Syntheses of THF Solutions of SeX_2 (X = Cl, Br) and a New Route to Selenium Sulfides Se_nS_{8-n} (n = 1-5): X-ray Crystal Structures of SeCl₂(tht)₂ and SeCl₂·tmtu

Arto Maaninen,[†] Tristram Chivers,^{*,†} Masood Parvez,[†] Jarkko Pietikäinen,[‡] and **Risto S. Laitinen[‡]**

Departments of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4, and University of Oulu, Linnanmaa, 90570 Oulu, Finland

Received December 15, 1998

A simple and efficient synthesis of solutions of pure SeCl₂ in THF or dioxane (ca. 0.4 M) at 23 °C was achieved by treatment of elemental selenium with an equimolar amount of SO₂Cl₂. SeCl₂ was characterized by ⁷⁷Se NMR and Raman spectra. SeCl₂ forms 1:1 or 1:2 adducts with tetramethylthiourea (tmtu) or tetrahydrothiophene (tht), respectively. The crystal structure of SeCl₂ tmtu (1) reveals a T-shaped geometry [d(Se-Cl) = 2.443(4) Å] with weak intramolecular Se···Cl interactions [d(Se-Cl) = 3.276(4) Å]. Crystals of 1 are triclinic, space group P1, with a = 8.473(3) Å, b = 9.236(3) Å, c = 7.709(4) Å, $\alpha = 109.90(3)^{\circ}$, $\beta = 92.26(4)^{\circ}$, $\gamma = 107.89(3)^{\circ}$, $V = 107.89(3)^{\circ}$, $V = 107.89(3)^{\circ}$, $\gamma = 107.89(3)^{\circ}$, $\gamma = 107.89(3)^{\circ}$, $V = 107.89(3)^{\circ}$, $\gamma = 107.89(3$ 532.9(4) Å³, and Z = 2. The complex SeCl₂(tht)₂ (2) adopts a square planar geometry with d(Se-Cl) = 2.4149-(8) Å. Crystals of **2** are monoclinic, space group C2/c, with a = 15.6784(8) Å, b = 9.1678(4) Å, c = 9.1246(4)Å, $\beta = 110.892(2)^\circ$, V = 1225.3(1) Å,³ and Z = 4. The reaction of Ph₃PS with SeCl₂ gives Ph₃PCl₂ and a complex mixture of selenium sulfides Se_nS_{8-n} (n = 1-5), which were identified by ⁷⁷Se NMR. Halogen exchange between SeCl₂ and Me₃SiBr in THF yields thermally unstable SeBr₂ (ca. 0.4 M) characterized by ⁷⁷Se NMR and Raman spectra.

Introduction

Although selenium dihalides, SeX_2 (X = Cl, Br, I), are potentially important reagents for the development of selenium chemistry, the preparation of *pure* compounds has been elusive. In a recent communication Bryce and Chesney described the use of PhSO₂SeCl as a "synthetic equivalent of the inaccessible SeCl₂".¹ The combination SeCl₄/SbPh₃ has been employed successfully to generate "SeCl2" in situ for the synthesis of Se-N heterocycles,² but the separation of Ph₃SbCl₂ from the desired product can be problematic. The dissociation of SeCl₄ in the gas phase produces SeCl₂, which has been characterized by Raman spectroscopy,³ a technique that has also been used to investigate the formation of SeX_2 (X = Cl, Br) from elemental selenium and SeX₄ in acetonitrile in the appropriate stoichiometric ratio.4 77Se NMR spectroscopy is the best method for the quantitative analysis of mixtures of selenium halides.^{5,6} Lamoureux and Milne have used this technique to investigate the composition of "SeX2" solutions in various solvents.5b Such solutions contain substantial amounts (11-37%) of Se₂X₂, in addition to SeX₂.^{5d} Thus the facile synthesis of pure selenium-(II) halides would be a useful contribution to selenium chemistry.

* Corresponding author. Fax: 403-289-9488. E-mail: chivers@ucalgary.ca. [†] University of Calgary.

- (1) Bryce, M. R.; Chesney, A. J. Chem. Soc., Chem. Commun. 1995, 195.
- (2) Belluz, P. D. B.; Cordes, A. W.; Kristof, E. M.; Kristof, P. V.; Liblong,
- S. W.; Oakley, R. T. J. Am. Chem. Soc. 1989, 111, 9276. (3) Ozin, G. A.; Van der Voet, A. J. Chem. Soc. D 1970, 896.

(5) (a) Lamoureux, M.; Milne, J. Can. J. Chem. 1989, 67, 1936. (b) Lamoureux, M.; Milne, J. Polyhedron 1990, 9, 589. (c) Milne, J.; Williams, A. J. Inorg. Chem. 1992, 31, 4534. (d) Se₂Cl₂, 11% (in CH3CN), 31% (in CH2Cl2), 37% (in CCl4); Se2Br2, 19% (in CH₃CN).

