Notes

A Sterically Enforced Bent Form of an Edge-Sharing Dipalladium(II) Complex Attained by a Linked-Bisphosphido Bridge

Tsutomu Mizuta, Shizuka Aoki, Koji Nakayama, and Katsuhiko Miyoshi*

> Department of Chemistry, Faculty of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan

> > Received January 6, 1999

Many examples are known of edge-sharing square planar bimetallic complexes formed by d⁸ transition-metal centers. In a recent report, Aullón et al. tentatively classified the structures of such complexes bridged with two X ligands (X = halogen anion, RO⁻, RS⁻, S²⁻, or R₂P⁻) into two possible groups, that is, flat and bent forms (Chart 1).¹ Of these two structures, the bent form is of interest, particularly because axial orbitals of the two metals are in close proximity under the hinged planes to interact cooperatively with a substrate. Such an interaction is expected to play a significant role in binding a substrate to a bimetallic complex.

For the bisphosphido-bridged complexes, most of them are regarded as the flat form,²⁻¹⁴ though both forms often occur for other X ligands. Two limited exceptions are [Rh(µ-PPh₂)- $(DPPE)_{2}$ and $[PtMe(\mu-CyPP)]_{2}$.¹⁵ Since the examples of the

- (1) Aullón, G.; Ujaque, G.; Lledós, A.; Alvarez, S.; Alemany, P. Inorg. Chem. 1998, 37, 804.
- (2) Carty, A. J.; MacLaughlin, S. A.; Nucciarone, D. In Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds.; VCH: Deerfield Beach, FL, 1987; pp 559-619.
- (3) Jones, R. A.; Wright, T. C.; Atwood, J. L.; Hunter, W. E. Organometallics 1983, 2, 470.
- (4) Carty, A. J.; Hartstock, F.; Taylor, N. J. Inorg. Chem. 1982, 21, 1349.
- (5) Glaser, R.; Kountz, D. J.; Gallucci, J. C.; Meek, D. W. Inorg. Chim. Acta 1983, 77, L207.
- (6) Glaser, R.; Kountz, D. J.; Waid, R. D.; Gallucci, J. C.; Meek, D. W. J. Am. Chem. Soc. 1984, 106, 6324.
- (7) Look, P.; Schmutzler, R.; Goodfellow, R.; Murray, M.; Schomburg, D. Polyhedron 1988, 7, 505.
- (8) Parkin, I. P.; Slawin, A. M. Z.; Williams, D. J.; Woollins, D. J. Inorg. Chim. Acta 1990, 172, 159.
- Gebauer, T.; Frenzen, G.; Dehnicke, K. Z. Naturforsch., B 1992, 47, (9)1505.
- (10) Fenske, D.; Maczek, B.; Maczek, K. Z. Anorg. Allg. Chem. 1997, 623, 1113
- (11) Forniés, J.; Fortuño, C.; Navarro, R.; Martínez, F.; Welch, A. J. J. Organomet. Chem. 1990, 394, 643.
- (12) Bekiaris, G.; Rochenthaler, G. V.; Behrens, U. Z. Anorg. Allg. Chem. 1992, 618, 153.
- (13) Alonso, E.; Forniés, J.; Fortuño, C.; Tomás, M. J. Chem. Soc., Dalton Trans. 1995, 3777.
- (14) Kourkine, I. V.; Chapman, M. B.; Glueck, D. S.; Eichele, K.; Wasylishen, R. E.; Yap, G. P. A.; Liable-Sands, L. M.; Rheingold, A. L. Inorg. Chem. 1996, 35, 1478.
- (15) DPPE = 1,2-bis(diphenylphosphino)ethane, CyPP = (3-(dicyclohexylphosphino)propyl)phenylphosphido: Cy2PCH2CH2CH2PPh.
- (16) Fultz, W. C.; Rheingold, A. L.; Kreter, P. E.; Meek, D. W. Inorg. Chem. 1983, 22, 860.
- (17) Uriarte, R.; Mazanec, T. J.; Tau, K. D.; Meek, D. W. Inorg. Chem. 1980, 19, 79.
- (18) Meek, D. W.; Waid, R.; Tau, K. D.; Kirchner, R. M.; Morimoto, C. N. Inorg. Chim. Acta 1982, 64, L221.

