Disproportionation of Ag(II) to Ag(I) and Ag(III) in Fluoride Systems and Syntheses and Structures of $(AgF^+)_2AgF_4^-MF_6^-$ Salts (M = As, Sb, Pt, Au, Ru)

Ciping Shen, Boris Žemva,† George M. Lucier, Oliver Graudejus, John A. Allman, and Neil Bartlett*

Chemical Sciences Division, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California at Berkeley, Berkeley, California 94720

Received March 10, 1999

Interaction of Ag^+ salts in anhydrous liquid hydrogen fluoride, aHF, with AgF_4^- salts gives amorphous redbrown diamagnetic $Ag^IAg^{III}F_4$, which transforms exothermally to brown, paramagnetic, microcrystalline $Ag^{II}F_2$ below 0 °C. $Ag^IAu^{III}F_4$ prepared from Ag^+ and AuF_4^- in aHF has a tetragonal unit cell and a KBrF4 type lattice, with a=5.788(1) Å, c=10.806(2) Å, and Z=4. Blue-green $Ag^{II}FAsF_6$ disproportionates in aHF (in the absence of F^- acceptors) to colorless Ag^IAsF_6 and a black pseudotrifluoride, $(Ag^{II}F^+)_2Ag^{III}F_4^-AsF_6^-$. The latter and other $(AgF)_2AgF_4MF_6$ salts are also generated by oxidation of AgF_2 or AgF^+ salts in aHF with F_2 or in solutions of $O_2^+MF_6^-$ salts (M = As, Sb, Pt, Au, Ru). Single crystals of $(AgF)_2AgF_4AsF_6$ were grown from an $AgFAsF_6/AsF_5$ solution in aHF standing over AgF_2 or $AgFBF_4$, with F_2 as the oxidant. They are monoclinic, P2/c, at 20 °C, with a=5.6045(6) Å, b=5.2567(6) Å, c=7.8061(8) Å, $\beta=96.594(9)$ °, and Z=1. The structure consists of $(AgF)_n^{n+}$ chains $(F-Ag-F=180^\circ, Ag-F-Ag=153.9(11)^\circ, Ag-F=2.003(4)$ Å), parallel to c, that enclose stacks of alternating AgF_4^- and AsF_6^- , each anion making bridging contact with four Ag(II) cations of the four surrounding chains "caging" them. There is no registry between the ordered array in one "cage" and that in any neighboring "cage". The F-ligand anion bridges between the anions and, with the Ag(II) of the chains, generates a trifluoride-like structure. $(AgF)_2AgF_4AsF_6$ [like other $(AgF)_n^{n+}$ salts] is a temperature-independent paramagnet except for a Curie "tail" below 50 K.

Introduction

The Ag(II) oxidation state is peculiar to fluoro-ligand systems. Although, in its ligand-field effects, oxygen is close to fluorine, $^{\rm l}$ Ag(II) does not occur in oxides $^{\rm 2,3}$ where, typically, AgO is AgI-AgIIIO2. Attempts to disproportionate AgF2, to prepare AgF4 $^-$, by using highly basic solutions in aHF (in which Ag(I)F and the heavier-alkali-metal AgF4 $^-$ salts are all highly soluble) did not succeed:

$$2AgF_2(c)$$
 (with F^- in aHF) $\not\Rightarrow$ $Ag^+(solv) + AgF_4^-(solv)$ (1)

But the stability of AgF₄⁻ salts toward solvolysis⁴ in aHF made it possible to attempt the synthesis of Ag^IAg^{III}F₄ in that solvent. The existence⁵ of AgAuF₄ and the finding here, that this salt has the same structure as its lighter-alkali-metal AAuF₄ salts (which are themselves⁶ isostructural with their AAgF₄ relatives⁷), gave impetus to the notion that Ag^IAg^{III}F₄, with such a symmetrical lattice, could, perhaps, have sufficient kinetic stability to be isolable in that form. This hope has not been

fully realized (the prepared $Ag^IAg^{III}F_4$ having a particle size too small for structural characterization), but the thermodynamic instability of $Ag^IAg^{III}F_4$ has been confirmed by its exothermic transition to Ag^IF_2 .

Partial disproportionation of Ag(II) to Ag(I) and Ag(III) has, however, been observed in association with the solvolysis of the salt $AgF^+AsF_6^-$ in aHF:

$$4AgFAsF6(c) \rightarrow AgAsF6(c) + (AgF)2AgF4AsF6(c) + 2AsF5(solv) (2)$$

the colorless AgAsF₆ (as a consequence of its lower density) sedimenting more slowly than the black product (Ag^{II}F)₂Ag^{III}F₄-AsF₆ (concisely: Ag₃AsF₁₂).