We now disclose that *pure* SeCl₂ may be prepared from elemental selenium and SO₂Cl₂ in THF. The stability of SeCl₂ in various solvents has been investigated by ⁷⁷Se NMR. The Raman spectrum of SeCl₂ in THF and the X-ray structures of the adducts $SeCl_2(tht)_2$ (tht = tetrahydrothiophene) and $SeCl_2$. tmtu (tmtu = tetramethylthiourea) have been determined. Reactions of $SeCl_2$ with Ph_3PE (E = S, Se) and a new synthesis of SeBr₂ are also described.

Experimental Section

General Procedures. Solvents were dried and distilled twice under an argon atmosphere prior to use: tetrahydrofuran and dioxane (Na/ benzophenone); acetonitrile (CaH₂); methylene chloride (P₄O₁₀ and CaH₂). All reactions and the manipulations of air- and moisture-sensitive reagents were carried out under an argon atmosphere passed through P₄O₁₀. Selenium powder, SO₂Cl₂, trimethylsilyl bromide, 1,1,3,3tetramethyl-2-thiourea, and tetrahydrothiophene (all from Aldrich) were used without further purification. Triphenylphosphine sulfide7 and triphenylphosphine selenide⁸ were prepared by literature procedures.

Instrumentation. The ¹H NMR spectra were recorded on a Bruker AC 200 spectrometer operating at 200.134 MHz. The spectral width was 1400 Hz, and pulse width, 3.0 µs. The ¹³C, ¹⁴N, and ⁷⁷Se NMR spectra were recorded on a Bruker AM 400 spectrometer operating at 100.614, 28.915, and 76.312 MHz, respectively. The spectral widths were 23.81, 29.41, and 100.00 kHz, yielding resolutions of 1.45, 3.59, and 6.10 Hz/data point, respectively. The 13 C pulse width was 3.50 μ s for ${}^{14}N$ 20.0 μ s and 9.00 μ s for 77 Se. The ${}^{13}C$ accumulations contained 1 000-20 000 transients, those for ¹⁴N, 20 000-200 000, and for selenium ca. 15 000 transients. The ¹⁴N NMR chemical shifts are reported relative to neat CH₃NO₂. All ⁷⁷Se NMR spectra were referenced

- (7)Bartlett, P. D.; Cox, E. F.; Davis, R. E. J. Am. Chem. Soc. 1961, 83, 103
- (8) Hartmann, H.; Meixner, A. Naturwissenschaften 1963, 50, 403.

[‡] University of Oulu.

⁽⁴⁾ Milne, J. Polyhedron 1985, 4, 65.

⁽⁶⁾ Steudel, R.; Plinke, B.; Jensen, D.; Baumgart, F. Polyhedron 1991, 10. 1037.

externally to a saturated solution of SeO₂ at room temperature. The chemical shifts are reported relative to neat Me₂Se at room temperature $[\delta(Me_2Se) = \delta(SeO_2) + 1302.6]$. D₂O was used as an external ²H lock. The ³¹P NMR spectra were recorded on a Varian XL 200 spectrometer operating at 80.987 MHz. The spectral width was 13 000 Hz and pulse width 10 μ s. Relaxation time used for ³¹P was 0.4 s. The ³¹P accumulations contained ca. 3 000 transients. The ³¹P spectra are reported relative to 85% H₃PO₄ in D₂O.

The Raman spectra were recorded for THF solutions by using a Bruker IFS-66 spectrometer equipped with a FRA-16 Raman unit and a Nd:YAG laser.

Preparation of SeCl₂. Neat SO₂Cl₂ (0.270 g, 2.0 mmol) was added by syringe to selenium powder (0.158 g, 2.0 mmol) in a 25 mL roundbottomed flask at 23 °C. The mixture was stirred for 10 min, and 5 mL of THF was added. The solution was stirred for 1 h to give a clear brownish red solution of SeCl₂ identified by ⁷⁷Se NMR and Raman spectra (see Results and Discussion). Removal of the solvent gives SeCl₂ as a thermally unstable red oil.

Preparation of SeBr₂. Liquid Me₃SiBr (0.61 g, 4.0 mmol) was added by syringe to a freshly prepared solution of SeCl₂ (0.30 g, 2.0 mmol) in THF (5 mL) at 23 °C. The mixture was stirred for 15 min to give a dark red-brown solution. Removal of volatiles under vacuum produced SeBr₂ as a red-brown solid, which was characterized by ⁷⁷Se NMR and Raman spectra (see Results and Discussion).