Chart 1

bent bisphosphido bimetallic complexes are so far limited to these two Rh(I) and Pt(II) complexes,¹⁶⁻²⁰ it is worth preparing such bent complexes in searching for the factors responsible for the bent structure.

Very recently, Claver et al. used alkyl dithiolates ⁻S(CH₂)_nS⁻ with a few methylene units as a bridging moiety to prepare linked-bisthiolato-bridged complexes, all of which have a bent structure,²¹ implying that the linked bridge acts as an effective ligand to adopt a bent structure. On the other hand, to our knowledge, linked-bisphosphido groups have not been used as a bridging moiety in an edge-sharing square planar complex of d⁸ transition metals. Of course some bimetallic complexes with linked-bisphosphido groups such as ${RP-(linker)-PR}^{2-}$ (linker = $(CH_2)_n$, 1,2-phenylene, or *o*-xylene) are known,²²⁻³⁴ but they do not have edge-sharing square planar structures. In this paper, we describe the preparation and X-ray structure of linkedbisphosphido dipalladium(II) complexes with a formula $[Pd_2(\mu RPCH_2CH_2PR$)(DPPE)₂]Cl₂ (R = Me and Ph), in which the linked-bisphosphido groups are employed as a ligand to enforce them sterically to adopt a bent structure.

- (19) Aullón et al. described in ref 1 that the bent structure is not rare for the XR2 bridges. However, upon our thorough investigation of X-ray structures by "3D Search and Research using the Cambridge Structural Database" (Allen, F. H.; Kennard, O. Chem. Des. Autom. News 1993, 8, 131), we found that only two out of 236 bisphosphido-bridged bimetallic complexes have a bent structure. In addition, we found also that many complexes have a bent bisphosphido bimetallic core, M2-(PR₂)₂, but they do not adopt an edge-sharing square planar structure.
- (20) For a phosphido-amido bridged complex, another example has been reported. Meij, R.; Stufkens, D. J.; Vrieze, K.; Brouwers, A. M. F.; Overbeek, A. R. J. Organomet. Chem. 1978, 155, 123.
- (21) Forniés-Cámer, J.; Masdeu-Bultó, A. M.; Claver, C.; Cardin, C. J. Inorg. Chem. 1998, 37, 2626.
- (22) Flood, T. C.; Disanti, F. J.; Campbell, K. D. Inorg. Chem. 1978, 17, 1643
- (23) Seyferth, D.; Wood, T. G.; Fackler, J. P., Jr.; Mazany, A. M. Organometallics 1984, 3, 1121.
- (24) Chen, L.; Kountz, D. J.; Meek, D. W. Organometallics 1985, 4, 598.
- (25) Rheingold, A. Acta Crystallogr. 1985, C41, 1043.
- (26) De, R. L.; Vahrenkamp, H. Z. Naturforsch. 1986, 41b, 273.
 (27) Seyferth, D.; Wood, T. G.; Henderson, R. S. J. Organomet. Chem. 1987, 336, 163.
- (28) Kyba, E. P.; Mather, J. D.; Hassett, K. L.; McKennis, J. S.; Davis, R. E. J. Am. Chem. Soc. 1984, 106, 5371
- (29) Kyba, E. P.; Hassett, K. L.; Sheikh, B.; McKennis, J. S.; King, R. B.; Davis, R. E. Organometallics 1985, 4, 994.
- (30) Kyba, E. P.; Davis, R. E.; Clubb, C. N.; Liu, S.-T.; Palacios, H. O. A.; McKennis, J. S. Organometallics 1986, 5, 869.
- (31) Kyba, E. P.; Kerby, M. C.; Kashyap, R. P.; Mountzouris, J. A.; Davis, R. E. Organometallics 1989, 8, 852.
- (32) Kyba, E. P.; Kerby, M. C.; Kashyap, R. P.; Mountzouris, J. A.; Davis, R. E. J. Am. Chem. Soc. 1990, 112, 905.
- (33) Soucek, M. D.; Chiou, H.-S.; Kyba, E. P. J. Organomet. Chem. 1993, 456, 255.
- (34) Soucek, M. D.; Clubb, C. C.; Kyba, E. P.; Price, D. S.; Scheuler, V. G.; Aldaz-Palacios, H. O.; Davis, R. E. Organometallics 1994, 13, 1120 and references therein.

