Theoretical Study of SiH_{2n}^{2+} **(** $n = 1-3$ **) Dications¹**

Golam Rasul, G. K. Surya Prakash, and George A. Olah*

Donald P. and Katherine B. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661

*Recei*V*ed February 8, 1999*

Structures and energies of \sinh^{-2} (*n* = 1–3) dications were calculated at the density functional theory (DFT)
R3I YP/6-311+G(d n) and R3I YP/6-311++G(3df 2nd) levels. Contrary to the previously reported theoretical B3LYP/6-311+G(d,p) and B3LYP/6-311++G(3df,2pd) levels. Contrary to the previously reported theoretical studies at the HF/6-31G* level, the singlet SH_2^{2+} is not of linear $D_{\infty h}$ symmetric **1** but a C_{2v} symmetrical **2** with a two electron three center (3c-2e) bond. The structure **2** is significantly more stable than **1** by 14.7 kcal/mol. For calibration, structures **1** and **2** were also calculated at the ab initio CCSD(T)/cc-pVTZ level and found results which are in good agreement with the DFT results. DFT calculations also indicate that the singlet $SiH₄²⁺$ is not of C_{2v} symmetric 4 with a 3c-2e bond but a C_{2v} symmetric 5 with two 3c-2e bonds. The C_{2v} symmetric 7 with two 3c-2e bonds and two 2c-2e bonds was found to be the global minimum for SiH_6^{2+} dications.

Introduction

Koch, Frenking, and Schwarz² reported the ab initio HF/6-31G* calculated structures of SiH_2^{2+} and SiH_4^{2+} .³ The linear $D_{\infty h}$ symmetrical structure was preferred for the singlet $\text{SiH}_2^{\,2+2}$. Linear *D*∞*^h* symmetrical structure is also preferred for the carbon analogue $\text{CH}_2{}^{2+}$ as shown by Pople, Tidor, and Schleyer.⁴ The

planar C_{2v} symmetrical structure was found to be the global minimum for the singlet SiH_4^{2+} which can be considered as SiH_2^2 ⁺ dication complexed with a hydrogen molecule.² The sp²hybridized silicon atom of SiH_4^{2+} contains a two electron three center (3c-2e) bond and an empty p-orbital perpendicular to the plane of the molecule. Similar planar C_{2v} symmetrical structure is preferred for the carbon analogue $CH₄²⁺$ as shown by Wong and Radom.⁵ The structure of hexacoordinated SiH_6^2 ⁺ dication has never been reported. On the other hand, the calculated parent six coordinate carbocation, diprotonated methane $(CH₆²⁺)$ has been reported by Lammertsma et al.⁶ and has two 3c-2e bonding interactions in its minimum-energy structure (C_{2v}) .

- (1) Chemistry in Superacids 44. Part 43, Olah, G. A.; Prakash, G. K. S.; Rasul, G. *J. Mol. Struct. (THEOCHEM),* in press.
- (2) Koch, W.; Frenking, G.; Schwarz, H.; *J. Chem. Soc., Chem. Commun.,* **1985**, 1119. Koch, W.; Frenking, G.; Schwarz, H.; Maquin, F.; Stahl, D.; *J. Chem. Soc., Perkin Trans. 2*, **1986**, 757.
- (3) For a review on gas-phase chemistry of silicon-containing ions, see Goldberg, N.; Schwarz, H. *The Chemistry of Organic Silicon Compounds*; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons Ltd.: New York, 1998. Koch, W.; Schwarz, H. Structure/Reactivity *and Thermochemistry of Ions*; Ausloos, P., Lias, S. G., Eds.; Reidel: Dordrecht, 1987. Lammertsma, K.; Schleyer, P. v. R.; Schwarz, H. *Angew. Chem., Int. Ed. Engl.* **1989**, *28*, 1321. Koch, W.; Maquin, F.; Stahl, D.; Schwarz, H. *Chimica* **1985**, *39*, 376.
- (4) Pople, J. A.; Tidor, B.; Schleyer, P. v. R. *Chem. Phys. Lett.* **1982**, *88*, 439.
- (5) Wong, M. W.; Radom, L. *J. Am. Chem. Soc.* **1989**, *111*, 1155.