Preparation of SeCl₂·tmtu. A solution of SeCl₂ (0.30 g, 2.0 mmol) in THF was added to a solution of tetramethylthiourea (0.264 g, 2.0 mmol) in CH₂Cl₂ (10 mL) at 0 °C. The reaction mixture was stirred for 5 min, to give a clear orange solution. The solution was evaporated to half of the original volume and cooled to -20 °C to give a yellow-orange microcrystalline precipitate. The precipitate was separated by filtration and identified as SeCl₂ •tmtu (0.52 g, 1.84 mmol, 92%). NMR (δ , ppm) (CD₂Cl₂): ¹H 3.36 (s, CH₃) (cf. lit. δ 3.36 in CH₂Cl₂);⁹ ¹³C 45.05 (s, CH₃); ¹⁴N -266; ⁷⁷Se 1042.

Preparation of SeCl₂(tht)₂. A solution of SeCl₂ (0.75 g, 5.0 mmol) in THF (10 mL) was added by syringe to tetrahydrothiophene (0.88 g; 10 mmol) at 0 °C. A yellow precipitate was formed immediately, and the mixture was stirred for 15 min. The yellow microcrystalline product was separated by decantation, washed with cold (0 °C) THF, and identified as SeCl₂(tht)₂ (1.01 g; 4.25 mmol, 85%). Anal. Calcd for C₄H₄Cl₂S₂Se: C, 29.45; H, 4.94. Found: C, 28.76; H, 4.63. NMR (δ , ppm) (CS₂): ¹³C (0 °C) 33.51 and 31.77; ¹³C (-10 °C) 34.48 and 31.74; ⁷⁷Se (21 °C) 1275; ⁷⁷Se (0 °C) 1299. Crystals of SeCl₂(tht)₂ suitable for X-ray crystallography were grown from a CS₂ solution at -20 °C.

Preparation of Se_n**S**_{8-n} (*n* = 1–5) from Ph₃PS and SeCl₂. A solution of SeCl₂ (0.30 g, 2.0 mmol) in THF (5 mL) was added to a solution of Ph₃PS (0.59 g, 2.0 mmol) in dichloromethane (10 mL) at 23 °C. After 2 min an orange precipitate was formed. The mixture was stirred for a further 10 min. An orange powder (0.17 g) was separated by filtration, dissolved in CS₂, and identified as a mixture of eight-membered selenium sulfide rings by ⁷⁷Se NMR (see Results and Discussion). Removal of the solvent produced colorless crystals. The ³¹P{¹H} NMR spectrum of this product in CH₂Cl₂ showed major resonance at δ 65.0 ppm for Ph₃PCl₂ (lit. δ 65.5 in CDCl₃)¹⁰ and a minor resonance at δ 29.1 ppm corresponding to Ph₃PO (lit. δ 29.3 in CH₂Cl₂).¹¹

Reaction of Ph₃PSe and SeCl₂. The treatment of Ph₃PSe (0.34 g, 1.0 mmol) in THF (10 mL) with SeCl₂ (0.15 g, 1.0 mmol) afforded a dark precipitate of Se₈ (0.153 g, 97%): δ (⁷⁷Se) (in CS₂) 614.5 ppm (cf. lit. δ (⁷⁷Se) 615 in CS₂).¹² Removal of the solvent from the filtrate gave colorless crystals consisting of Ph₃PCl₂ as the major product

- (9) Wynne, K. J.; Pearson, P. S.; Newton, M. G.; Golen, J. Inorg. Chem. 1972, 11, 1192.
- (10) Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G.; Sheffield, J. M. Chem. Commun. 1996, 2521.
- (11) Burford, N.; Royan, B. W.; Spence, R. E.v. H. J. Chem. Soc., Dalton Trans. 1990, 2111.
- (12) (a) Laitinen, R. S.; Pakkanen, T. A. J. Chem. Soc., Chem. Commun. 1986, 1381. (b) Laitinen, R. S.; Pakkanen, T. A. Inorg. Chem. 1987, 26, 2598. (c) Pekonen, P.; Taavitsainen, J.; Laitinen, R. S. Acta Chem. Scand. 1998, 52, 1188.

Table 1. Crystallographic Data for SeCl₂·tmtu (1) and SeCl₂(tht)₂(2)

formula	$C_5H_{12}Cl_2N_2SSe$	$C_8H_{16}Cl_2S_2Se$
fw	282.09	326.19
cryst system	triclinic	monoclinic
space group	$P\overline{1}(No. 2)$	C2/c
a, Å	8.473(3)	15.6784(8)
b, Å	9.236(3)	9.1678(4)
<i>c</i> , Å	7.709(4)	9.1246(4)
α, deg	109.90(3)	90
β , deg	92.26(4)	110.892(2)
γ , deg	107.89(3)	90
$V, Å^3$	532.9(4)	1225.3(1)
Z	2	
Т, К	170(2)	173(2)
$\rho_{\rm calc}, {\rm g} {\rm cm}^{-3}$	1.758	1.768
μ (Mo K α), cm ⁻¹	41.67	37.97
radiation, λ , Å	0.710 69	0.710 73
$R,^a R_w$	0.052, 0.048 ^a	$0.038, 0.092^{b}$

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| \sum |F_{o}|, R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum wF_{o}^{2}]^{1/2}. {}^{b} {}_{w}R$ = {[\sum w(F_{o} - F_{c})^{2}] / [\sum w(F_{o}^{2})^{2}] \]^{1/2}.

with minor amounts of Ph₃PO. ${}^{31}P{}^{1}H$ NMR (in CDCl₂): δ 65.2 and 29.1 ppm.