10.1021/ic990032r CCC: \$18.00 © 1999 American Chemical Society Published on Web 09/20/1999

Table 1. Crystallographic Data for $[Pd_2(\mu-MPE)(DPPE)_2]Cl_2$ (**3a**) and $[Pd_2(\mu-PPE)(DPPE)_2]Cl_2$ (**3b**)

$\begin{array}{cccc} empirical formula & C_{57}H_{60}Cl_4P_6Pd_2 & C_{67.5}H_{65}Cl_5P_6\\ fw & 1285.56 & 1452.16\\ space group & Pna2_1(No.33) & P2_1/n(No.14)\\ \end{array}$	
fw1285.561452.16space group $Pna2_1$ (No. 33) $P2_1/n$ (No. 1-	5Pd ₂
space group $Pna2_1$ (No. 33) $P2_1/n$ (No. 14)	
	4)
a, A 22.1960(4) 12.3700(2)	
<i>b</i> , Å 22.5510(4) 24.2300(2)	
c, Å 11.3940(1) 45.1860(6)	
β , deg 92.242(1)	
<i>V</i> , Å ³ 5703.2(3) 13 530.6(3)	
Z 4 8	
$T, ^{\circ}C$ -73(1) -73(1)	
λ (Mo K α), Å 0.710 69 0.710 69	
$\rho_{\rm calc}, {\rm g} {\rm cm}^{-3}$ 1.497 1.426	
μ, mm^{-1} 1.023 0.910	
<i>R</i> ^{<i>a</i>} 0.034 0.064	
$R_{\rm w}^{\ b}$ 0.039 0.068	

$${}^{a}R(F_{o}) = \sum ||F_{o}| - |F_{c}|/\sum |F_{o}|. {}^{b}R_{w} = \{\sum w(|F_{o}| - |F_{c}|)^{2}/\sum wF_{o}^{2}\}^{1}$$

Results and Discussion

Preparation of the Linked-Bisphosphido Complexes. Synthesis of the bisphosphido dinuclear complexes is usually based on a one-pot reaction of a phosphine having a P–H bond with an appropriate metal fragment.^{35,36} In the present study, stepwise reactions were employed, leading to a higher yield. First, 1,2-bis(methylphosphino)ethane (abbreviated as MPEH₂) or 1,2-bis(phenylphosphino)ethane (abbreviated as PPEH₂) was treated with 1 equiv of [PdCl₂(DPPE)] (1) to coordinate to the first Pd(II) center (eq 1). Then, the [Pd(MPEH₂ or PPEH₂)(DPPE)]-

Cl₂ (**2a** or **2b**, respectively) thus formed was made to react with another 1 equiv of **1** to form the linked-bisphosphido complex $[Pd_2(\mu-MPE \text{ or } \mu-PPE)(DPPE)_2]Cl_2$ (**3a** or **3b**, respectively) in a fairly high yield with the release of 2 equiv of HCl, which was trapped by a mild base, Na₂CO₃ (eq 2). MPEH₂ and PPEH₂ each have two chiral phosphorus atoms, and so the intermediates **2a** and **2b** should have been obtained as a mixture of racemic and meso isomers, but only one final product **3a** or **3b** was obtained.