We report now based on density functional theory (DFT) calculations that the global minimum structure of $SiH₂²⁺$ is not of linear *D*_{∞*h*} symmetry but of *C*_{2v} symmetry with a 3c-2e bond. The *D*∞*^h* structure although a minimum on the potential energy surface (PES), is significantly less stable than the C_{2v} structure. Similarly, the global minimum structure of $SiH₄²⁺$ is not one with a 3c-2e bond but one with two 3c-2e bonds. In addition, we also report the structures of SiH_6^{2+} dication which can be derived by reacting $SiH₄²⁺$ and $H₂$.

Results and Discussion

Calculations were carried out with the Gaussian 98 program system.⁷ The geometry optimizations and frequency calculations were performed at the DFT⁸ B3LYP⁹/6-311+G(d,p)¹⁰ and $B3LYP/6-311++G(3df,2pd)¹⁰$ levels. From calculated frequencies, the optimized structures were characterized as minima (number of imaginary frequency $(NIMAG) = 0$) or transition structure (NIMAG $=$ 1). Final energies were calculated at the $B3LYP/6-311++G(3df,2pd)/B3LYP/6-311++G(3df,2pd)$ + ZPE (B3LYP/6-311++G(3df,2pd)//B3LYP/6-311++G(3df, 2pd)) level. For SiH_2^{2+} geometry optimizations and energy

- (8) Ziegler, T. *Chem. Re*V. **¹⁹⁹¹**, *⁹¹*, 651.
- Becke's three-parameter hybrid method using the LYP correlation functional: Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648.
- (10) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley-Interscience: New York, 1986.

⁽⁶⁾ Lammertsma, K.; Olah. G. A.; Barzaghi, M.; Simonetta, M. *J. Am. Chem. Soc.* **1982**, *104*, 6851. Lammertsma, K.; Barzaghi, M.; Olah, G. A.; Pople, J. A.; Schleyer, P. v. R.; Simonetta, M. *J. Am. Chem. Soc.* **1983**, *105*, 5258.

⁽⁷⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, R. E.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; M. Head-Gordon, M.; Pople, J. A. *Gaussian 98*, Revision A.5; Gaussian, Inc.: Pittsburgh, PA, 1998.

Table 1. Total Energies (-au), ZPE*^a* (kcal/mol)

	B3LYP/	B3LYP/	rel.
	$6 - 311 + G(d,p)$	$6-311++G(3df,2pd)$	energy ^{<i>b</i>}
$SiH22+1$	289.69024	289.69166 (7.2)	14.7
	$[289.22684]^{c}$		
$SiH22+ 2$	289.71080	289.71432 (6.7)	0.0
	$[289.24610]^{c}$		
$SiH22+$ 3	289.62003	289.62141 (3.3)	54.9
$SiH42+4$	290.92387	290.92801 (16.6)	3.1
$SiH42+ 5$	290.92288	290.92929 (14.3)	0.0
$SiH42+ 6$	290.82318	290.82701 (11.6)	61.5
$SiH62+7$	292.15287	292.15920 (26.6)	0.00
$SiH62+ 8$	292.13130	292.14024 (22.7)	8.0
$SiH62+$ 9	292.05450	292.06003 (22.5)	58.1

^{*a*} Zeropoint vibrational energies (ZPE) at B3LYP/6-311++*G*(3df,2pd)// *B3LYP/6-311++G(3df,2pd)* scaled by a factor of 0.96 are given in *parentheses. b Relative energy based on B3LYP/6-311++G(3df,2pd)// B3LYP/6-311*++*G(3df,2pd)* + *ZPE. ^c CCSD(T)/cc-pVTZ//CCSD(T)/ccpVTZ energies are gi*V*en in square brackets.*

Figure 1. B3LYP/6-311++G(3df,2pd) [CCSD(T)/cc-pVTZ] optimized structures of **¹**-**3**.

calculations were also carried out with the ab initio coupled cluster method¹⁰ at the CCSD(T)/cc-pVTZ¹¹ level. Calculated energies are given in Table 1.