X-ray Analyses. Crystallographic data for 1 and 2 are summarized in Table 1. An orange needle $(0.38 \times 0.12 \times 0.10 \text{ mm})$ of SeCl₂·tmtu obtained by recrystallization from CH₂Cl₂ was mounted on a glass fiber. All measurements were made on a Rigaku AFC6S diffractometer. The cell constants and an orientation matrix for data collection were determined from the setting angles of 13 reflections in the range of $16.51^{\circ} < 2\theta < 25.10^{\circ}$. Scans of $(1.57 + 0.34 \tan \theta)^{\circ}$ were made at a speed of 4.0° min⁻¹ to a maximum 2θ value of 55.1°. The intensities of 2449 reflections were measured, of which 1077 had $I > 3.00 \sigma(I)$. The data for 1 and 2 were corrected for Lorentz and polarization effects, and an empirical absorption correction was applied. The structure of 1 was solved by direct methods^{13a} and Fourier techniques.^{13b} The nonhydrogen atoms were refined anisotropically. H atoms were constrained to idealized positions (C–H = 0.95 Å). Conventional atomic scattering factors, corrected for anomalous dispersion, were used¹⁴ and allowance was made for anomalous dispersion. All calculations were performed using teXsan.

A yellow needle of SeCl₂(tht)₂ (0.40 × 0.05 × 0.05 mm) was mounted on a glass fiber. Diffraction data were collected on a Nonius kappa CCD diffractometer by recording 360 frames via φ -rotation ($\Delta \varphi$ = 1°; two times 20 s per frame). There were 1426 unique reflections (6.40 < 2 θ < 55.74°) of which 1242 had *I* > 2.00 σ (*I*). The structure of **2** was solved by direct methods using SHELXS-97¹⁵ and refined using SHELXL-97.¹⁵ After the full-matrix least-squares refinement of the non-hydrogen atoms with anisotropic thermal parameters, the hydrogen atoms were placed in calculated positions (C–H = 0.95 Å). In the final refinement the hydrogen atoms were riding with the carbon atom to which they were bonded. The isotropic thermal parameters of the hydrogen atoms were fixed at 1.5 times that of the corresponding carbon atoms. The scattering factors for the neutral atoms were those incorporated with the programs.

Force-Field Calculations. Fundamental vibrations were calculated for SeCl₂ and SeBr₂ using a general valence force-field approach.¹⁶ The F-matrix of both SeX₂ species contained two diagonal force

- (14) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV.
- (15) Sheldrick, G. M. SHELXS-97. Program for Crystal Structure Determination, University of Göttingen, 1997.
- (16) McIntosh, D. F.; Peterson, M. R. General Vibrational Analysis Programs Utilizing the Wilson GF Matrix Method for a General Unsymmetrized Molecule. QCPE Program No. 342, Bloomington, IN, 1977.

^{(13) (}a) SIR92: Altomare, A.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A. J. Appl. Crystallogr. 1993, 26, 343. (b) DIRDIF94: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. The DIRDIF-94 program system. Technical Report of the Crystallography Laboratory; University of Nijmegen: Nijmegen, The Netherlands, 1994.

1773

1762

1748

Table 2. δ ⁽⁷⁷Se) for SeCl₂ in Various Solvents

b

b

h

^{*a*} This work; chemical shifts are quoted relative to Me₂Se (0 ppm). ^{*b*} Data taken from ref 5b; chemical shifts were reported relative to H₂SeO₃ but are quoted here with reference to Me₂Se [δ (Me₂Se) = δ (H₂SeO₃) + 1302.6].

CC₁

MeCN

 CH_2Cl_2

constants and one off-diagonal interaction force constant (adjacent SeX/SeX bond-bond interaction). The stretch-bend interaction was assumed to be negligible. The molecular geometry of SeCl₂ was taken from the electron diffraction determination by Fernholt et al.¹⁷ The molecular geometry of SeBr₂ was estimated by scaling the bond length taking the relative magnitudes of the covalent radii of chlorine and bromine into account. The BrSeBr bond angle in SeBr₂ was assumed to be identical to the CISeCl bond angle in SeCl₂.

The initial values of the force constants were taken from the forcefield calculations of Milne for $SeCl_2$ and $SeBr_2$.⁴ The force constants in both cases were refined simultaneously by adjusting the observed three Raman bands to the calculated values until no further change was observed.

