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Donor atom interaction at phosphorus has been found to
increase from phosphates to phosphites to pentaoxyphosphoranes
in bringing about the formation of higher coordinate geometries.2-5

Sulfur atoms as part of flexible ring systems have been amply
studied in this regard.2-15 Though less studied, a similar conclu-
sion has been reached regarding oxygen2,3,9,16-18 and nitrogen19

as donor atoms. In nucleophilic displacement reactions at active
sites of phosphoryl transfer enzymes, phosphate substrates are
proposed to form pentaoxyphosphoranes as intermediates with
trigonal bipyramidal (TBP) geometries.20-25 On the basis of our

recent studies, it is postulated that active site residues may act in
a donor fashion and increase the coordination geometry of both
the substrate and proposed intermediate.2

Studies thus far have been carried out in the absence of
additional enzyme interactions such as those posed by hydrogen
bonding, salt bridges, and electrostatic interactions. Furthermore,
the studies in the absence of an enzyme environment have been
confined to neutral phosphates, whereas those representing ground
state configurations at active sites are anionic.

In this Communication, we have synthesized the first anionic
phosphates undergoing sulfur donor action in the presence of
hydrogen bonding. Their structures from X-ray analyses establish
the degree of interaction encountered. The synthesis of the two
anionic phosphates227 and328 resulted from the reaction of the
neutral phosphite126 with the amino-diol [CH2(C6H4)OH]2NMe
(4)19 and amino-triol [CH2(C6H4)OH]2N (5),29 respectively.

All three phosphates1-3 show sulfur coordination at phos-
phorus which displaces the geometry from a tetrahedron toward
a TBP.30 For 1, the displacement is 30% TBP while for2 and3,
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it is 23% and 26%, respectively. Figure 1 shows a schematic
representation of the hydrogen-bonded structures illustrating the
boat conformation of the cyclic system as a consequence of P-S
coordination. An ORTEX plot of2 (Figure 2) is taken as
representative of the main structural features for these phosphates.

The P-S distance for the anionic phosphates2 and 3,
respectively, are 0.092 and 0.065 Å longer than that for1. The
P-S distances shown in Figure 1 compare with 3.65 Å for the
sum of the van der Waals radii31 and 2.12 Å for the covalent
sum.32 If coordination was entirely absent, the rings would reside
in an anti chairlike conformation, as previous work has shown.2

Neutral phosphate1 exists as a hydrogen-bonded dimeric unit.
In comparison with the similarly constructed anionic phosphates
2 and3 relative to the neutral entity1, the average lengthening
of the P-S distance is 0.078 Å. In the anionic phosphates2 and
3, hydrogen bonding is expected to increase the electrophilicity
at phosphorus. This presumably is countered to a greater extent
by the presence of a negative charge that decreases the Lewis
acid character of phosphorus.

The most remarkable feature stemming from the inclusion of
hydrogen bonding and anionicity in these phosphates is that they
still allow sulfur donor action to be expressed, especially since

donor action with neutral phosphates is weak to begin with. We
can anticipate that the introduction of these two effects in the
much more strongly coordinating pentaoxyphosphoranes will not
effectively reduce the degree of formation of octahedral geom-
etries. In the presence of a similar sulfur-containing ring system,
P-S distances for pentaoxyphosphoranes are observed in the
range 2.89-2.33 Å (averaging 2.53 Å)2,3,9 which is much closer
to the sum of the covalent radii, 2.12 Å.31 For example, compare
this distance in7 of 2.331(1) Å10 to that for6, 3.114(2) Å.5 The
displacement toward an octahedron for7 is 79%.

On the basis of this present work, donor action from available
residues at active sites of phosphoryl transfer enzymes is an
increasingly likely possibility and one that has not been considered
previously. As stated before, the increased degree of donor
interaction in proposed intermediates in causing an increase in
coordination geometry relative to that for phosphate substrates is
a factor that may cause a rate enhancement as a result of tighter
nucleophile bonding in the transition state.2 Thus, donor action
may be viewed as a nucleophilic assisted nucleophilic displace-
ment process.
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Figure 1. Schematic representations of the structures of1-3 exhibiting
hydrogen bonding and P-S interaction.

Figure 2. ORTEX diagram of the anionic phosphate2 with thermal
ellipsoids shown at the 40% probability level. All hydrogens are omitted
for clarity. Hydrogen bonding and P-S interaction are indicated by dashed
lines.
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