SiH₂²⁺. Linear $D_{\infty h}$ structure **1** and C_{2v} structure **2** (Figure 1) were found to be minima on the potential energy surface (PES) of singlet SiH_2^{2+} at the DFT B3LYP/6-311+G(d,p) and
R3LYP/6-311++G(3df 2nd) levels as indicated by frequency $B3LYP/6-311++G(3df,2pd)$ levels as indicated by frequency calculations. The structure **2** is 12.9 kcal/mol more stable than **¹** at the B3LYP/6-311+G(d,p) level (Table 1). The difference becomes 14.2 kcal/mol at the higher B3LYP/6-311++G(3df, 2pd) level. At our highest level i.e., at the B3LYP/6-311++G- $(3df,2pd)/B3LYP/6-311++G(3df,2pd) + ZPE$ level the structure **2** is significantly more stable than **1** by 14.7 kcal/mol. Thus, the structure 2 is the global minimum on the PES of $SiH₂²⁺$. For calibration, structures **1** and **2** were also calculated at the ab initio CCSD(T)/cc-pVTZ level and found results which are in good agreement with the DFT results. Thus, at the CCSD- (T)/cc-pVTZ//CCSD(T)/cc-pVTZ level the structure **2** is also 12.1 kcal/mol more stable than **1**. Previously Koch et al.2 calculated singlet SiH_2^{2+} at the ab initio HF/6-31G* level. They concluded, 2 in contrast to our present results, that the global minimum for singlet SiH_2^2 ⁺ is the structure 1. Calculated linear $D_{\infty h}$ symmetrical structure for carbon analogue CH_2^{2+} was also reported.4

Structure **2** is characterized with a 3c-2e bond and can be considered as a complex between Si^{2+} and a hydrogen molecule. It is interesting to note that the interaction between silicon and hydrogens can also be considered as three center four electron (3c-4e) bonding as there are four electrons involved including the silicon lone pair. However, such bonding involving two hydrogen atoms and silicon is highly unlikely.^{12a} The sphybridized silicon atom of **2** possesses two formal vacant p-orbitals and a sp-orbital (formally containing a pair of

Table 2. Kinetic Barrier of Deprotonation and ΔH_0 of Dehydrogenation (in kcal/mol)*^a*

reaction		ΔH_0	kinetic barrier
$SiH22+ 2 \rightarrow SiH+$	$+$ H ⁺	-63.3	54.9
SiH_2^{2+} 2 \rightarrow Si^{2+}	$+$ H ₂	$+25.4$	
$SiH_4^{2+}5 \rightarrow SiH_3^{+}$	$+$ H ⁺	-23.2	61.5
$SiH42+ 5 \rightarrow SiH22+ 2$	$+$ H ₂	$+20.6$	
SiH_{6}^{2+} 7 \rightarrow SiH_{5}^{+}	$+$ H ⁺	-9.6	58.1
$SiH62+ 7 \rightarrow SiH42+ 5$	$+$ H ₂	$+25.3$	

^a Based on B3LYP/6-311++*G(3df,2pd)//B3LYP/6-311*++*G(3df,2pd)* + *ZPE.*

 $SiH₄²⁺$ 6 TS (C_s)

Figure 2. B3LYP/6-311++G(3df,2pd) optimized structures of $4-6$.

electrons) perpendicular to the p-orbitals. The 3c-2e Si-H bond distance of **2** is 2.172 Å. This is expectedly longer than that of 2c-2e Si-H bond of **¹** (1.519 Å).

In a related study Kapp, Schreiner, and Schleyer reported^{12b} ab initio and DFT study on XH_3^+ cations $(X = C, Si, Ge, Sn,$

Ph) The highly symmetric D_{2k} structure as well as C symmetric Pb). The highly symmetric D_{3h} structure as well as C_s symmetric structure with a 3c-2e bond were found to be the minima on the potential energy surfaces of XH_3^+ . The D_{3h} forms were found to be favorable energetically for $X = C$, Si and Ge. On the other hand, C_s form were found to be energetically favorable for $X =$ Sn and Pb. Recently Rasul, Prakash, and Olah also reported¹³ an ab initio study which indicates that the global minimum structure of XH_3^{2+} ($X = Si$, Ge) as well as XH_3^{+} ($X = Al$ Ga) are not of C_3 symmetry but of C_5 symmetry with $=$ Al, Ga) are not of C_{2v} symmetry but of C_s symmetry with 3c-2e bonds.

We also have located transition structure, **3** (Figure 1), for the deprotonation process in **2**. Structure **3** lies 54.9 kcal/mol higher in energy than **2** (Table 2). Thus **2** has considerable kinetic barrier for deprotonation, although the deprotonation process is exothermic by 63.3 kcal/mol.