Results and Discussion

Preparation and Spectroscopic Characterization of SeCl₂ and SeBr₂. Selenium dichloride can be prepared conveniently by the treatment of elemental selenium with SO₂Cl₂ in THF, dioxane, or acetonitrile (eq 1). In CH₂Cl₂, however, SeCl₂ is not formed in significant amounts.

$$Se + SO_2Cl_2 \rightarrow SeCl_2 + SO_2(g)$$
 (1)

The reaction yields a clear brownish red solution, which was shown to contain SeCl₂ by ⁷⁷Se NMR spectroscopy (see Table 2). In THF at 25 °C a singlet is observed at δ 1828 and the resonance for Se₂Cl₂ at δ 1325 is not observed until 24 h has elapsed. After 1 week the solution contains Se₂Cl₂ (60%) and SeCl₄ (40%). The formation of Se₂Cl₂ is apparent after 6 h in both dioxane (96% SeCl₂ and 4% Se₂Cl₂) and MeCN (91% SeCl₂ and 9% Se₂Cl₂) solutions. In dioxane the resonance for SeCl₄ (δ 1505), the other disproportionation product (eq 2), is observed after 24 h. Complete removal of solvent from the freshly prepared solutions in THF produces SeCl₂ as a deep red oil, which disproportionates rapidly (eq 2).

$$3\text{SeX}_2 \rightleftharpoons \text{Se}_2 X_2 + \text{SeX}_4$$
 (2)
 $X = \text{Cl, Br}$

The Raman spectrum of SeCl₂ in THF is shown in Figure 1. Identical spectra were obtained at -100 and 23 °C. Three bands are observed at 372, 346, and 168 cm⁻¹ corresponding to the symmetric and asymmetric stretching vibrations (ν_1 and ν_3) and the deformation band (ν_2), respectively. In the gas phase SeCl₂ exhibits these bands at 415, 377, and 153 cm^{-1,3} and in MeCN solution the corresponding values are 412, 381, and 165 cm^{-1.18} The lower frequencies for the stretching vibrations in THF may reflect coordination of the donor solvent molecules to SeCl₂.

Figure 1. Raman spectrum of SeCl₂ in THF at 23 °C (128 scans, resolution $\pm 2 \text{ cm}^{-1}$).

Table 3. Calculated and Observed Fundamental Vibrations (cm^{-1}) of SeX₂ (X = Cl, Br) and the Main Contributions in the Calculated Potential Energy Distribution (PED) along the Internal Coordinates

	obsd	calcd	mode	PED (%)
SeCl ₂	372 346 168	372.9 346.0 168.0	$\begin{array}{c} a_1 \\ b_2 \\ a_1 \end{array}$	ν (SeCl) 96, δ (ClSeCl) 4 ν (SeCl) 100 δ (ClSeCl) 97, ν (SeCl) 3
SeBr ₂	261 221 110	260.9 221.1 109.5	$egin{array}{c} a_1 \ b_2 \ a_1 \end{array}$	ν (SeBr) 88, δ (BrSeBr) 11 ν (SeBr) 100 δ (BrSeBr) 91, ν (SeBr) 9

Milne has investigated the formation of SeBr₂ from the reaction of elemental selenium with stoichiometric amounts of either SeBr₄⁴ or bromine^{5b} by ⁷⁷Se NMR and Raman spectroscopy. In this work we found that SeBr₂ can be readily obtained in THF solution by halogen exchange between freshly prepared SeCl₂ and trimethylsilyl bromide (eq 3).

$$\operatorname{SeCl}_2 + 2\operatorname{Me}_3\operatorname{SiBr} \rightarrow \operatorname{SeBr}_2 + 2\operatorname{Me}_3\operatorname{SiCl}$$
 (3)

This reaction yields a dark brownish-red solution containing SeBr₂, which was identified by ⁷⁷Se NMR and Raman spectroscopy. The ⁷⁷Se NMR resonance for SeBr₂ in THF at 25 °C was observed at δ 1584 (cf. δ (⁷⁷Se) 1477 in CH₂Cl₂),^{5b} but disproportionation to Se₂Br₂ (δ (⁷⁷Se) 1217, cf. δ (⁷⁷Se) 1174 in CD₂Cl₂)^{5b} was already apparent after 1 h. This disproportionation is complete after 12 h.