X-ray Analysis of 3a and 3b. Suitable crystals of **3a** and **3b** both as methylene chloride solvates were grown by diffusion of Et_2O onto CH_2Cl_2 solutions. Crystal, data collection, and refinement parameters for **3a** and **3b** are given in Table 1.

Figure 1. ORTEP drawing of the dipalladium complex $[Pd_2(\mu-MPE)-(DPPE)_2]Cl_2\cdot CH_2Cl_2$ (**3a**). One of the two counteranions, a solvent molecule, and hydrogen atoms have been omitted for clarity.

Figure 2. ORTEP drawing of one of the two independent dipalladium complexes in a crystal of $[Pd_2(\mu-PPE)(DPPE)_2]Cl_2 \cdot 1.5CH_2Cl_2$ (**3b**). Counteranions, solvent molecules, and hydrogen atoms have been omitted for clarity.

Table 2. Listings of Geometrical Parameters for 3a, 3b

		3b		
	3 a	molecule 1	molecule 2	
Distances/Å				
Pd(1) - P(1)	2.330(2)	2.332(2)	2.358(2)	
Pd(1) - P(2)	2.332(2)	2.356(2)	2.336(2)	
Pd(1) - P(3)	2.304(2)	2.300(2)	2.331(2)	
Pd(1) - P(4)	2.322(2)	2.331(2)	2.303(2)	
Pd(2) - P(1)	2.332(2)	2.342(2)	2.352(2)	
Pd(2) - P(2)	2.361(2)	2.342(2)	2.340(2)	
Pd(2) - P(5)	2.326(2)	2.313(2)	2.302(2)	
Pd(2)-P(6)	2.311(2)	2.304(2)	2.311(2)	
Angles/deg				
P(1) - Pd(1) - P(2)	69.52(6)	67.76(6)	67.68(6)	
P(1) - Pd(2) - P(2)	68.98(6)	67.82(6)	67.70(6)	
P(3) - Pd(1) - P(4)	82.32(6)	85.01(6)	85.13(6)	
P(5) - Pd(2) - P(6)	84.25(7)	84.77(6)	85.81(7)	
Pd(1) - P(1) - Pd(2)	90.32(6)	96.50(6)	94.15(6)	
Pd(1) - P(2) - Pd(2)	89.53(6)	95.82(6)	95.04(6)	

Atomic coordinates and equivalent temperature factors are included as Supporting Information. ORTEP diagrams are shown in Figures 1 and 2. Selected geometrical parameters for **3a** and **3b** are included in Table 2. Further details of the structure determinations are given in the Experimental Section and the Supporting Information.

The molecular structure of **3a** shown in Figure 1 indicates that the two Pd(II) atoms are bridged by the linked-bisphosphido group, MePCH₂CH₂PMe, to form a rare butterfly structure. The dihedral angle (bent angle) formed by the Pd1–P1–P2 and Pd2–P1–P2 planes is 118.3°, which is substantially reduced compared with 133.4° in [Rh(μ -PPh₂)(DPPE)]₂ with a butterfly structure.¹⁶ Thus, the ethylene backbone of the linked-bisphosphido group effectively imposes the sterical constraint on the doubly bridged square planes, as we expected.

In the crystal structure of 3b, two crystallographically independent 3b molecules are present, forming a considerably

⁽³⁵⁾ For example, see: Hayter, R. G. J. Am. Chem. Soc. 1962, 84, 3046.
(36) Another example: Brandon, J. B.; Dixson, K. B. Can. J. Chem. 1981, 59, 1188.

