)₂, respectively.

The methine hydrogen NMR chemical shifts for $[(OEP)Zn]_2^{2+}$ ($\delta = 3.49$) and $[(OEP)Rh]_2^{2+}$ ($\delta = 4.70$) are dramatically changed from a typical aromatic OEP position ($\delta \sim 10$). The methine ¹H NMR shift positions in **4** and **6** approach the values for localized olefins ($\delta \sim 3-5$), which is a consequence of interruption of the porphyrin aromaticity and associated π electron ring current by cation dimer formation.^{15,18} The methine hydrogens of **3** experience a large upfield shift ($\delta = 7.22$) relative to normal aromatic porphyrin complexes such as (OEP)-Co-I ($\delta = 10.47$). However, the magnitude of the shift for $[(OEP)Co^{II}]_2^{2+}$ (**3**) is only about half that observed for [(OEP)-Rh]_2²⁺ (**6**) and $[(OEP)Zn]_2^{2+}$ (**4**) (Table 1), which indicates that **3** retains more aromaticity and ring current than **4** or **6**.

Activation Parameters for Dissociation of Diamagnetic Dimers into Paramagnetic Monomers from ¹H NMR Relaxation Studies. ¹H NMR spectra for the methine hydrogens in the diamagnetic dimer, [(OEP)Co^{II}]₂²⁺ (3), in dichloromethane for the temperature range of 230–260 K manifest exchange broadening that results from dissociation of the diamagnetic

Figure 1. Temperature dependence of the 1H NMR of [(OEP)-Co^II]_2^{2+}(BF_4^{-})_2 in CD2Cl2 (225–297 K).

Figure 2. Determination of the activation parameters for dissociation of the diamagnetic dimer $[(OEP)Co^{II}]_2^{2+}$ into paramagnetic (S = 1) monomers $[(OEP)Co^{II}]^+$ in CD₂Cl₂ from the methine ¹H NMR line broadening.

Table 1. ¹H NMR Shifts (δ ppm) for [(OEP)M] Complexes in CD₂Cl₂

compound	$T(\mathbf{K})$	-CH=	$-CH_2$	$-CH_3$
$[(OEP)Zn]_2^{2+}$	219	3.49	1.42	0.56
$[(OEP)Rh]_2^{2+}$	293	4.70	1.93, 1.52	0.98
$[(OEP)Co^{II}]_2^{2+}$	200	7.22	3.16, 2.99	1.26
(OEP)Co-I	293	10.47	4.11	1.92
(OEP)Rh-I	293	10.31	4.18	1.98

dimer (3) into paramagnetic monomers $[(OEP)Co^{II}]^+$ (2) (Figure 1). Apparent activition parameters for dissociation of $[(OEP)-Co^{II}]_2^{2+}$ in CD₂Cl₂ were obtained from the temperature dependence of k_{app} for 3 and the use of transition state theory ($\Delta H^{\pm}_{app} = 18.7 \pm 0.8$ kcal mol⁻¹ and $\Delta S^{\pm}_{app} = 27 \pm 3$ cal K⁻¹ mol⁻¹) (Figure 2).

The ¹H NMR line broadening method was also used to evaluate the kinetics for dissociation of the diamagnetic zinc dimer $[(OEP)Zn]_2^{2+}(BF_4^{-})_2$ (4) in CD₂Cl₂. Analysis of the temperature dependence of the methine hydrogen line broadening yields activation parameters of $\Delta H^{\ddagger} = 17.7 \pm 0.8$ kcal mol⁻¹ and $\Delta S^{\ddagger} = 23 \pm 3$ cal K⁻¹ mol⁻¹ for dissociation of 4 into the

⁽³⁶⁾ Morishima, I.; Takamuki, Y.; Shiro, Y. J. Am. Chem. Soc. 1984, 106, 7666.

⁽³⁷⁾ Dolphin, D.; Forman, A.; Borg, D. C.; Fajer, J.; Felton, R. H. Proc. Natl. Acad. Sci. U.S.A. 1971, 68, 614.