The Raman spectrum of SeBr₂ in THF shows characteristic bands at 261 and 221 cm⁻¹ (symmetric (ν_1) and asymmetric (ν_3) stretching vibrations) and at 110 cm⁻¹ (deformation (ν_2) band). The literature values for a solution of SeBr₂ in MeCN are 290, 266, and 96 cm^{-1.4} In this work the Raman spectrum of SeBr₂ in THF was obtained for a reaction mixture containing Me₃SiCl (eq 2). The Raman spectrum of Me₃SiCl in THF was also recorded. Evaporation of the solvent produces a dark redbrown solid which disproportionates almost immediately to give Se₂Br₂ and Br₂. It is likely that SeI₂ may also be generated by the halogen exchange reaction (eq 3). However, in view of the relatively low thermal stability of SeI₂¹⁹ (compared to that of SeBr₂), this route was not pursued.

Force-field calculations verify the spectroscopic assignments for SeX₂ (X = Cl, Br). The calculated and observed wavenumbers together with the potential energy distributions are given in Table 3. The vibrations at 372 and 261 cm⁻¹ are mainly symmetric Se–Cl and Se–Br stretching vibrations, respectively, with a minor contribution by the bending mode in both cases. The vibrations at 346 and 221 cm⁻¹ are asymmetric Se–Cl and Se–Br stretching vibrations, respectively, and the Raman lines at 168 and 110 cm⁻¹ are mainly bending modes.

The valence force constants of SeCl₂ and SeBr₂ are presented in Table 4 and compared with those calculated previously.⁴

⁽¹⁷⁾ Fernholt, L.; Haaland, A.; Seip, R.; Kniep, R.; Korte, L. Z. Naturforsch. 1983, 33b, 1072.

⁽¹⁸⁾ The band at 381 $\rm cm^{-1}$ is partially obscured by a solvent band at 370 $\rm cm^{-1}$ (see ref 4).

Table 4. Valence Force Constants (N m⁻¹) of SeX₂ (X = Cl, Br)

		SeCl ₂		SeBr ₂	
	а	b	а	b	
f(SeX)	182	$225,^{c} 225^{d}$	131	176 ^c	
f(XSeX)	22	$23,^{c}27^{d}$	20	5^c	
f(SeX/SeX)	14	$21,^{c}18^{d}$	20	14^c	

^{*a*} This work; THF solution. ^{*b*} Reference 5. ^{*c*} MeCN solution. ^{*d*} Vapor phase.

Figure 2. ORTEP drawing (50% probability ellipsoids) and atomic numbering scheme for SeCl₂·tmtu.

There is general agreement between the force constants calculated in this work and those by Milne.⁴ The somewhat smaller values for the Se–X stretching force constants are a consequence of the appearance of the corresponding vibrations at lower wavenumbers in THF compared to the gaseous species. It can be concluded that both the fundamental vibrations and the force constants of SeCl₂ and SeBr₂ calculated in this work bear an expected relationship to each other and indicate that the interaction between both molecules with THF is quite similar.

Preparation and X-ray Structures of SeCl₂•tmtu (1) and $SeCl_2(tht)_2$ (2). The reaction of 1,1,3,3-tetramethylthiourea with SeCl₂ in a CH₂Cl₂/THF solvent mixture (2:1) at 0 °C produced SeCl₂·tmtu (1) as a yellow-orange microcrystalline solid in ca. 92% yield. The adduct 1 was previously obtained in 50% yield from the reaction of MeSeCl₃ (or SeCl₄) and tmtu.⁹ It was characterized by ¹H NMR and IR/Raman spectra.⁹ In this work 1 was identified by ¹H, ¹³C, ¹⁴N, and ⁷⁷Se NMR spectroscopy (see Experimental Section) and by an X-ray structure determination. An ORTEP drawing is displayed in Figure 2, and the bond lengths and bond angles are compared with those for SeBr₂•tmtu⁹ in Table 5. The main structural features of SeX₂• tmtu (X = Cl, Br) are similar, and detailed comparisons are not warranted. The adduct 1 consists of T-shaped molecules joined into dimers by weak Se····Cl contacts (3.276 Å; cf. 3.8 Å for sum of van der Waals radii). The almost linear ClSeCl unit (177.2°) has significantly different Se-Cl bond distances (2.475(4) and 2.410(4) Å), the shorter of which is engaged in the intermolecular interactions.

In view of our observations that SeCl₂ is stabilized in THF solution or by adduct formation with the sulfur ligand tmtu, we investigated the reaction of SeCl₂ with tetrahydrothiophene (tht). In THF at 0 °C this reaction gave rise to the 1:2 adduct SeCl₂-(tht)₂ (**2**) as thermally unstable, yellow microcrystals which are sparingly soluble in CS₂. This complex decomposes within 30 min at 23 °C, but it can be stored in the solid state at -20 °C for weeks without decomposition. In CS₂ solution, however, decomposition occurs within 48 h even at -20 °C. Complex **2** was identified by ¹³C and ⁷⁷Se NMR spectroscopy and by an X-ray structure determination. An ORTEP drawing is illustrated in Figure 3. Bond lengths and bond angles are summarized in Table 6. The complex **2** forms a trans square planar complex with d(Se-Cl) = 2.4149(8) Å and \angle ClSeCl = \angle SSeS = 180.0°. The two tht ligands in this centrosymmetric complex are tilted