large unit cell. Since each possesses geometrical parameters comparable to those of the other, one of the two is depicted in Figure 2, where the linked-bisphosphido ligand PPE doubly bridges the two Pd(II) atoms to form a butterfly structure similar to that found for 3a. However, a striking difference is found between the molecular structures of 3a and 3b. In 3a, a Cl⁻ anion approaches only one of the two Pd(II) centers from a top direction as shown in Figure 1, where the Cl1-Pd1 distance is 3.268(2) Å. In **3b**, on the other hand, it approaches the two Pd(II) atoms simultaneously from the bottom so as to form a third bridge. Interatomic distances from the Cl- to each palladium(II) are 3.102(2) Å for Cl1-Pd1 and 2.981(2) Å for Cl1-Pd2, and in the other independent molecule, the corresponding distances are 3.063(2) and 2.962(2) Å. Though they are all greater than a normal single bond length of 2.30 Å for a Pd–Cl bond in PdCl₄^{2–,37–40} they are smaller than 3.30 Å, a sum of van der Waals radii.⁴¹ In addition, the two Pd(II) centers in Figure 2 (3b) are displaced toward the Cl⁻ anion by 0.24 and 0.34 Å from their respective ideal square coordination plane, whereas those in Figure 1 (3a) are both almost in a square plane with a displacement similar in magnitude to those of the four phosphorus atoms. Concerning the Pd(II) square planar complexes having four phosphorus donor atoms, two examples were reported for a similar axial coordination of the counterion.⁴²⁻⁴⁴ In both cases, the ligands are tetraphosphamacrocycles, and the Pd-Cl distances are 2.831 and 3.107 Å. Thus, the comparable Pd-Cl distances and displacement of the Pd(II) centers toward the Cl⁻ found in **3b** demonstrate the presence of a weak bonding interaction between the Pd(II) and Cl atoms,45 whereas the interaction in 3a is considered to be negligible or much weaker than in **3b**.

The presence of the additional Cl^- bridge in **3b** may be responsible for the hinged structure opened more widely in 3b than in **3a**. The dihedral angles formed by the two P(bridge)-Pd-P(bridge) triangular planes are 127.4° and 124.5° for the two independent molecules in 3b, which are significantly wider than 118.3° in **3a**. The Pd···Pd separation is greater in **3b**, 3.4866(7) and 3.4487(7) Å, than in **3a**, 3.3054(7) Å.

Experimental Section

General Remarks. All reactions were carried out under an atmosphere of dry nitrogen using Schlenk tube techniques. All solvents were purified by distillation: CH2Cl2 was distilled from P2O5, and Et2O and THF were distilled from sodium metal. These were stored under an N2 atmosphere. [PdCl2(DPPE)] was prepared from [PdCl2(cod)]46 and DPPE. PPEH₂ was prepared according to the literature method.⁴⁷ MPEH₂ was also prepared by the reported method⁴⁸ and used as a ca. 0.16 M THF solution.

- (37) Intille, G. M.; Pfluger, C. E.; Baker, W. A., Jr. Cryst. Struct. Commun. 1973. 2. 217
- (38) Zveguintzoff, D.; Bois, C.; Dao, N. Q. J. Inorg. Nucl. Chem. 1981, *43*, 3183.
- (39) Duesler, E. N.; Tapscott, R. E.; García-Basallote, M.; González-Vílchez, F. Acta Crystallogr., Sect. C 1985, 41, 678. (40) Kiriyama, H.; Matsushita, N.; Yamagata, Y. Acta Crystallogr., Sect.
- C 1986, 42, 277.
- (41) Bondi, A. J. Phys. Chem. 1964, 68, 441.
- (42) Bartsch, R.; Hietkamp, S.; Morton, S.; Stelzer, O. Angew. Chem., Int. Ed. Engl. 1982, 21, 375.
- (43) Bartsch, R.; Hietkamp, S.; Morton, S.; Peters, H.; Stelzer, O. Inorg. Chem. 1983, 22, 3624.
- (44) Brauer, D. J.; Gol, F.; Hietkamp, S.; Peters, H.; Sommer, H.; Stelzer, O.; Sheldrick, W. M. Chem. Ber. 1986, 119, 349.
- (45) Aullón, G.; Alvarez, S. Inorg. Chem. 1996, 35, 3137.
- (46) Drew, D.; Doyle, J. R. Inorg. Synth. 1972, 13, 52.
- (47) Airey, A.; Swiegers, G. F.; Willis, A. C.; Wild, B. Inorg. Chem. 1997, 36, 1588.