SiH₄²⁺. Two C_{2v} symmetrical structures, **4** and **5**, were found to be minima on the PES of singlet $SiH₄²⁺$ at the B3LYP/6- $311+G(d,p)$ level (Figure 2) as indicated by frequency calculations at the same level. The structure **5** is only 0.6 kcal/mol less stable than **4** at this level of calculations (Table 1). At the higher level of B3LYP/6-311++G(3df,2pd), both **⁴** and **⁵** were also found to be minima. But at this level the structure **5** is 0.8 kcal/mol more stable than than **4**. At our highest level the structure **5** is more stable than **4** by 3.1 kcal/mol. Thus, the $\frac{1}{(11)}$ Dunning, T. H. *J. Chem. Phys.* **1989**, *90*, 1007.

⁽¹¹⁾ Dunning, T. H. *J. Chem. Phys.* **1989**, 90, 1007. (12) (a) Akiba, K. *Chemistry of Hypervalent Compounds;* Wiley-VCH: New York, 1999. (b) Kapp, J.; Schreiner, P. R.; Schleyer, P. v. R. *J. Am. Chem. Soc.* **1996**, *118*, 12154.

⁽¹³⁾ Rasul, G.; Prakash, G. K. S.; Olah, G. A. *J. Mol. Struct. (THEOCHEM)* **1998**, *455*, 101.

Structure 5 resembles a complex between $Si²⁺$ with two hydrogen molecules resulting in formation of two 3c-2e bonds with an empty p-orbital orthogonal to the plane of the molecule. The 3c-2e Si-H bond distances of **⁵** are 2.142 and 2.171 Å.

Previously Koch et al.² calculated SiH_4^{2+} at the ab initio HF/ 6-31G* level and concluded, in contrast to our present results, that the global minimum for $SiH₄²⁺$ is the structure 4. The reported2 structure of **4** at the HF/6-31G* level agrees very well with our $B3LYP/6-311++G(3df,2pd)$ calculated structure (Figure 2). Transition state **6** for deprotonation of **5** was also located. Structure **6** lies 61.5 kcal/mol higher in energy than structure **5** (Table 2).

 SiH_6^{2+} . At the B3LYP/6-311+G(d,p) and B3LYP/6-311++G-
If 2nd) levels the C_2 symmetric form 7 and C_2 symmetric (3df,2pd) levels the C_{3v} symmetric form 7 and C_3 symmetric form **8** were found to be the stable minima for singlet SiH_6^{2+} (diprotonated silane). Structure 7 is isostructural with CH_6^{2+6} . Six coordinated SiH_6^{2+} **7** contains two 3c-2e bonds and two 2c-2e bonds (Figure 3). The Si-H bond distance of 3c-2e interactions is 1.870 Å. On the other hand, the six hydrogens in structure **8** are bonded to the silicon by three 3c-2e bonds (Figure 3). However, the structure **8** is less stable than **7** by 8.0 kcal/mol. Transition state **9** for deprotonation of **7** was also located. Structure **9** lies 58.1 kcal/mol higher in energy than structure **7** (Table 2).

Hydrogenations of Si^{2+} , SiH_2^{2+} (2), and SiH_4^{2+} (5) to form SiH_2^{2+} (2), SiH_4^{2+} (5), and SiH_6^{2+} (7), respectively, were also calculated and listed in Table 2.

Conclusions

The structure of SiH_{2n}^{2+} ($n = 1-3$) dications were calculated
using DFT theory Contrary to previous theoretical studies by using DFT theory. Contrary to previous theoretical studies at the HF/6-31G* level, 2 present DFT study at the B3LYP/6- $311+G(d,p)$ and B3LYP/6-311++G(3df,2pd) levels indicates

Figure 3. B3LYP/6-311++G(3df,2pd) optimized structures of $7-9$.

that the global minimum structure of singlet the SiH_2^{2+} is not of linear $D_{\infty h}$ symmetric 1 but a C_{2v} symmetrical 2 with a 3c-2e bond. The *D*∞*^h* symmetric **1**, although a minimum on the PES, is 14.7 kcal/mol less stable than **2**. Similar study also indicates that the global minimum structure of the singlet $SiH₄²⁺$ is not of C_{2v} symmetric 4 with a 3c-2e bond but a C_{2v} symmetrical **5** with two 3c-2e bonds. The structure **4** is 3.1 kcal/ mol less stable than **5**. The C_{2v} symmetrical structure **7** with two 3c-2e bonds and two 2c-2e bonds was found to be the global minimum for the singlet SiH_6^{2+} dication.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

IC9901620