Table 5. Selected Bond Lengths and Bond Angles for SeX₂·tmtu $(X = Cl.^{a} Br^{b})$

(
	Bond Le	ngths (Å)	
Se(1)-Cl(1)	2.475(4)	Se(1)-Br(1)	2.620(3)
Se(1)-Cl(2)	2.410(4)	Se(1)-Br(2)	2.569(3)
$Se(1) - Cl(2)^{*c}$	3.276(4)	Se(1)-Br(1)	3.34
Se(1) - S(1)	2.216(4)	Se(1) - S(1)	2.212(4)
S(1) - C(1)	1.767(10)	S(1) - C(1)	1.751(15)
N(1) - C(1)	1.318(14)		
N(1) - C(2)	1.459(14)		
N(1) - C(3)	1.448(15)		
N(2) - C(1)	1.347(13)		
N(2) - C(4)	1.461(14)		
N(2)-C(5)	1.461(15)		
	Bond An	gles (deg)	
Cl(1)-Se(1)-Cl(2)	177.17(18)	Br(1)-Se(1)-Br(2)	174.70(10)
Cl(1) - Se(1) - S(1)	89.93(14)	Br(1) - Se(1) - S(1)	91.31(13)
Cl(2) - Se(1) - S(1)	92.90(14)	Br(2) - Se(1) - S(1)	93.71(14)
Se(1) - S(1) - C(1)	101.8(4)	Se(1) - S(1) - C(1)	102.3(5)
C(1) - N(1) - C(2)	122.6(11)		
C(2) - N(1) - C(3)	114.4(11)		
C(1) - N(2) - C(4)	121.7(10)		
C(1) - N(2) - C(5)	124.0(10)		
C(4) - N(2) - C(5)	113.9(9)		
S(1) - C(1) - N(1)	123.2(9)		
S(1) - C(1) - N(2)	115.8(9)		
N(1) - C(1) - N(2)	121.0(11)		

^{*a*} This work. ^{*b*} Preliminary results for the structure of SeBr₂-tmtu are reported in ref 9. ^{*c*} Starred atoms are related by the symmetry operation -x, -y + 1, -z.

Figure 3. ORTEP drawing (50% probability ellipsoids) and atomic numbering scheme for $SeCl_2(tht)_2$.

Table 6.	Selected	Bond	Lengths and	Bond Angles	for SeCl ₂ (tht) ₂ ^{a}

	D I T	(h = (Å)	
	Bond Leng	gtns (A)	
Se(1)-Cl(1)	2.4149(8)	C(1) - C(2)	1.520(4)
Se(1) - S(1)	2.5494(8)	C(2) - C(3)	1.524(5)
Se(1) - C(1)	1.820(3)	C(3) - C(4)	1.526(5)
S(1) - C(4)	1.831(3)		
	Bond Angl	es (deg)	
Cl(1) - Se(1) - S(1)	82.70(3)	Se(1) - S(1) - C(4)	98.67(12)
$Cl(1) - Se(1) - S(1)^*$	97.30(3)	C(1) - S(1) - C(4)	93.99(15)
Se(1) - S(1) - C(1)	106.84(12)		

^{*a*} Symmetry transformations (starred) used to generate equivalent atoms: -x, -y + 1, -z.

in opposite directions above and below the SeS₂Cl₂ plane. Although both cis and trans isomers of TeCl₂(tmtu)₂ are known,²⁰ complex **2** represents the first bis-adduct of SeCl₂. The Se–Cl bond distances in the adducts SeCl₂(tht)₂ and SeCl₂-(tmtu) are 0.26–0.34 Å longer than the value of 2.157(3) Å observed for SeCl₂ in the gas phase,^{21,22} presumably as a result of three center–four electron bonding in the adducts.

- (20) (a) Foss, O.; Maartmann-Moe, K. Acta Chem. Scand. 1986, A40, 675.
 (b) Chivers, T.; Parvez, M.; Sandblom, N. Unpublished observations.
- (21) Fernholt, L.; Haaland, A.; Seip, R.; Kniep, R.; Korte, L. Z. Naturforsch. 1983, 38b, 1072.
- (22) For information on Se-Cl bond distances, see also: Brownridge, S.; Cameron, T. S.; Passmore, J.; Schatte, G.; Way, T. C. J. Chem. Soc., Dalton Trans. 1996, 2553.

⁽¹⁹⁾ Gopal, M.; Milne, J. Inorg. Chem. 1992, 31, 4530.

Figure 4. ⁷⁷Se NMR spectrum of a CS₂ solution of the mixture of selenium sulfides Se_nS_{8-n} (n = 1-5) formed from SeCl₂ and Ph₃PS: \bigcirc , S; \bullet , Se.