¹H, ¹³C, and ³¹P NMR spectra were measured on JEOL LA-300 and -500 spectrometers. ¹H and ¹³C NMR data were referred to Si(CH₃)₄ as an internal standard. ³¹P NMR data were referred to 85% H₃PO₄ as an external standard.

Inorganic Chemistry, Vol. 38, No. 19, 1999 4363

[Pd(MPEH₂)(DPPE)]Cl₂, 2a. [PdCl₂(DPPE)] (160 mg, 0.278 mmol) was dissolved in CH₂Cl₂ (35 mL), to which a 0.16 M THF solution of MPEH₂ was added until the disappearance of [PdCl₂(DPPE)] was confirmed by ³¹P NMR spectra. The total amount of MPEH₂ added was 1.9 mL (0.30 mmol). After the solvent was completely removed under reduced pressure, the residue was redissolved into 2 mL of CH2-Cl₂, and then 30 mL of Et₂O was added to precipitate 2a. After the separation of the precipitate by decantation, it was washed twice with 2 mL of Et₂O and then dried in vacuo to give 165 mg of 2a (0.237 mmol, 85%). ¹H NMR (300 MHz, CDCl₃): δ 1.26 and 1.49 (m, 6H, CH₃), 2.4–3.2 (8H, CH₂), 4.91 and 5.60 (d, ${}^{1}J_{P-H} = 384$ and 383 Hz, respectively, 2H, P-H), 7.2-8.2 (Ph, 20H). ¹³C{¹H} NMR (CDCl₃): δ 6.2 and 6.5 (d, ${}^{1}J_{P-C} = 36$ and 35 Hz, respectively, CH₃), 24.2 (m, CH₂ of MPEH₂), 30.7 (m, CH₂ of DPPE), 127.2-134.5 (m, Ph). ³¹P- $\{^{1}H\}$ (CDCl₃): δ 17.3 (m, MPEH₂), 54.8 (m, DPPE); the other isomer, 19.3 (m, MPEH₂), 54.3 (m, DPPE).

[Pd(PPEH2)(DPPE)]Cl2, 2b. Complex 2b was prepared from [PdCl2-(DPPE)] and PPEH₂ similarly to **2a**. ¹H NMR (300 MHz, CDCl₃): δ 2.7-3.0 (8H, CH₂), 5.91 and 6.53 (P-H, each pair of these signals due to a P-H coupling was overlaid with the phenyl signals), 6.9-7.8 (Ph, 30H). ${}^{31}P{}^{1}H{}$ (CDCl₃): a major isomer, δ 34.3 (m, PPEH₂), 56.3 (m, DPPE); a minor isomer, δ 32.8 (m, PPEH₂), 57.1 (m, DPPE).

[Pd2(µ-MPE)(DPPE)2]Cl2, 3a. 2a (148 mg, 0.212 mmol) was dissolved in 8 mL of CH₂Cl₂, to which Na₂CO₃ (680 mg, 6.42 mmol) and [PdCl₂(DPPE)] (121 mg, 0.212 mmol) in CH₂Cl₂ were added. After vigorous stirring for 2 h, the solution was filtered to remove the salts formed. The volume of the filtrate was reduced to 2 mL, and then 20 mL of Et₂O was added to precipitate 3a. After the separation of the yellow powder by decantation, it was washed with 2 mL of Et₂O three times and then dried in vacuo to give 185 mg of 3a (0.154 mmol, 73%). ¹H NMR (300 MHz, CDCl₃): δ 0.55 (m, 6H, CH₃), 2.5–2.8 (12H, CH₂), 7.3–7.7 (Ph, 40H). ${}^{13}C{}^{1}H$ NMR (CDCl₃): δ 6.4 (br, CH₃), 29.6 (m, CH₂ of DPPE), 30.0 (m, CH₂ of MPE), 129.4-133.2 (m, Ph). ${}^{31}P{}^{1}H{}$ (CDCl₃): $\delta -9.5$ (m, MPE), 47.8 (m, DPPE).