Figure 3. Points are observed chemical shifts (δ) for the methine (CH) and ethyl (CH₂ and CH₃) resonances for the limiting fast interchange of **3** and **2** as a function of temperature. The solid lines are calculated from eq 2 using the best fit ΔH° and ΔS° for dissociation of **3** and the slope ($C_{\rm M}$) of the paramagnetic shift for **2**.

paramagnetic π cation radical monomer, [(OEP)Zn]⁺BF₄⁻ (see Supporting Information).

Thermodynamics of Dimerization of [(**OEP**)**Co^{II}**]⁺ **by** ¹**H NMR Shift Measurements.** At temperatures greater than 300 K the 200 MHz ¹H NMR for a CD₂Cl₂ solution of **2** and **3** results from the limiting fast interchange of **2** and **3**. Thermodynamic values for the dissociation of [(OEP)Co^{II}]₂²⁺(BF₄⁻)₂ ($\Delta H^{\circ} = 15.9 \pm 0.5$ kcal mol⁻¹; $\Delta S^{\circ} = 43 \pm 3$ cal K⁻¹ mol⁻¹) have been evaluated from the temperature dependence of the observed fast exchange averaged ¹H NMR shifts using eq 2 (Figure 3). The difference of ~2.8 kcal mol⁻¹ between the enthalpy of dissociation ($\Delta H^{\circ} = 15.9 \pm 0.5$ kcal mol⁻¹) and the activation enthalpy for dissociation ($\Delta H^{\ddagger} = 18.7 \pm 0.8$ kcal mol⁻¹) for **3** is in the range (2–3 kcal mol⁻¹) frequently observed for bond homolysis reactions of neutral molecules in low-viscosity media.³⁸ The very large positive entropy change observed for dissociation of **3** into the monocation **2** ($\Delta S^{\circ} = 43$ cal K⁻¹ mol⁻¹) probably results from the dication unit having larger interactions with the anions and solvent than occur for the monocationic monomers.

The activation enthalpy for dissociation of $[(OEP)Co^{II}]_2^{2+}$ $(\Delta H^{\ddagger} = 18.7 \pm 0.8 \text{ kcal mol}^{-1})$ is comparable to that for $[(OEP)Zn]_2^{2+}$ $(\Delta H^{\ddagger} = 17.7 \pm 0.8 \text{ kcal mol}^{-1})$ but substantially smaller than that for $[(OEP)Rh]_2^{2+}$.¹⁸ The monomer units in $[(OEP)Zn]_2^{2+}$ (4) are held together in the dimer exclusively by interporphyrin cation radical $\pi - \pi$ interactions, but the bonding in $[(OEP)Rh]_2^{2+}$ (6) consists of a Rh^{II}-Rh^{II} (4d_z^2-4d_z^2) bond in addition to interporphyrin $\pi - \pi$ bonding.¹⁸ The diamagnetism, electronic spectrum, and ¹H NMR of $[(OEP)Co^{II}]_2^{2+}$ are consistent with the presence of both interporphyrin and intermetal bonding, but the $Co^{II}-Co^{II} (3d_z^2-3d_z^2)$ bonding is substantially smaller than in $[(OEP)Rh]_2^{2+}$ and the disruption of the porphyrin aromaticity through interporphyrin cation radical $\pi - \pi$ bonding is also less than that in either 4 or 6.

Acknowledgment. This research was supported by the National Science Foundation Grant CHE-9900436 and the Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, Grant DE-FG02-86ER-13615.

Supporting Information Available: Text giving experimental details and supporting electronic and ¹H NMR spectra for **2–4** are deposited. This material is available free of charge via the Internet at http://pubs.acs.org.

IC9904034

⁽³⁸⁾ Halpern, J. In *Bonding Energetics in Organometallic Compounds*; ACS Symposium Series 428; Marks, T. J., Ed.; American Chemical Society: Washington, DC, 1990; pp 100–112.