Reaction of SeCl₂ with Ph₃PE (E = S, Se). Formation of Selenium Sulfide Rings. In view of the facile formation of adducts of SeCl₂ with the sulfur ligands tmtu and tht we have also investigated the reactions of SeCl₂ with triphenylphosphine chalcogenides Ph₃PE (E = S, Se). The treatment of Ph₃PSe with SeCl₂ in CH₂Cl₂/THF produces Ph₃PCl₂ and an almost quantitative yield of elemental selenium (eq 4).

$$Ph_{3}PSe + SeCl_{2} \rightarrow Ph_{3}PCl_{2} + \binom{2}{x}Se_{x}$$
(4)

The application of this procedure to Ph₃PS provides a mild route to eight-membered selenium sulfide rings Se_nS_{8-n} (n = 1-5), which were identified by ⁷⁷Se NMR spectroscopy (Figure 4). The assignments were made on the basis of previous data for the composition of sulfur–selenium melts containing ⁷⁷Seenriched samples, which were investigated for melt compositions ranging from 10 to 40 mol % Se.^{12b,23-25} There is remarkably good agreement between the ⁷⁷Se NMR chemical shifts found for the selenium sulfide rings produced from the reaction SeCl₂ and Ph₃PS and those reported for the corresponding rings in sulfur–selenium melts. The assignments are shown in Figure 4, and the relative abundances of selenium sulfides produced by the two different routes are compared in Table 7. The low abundance of SeS₇ compared to that of 1,2-Se₂S₆ is the most significant difference in the composition of selenium sulfides.

Table 7. ⁷⁷Se NMR Data for Selenium Sulfides, Se_nS_{8-n} (n = 1-5)

	$\delta(^{77}\text{Se})^a$	rel abundance ^c	$\delta(^{77}\text{Se})^b$	rel abundance ^c
SeS ₇	701.0	6.0	699.7	40.0
$1,2-Se_2S_6$	633.9	35.9	633.9	20.0
$1,3-Se_2S_6$	718.4	4.8	716.9	2.5
$1,4-Se_2S_6$	730.1	6.6	729.1	2.0
$1,5-Se_2S_6$	688.5	6.3	687.3	3.5
1,2,3-Se ₃ S ₅	654.3	17.6	654.2	10.5
	559.2		560.6	
$1,2,4-Se_3S_5$	728.5	3.1	727.4	4.0
	662.7		662.9	
	653.2		653.0	
$1,2,5-Se_3S_5$	724.6	9.6	723.7	3.5
	662.4		662.6	
	619.8		619.7	
$1,2,3,4-Se_4S_4$	664.1	5.9	664.4	5.5
	580.3		581.6	
$1,2,3-Se_5S_3$	657.5	4.2	657.9	3.0
	598.3		598.2	
	589.6		591.2	

^{*a*} This work. ^{*b*} Reference 12c; these data refer to a selenium content of 40 mol % in sulfur–selenium melts, which were quenched and extracted with CS_2 . ^{*c*} In mol %.

In both systems, for a given chemical composition, the isomer with juxtaposed selenium atoms is the most abundant. For Se_3S_5 , however, the 1,2,5-isomer was found to be more abundant than the 1,2,4-isomer in this study. Finally, we note that Wynne et al. reported the formation of " Se_5S_3 ", identified on the basis of sulfur analysis from the decomposition of solutions of $SeCl_2$ • tmtu in the presence of excess tmtu.⁹ It seems likely that their product is also a mixture of selenium sulfides.

In summary, pure SeCl₂ is readily obtained by treatment of elemental selenium with an equimolar amount of SO₂Cl₂. It is stable *in THF* for 1 day at 23 °C and forms a crystalline bisadduct with THT that may be stored in the solid state at -20 °C for weeks without decomposition. The THF solutions of SeCl₂ and the adduct SeCl₂(tht)₂ constitute potentially valuable Se(II) synthons for the development of selenium chemistry. In the reaction with triphenylphosphine sulfide SeCl₂ acts as a chlorinating agent leading to the generation of selenium sulfide rings under mild conditions.

Acknowledgment. We thank the Academy of Finland and the NSERC (Canada) for financial support.

Supporting Information Available: An X-ray crystallographic file, in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC981430H

⁽²³⁾ The composition of selenium sulfides in melts that were heated to ca. 430 °C and, subsequently, cooled to 135 °C has been shown to be approximately the same as that of melts that were cooled to room temperature and extracted with CS₂.

⁽²⁴⁾ Chivers, T.; Laitinen, R. S.; Schmidt, K. J. Can. J. Chem. 1992, 70, 719.

⁽²⁵⁾ For a review of selenium sulfides, see: Laitinen, R. S.; Pekonen, P.; Suontamo, R. J. Coord. Chem. Rev. 1994, 130, 1.