[Pd₂(µ-PPE)(DPPE)₂]Cl₂, 3b. The procedure for the synthesis of 3b was similar to that for 3a. The quantities used were as follows: 2b (66 mg, 0.080 mmol), Na₂CO₃ (242 mg, 2.29 mmol), and [PdCl₂-(DPPE)] (40 mg, 0.070 mmol); 82 mg of 3b (0.062 mmol, 66%) was obtained. ¹H NMR (300 MHz, CDCl₃): δ 2.1-2.6 (12H, CH₂), 6.2-8.1 (Ph, 50H). ¹³C{¹H} NMR (CDCl₃): δ 29.6 (m, CH₂ of DPPE), 30.0 (m, CH₂ of PPE), 129.4–133.2 (m, Ph). ${}^{31}P{}^{1}H{}$ (CDCl₃): δ –13.3 (m, MPE), 44.4 (m, DPPE).

X-ray Crystallography. Suitable crystals of 3a and 3b were mounted on a glass fiber. All measurements were made on a Mac Science DIP2030 imaging plate area detector at 200 K to prevent efflorescence due to the loss of CH2Cl2 in the crystals. The crystal-todetector distance was 100 mm; readout was performed in the 0.050 mm pixel mode for the 300 mm diameter detector. The data were collected to a maximum 2θ value of 55.8°. For **3a**, a total of 60 oscillation images were collected, each being exposed for 4.0 min with an oscillation angle of 3.0°. For 3b, 120 images were collected, each being exposed similarly but with an oscillation angle of 1.5°. Cell parameters and intensities for the reflection were estimated by the program packages of MacDENZO.49

For 3a, a total of 7375 reflections were collected, and 4849 reflections ($I > 3.00\sigma(I)$ and $2.7^{\circ} < 2\theta < 49.1^{\circ}$) were used for the final refinement, whereas, for 3b, 23 575 reflections were collected, and 20 018 ($I > 3.00\sigma(I)$ and $2.7^{\circ} < 2\theta < 50.2^{\circ}$) were used. The structures were solved by direct methods and expanded using Fourier techniques. Non-hydrogen atoms except for the disordered CH₂Cl₂ were refined anisotropically, while the rest were refined isotropically. Hydrogen atoms were included but not refined. Absorption correction

(48) Baacke, M.; Stelzer, O.; Wray, V. Chem. Ber. 1980, 113, 1356.

⁽⁴⁹⁾ MacDENZO: Gewirth, D. (with the cooperation of the program authors Otwinowski, Z., Minor, W.) The MacDenzo Manual-A Description of the Programs DENZO, XDISPLAYF, and SCALEPACK; Yale University: New Haven, CT, 1995.

was not applied for either case. 50 All calculations were performed with the teXsan crystallographic software package of Molecular Structure Corporation. 51

Acknowledgment. This work was partly supported by Grants-in-Aid for Scientific Research (09740493 and 10149235) from the Ministry of Education, Science, Sports and Culture, Japan.

(50) MacDENZO corrects absorption effect upon estimation of intensities.

Supporting Information Available: Listings of ³¹P NMR data and experimental and simulated ³¹P{¹H} NMR spectra. CIF files containing data for the structures of **3a** and **3b**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC990032R

⁽⁵¹⁾ teXsan: Single-Crystal Structure Analysis Software, version 1.6; Molecular Structure Corporation: The Woodlands, TX, 1993.