This paper details these findings and provides other synthetic routes to the mixed-valence Ag_3AsF_{12} . Syntheses are also given for its isostructural relatives Ag_3MF_{12} (M=Sb, Pt, Au, Ru). Single-crystal X-ray diffraction analysis of Ag_3AsF_{12} has provided a structural basis for all. High thermodynamic stability, deriving from the rather close-packed pseudotrifluoride structure, may be responsible for the ready formation of these Ag(II)Ag(III) mixed-valence compounds.

Experimental Section

Apparatus and Techniques. Work involving aHF was carried out in apparatus constructed entirely from fluorocarbon polymers, T-reactors being made from FEP tubing (CHEMPLAST, Inc., Wayne, NJ 07480) with Teflon valves and Swagelok fittings, as previously described.⁸

[†] Miller Visiting Professor, UCB (1993), from the Jožef Stefan Institute, University of Ljubljana Jamova 39, 1000 Ljubljana, Slovenia.

Dunitz, J. D.; Orgel, L. E. Advances in Inorganic Chemistry and Radiochemistry; Academic Press Inc.; New York, 1960; Vol. 2, pp 1–56

⁽²⁾ Jansen, M.; Fischer, P. J. Less-Common Met. 1988, 137, 123.

⁽³⁾ Standke, B.; Jansen, M. Z. Anorg. Allg. Chem. 1986, 535, 39.

⁽⁴⁾ Lutar, K.; Jesih, A.; Leban, I.; Žemva, B.; Bartlett, N. Inorg. Chem. 1989, 28, 3467.

⁽⁵⁾ Sharpe, A. G. J. Chem. Soc. 1949, 2901.

⁽⁶⁾ Engelmann, U.; Müller, B. G. Z. Anorg. Allg. Chem. 1991, 598, 103.

⁽⁷⁾ Hoppe, R.; Homann, R. Z. Anorg. Allg. Chem. 1970, 379, 193.

⁽⁸⁾ Žemva, B.; Hagiwara, R.; Casteel, W. J., Jr.; Lutar, K.; Jesih, A.; Bartlett, N. J. Am. Chem. Soc. 1990, 112, 4846.

The metal vacuum and fluorine handling line was also as described previously.4 All solid starting materials and products were transferred and weighed within the dry argon atmosphere of a Vacuum Atmospheres Corp. DRILAB. X-ray powder diffraction photographs (XRDPs) were obtained as previously described,⁸ as were magnetic measurements employing a SQUID.9

Materials. Anhydrous HF (aHF; Matheson) was first dried in an FEP tube containing K₂NiF₆ (Ozark-Mahoning Pennwalt, Tulsa, OK) and then in one containing O₂AsF₆. O₂AsF₆ was prepared by the method of Shamir and Binenboym. 10 BF3 and AsF5 (Ozark-Mahoning) were checked by IR spectroscopy to ensure absence of major impurities and then used as supplied. AgF₂ was prepared by the fluorination of AgF in aHF at ~20 °C. AgFBF₄ was prepared as previously described, 9 as were O₂PtF₆,¹¹ O₂SbF₆,¹² O₂RuF₆,¹³ AgAsF₆,⁹ AgPtF₆,¹⁴ XeF₅AgF₄,⁴ AgBF₄,9 and KAuF₄.15

Preparations. AgAuF₄ from KAuF₄ and AgF. KAuF₄ (158.9 mg, 0.5092 mmol) was placed in one arm of a T-reactor and AgF (97.2 mg, 0.7662 mmol) in the other, and aHF (1.5 mL) was condensed in each limb. The KAuF4 dissolved to a yellow solution but left a small brown residue, so this solution was decanted slowly, at 20 °C, into the colorless solution of the AgF to give a yellow precipitate in a colorless supernatant solution (indicating total precipitation of the AuF₄⁻). The colorless solution was removed by decantation, and the yellow solid was washed (by back-distilled aHF) three times and vacuum-dried. An XRDP of the yellow diamagnetic solid (178.4 mg, 0.4685 mmol) showed only the pattern of AgAuF4, which was indexed on the basis of a tetragonal unit cell with a = 5.788(1) Å, c = 10.806(2) Å, V =362.0(2) Å³, and Z = 4 (see Table 1), and that of the solid from the decantate (82.5 mg) showed a complex pattern containing lines of AgAuF₄ and AgF.

Attempts To Prepare $AgAuF_4$ and $AgAgF_4$ from AF_3 (A = Au, **Ag) and AgF.** AuF₃ or AgF₃, each prepared from its KAF₄ salt, ¹⁶ was placed in one arm of a T-reactor and a large molar excess of AgF in the other. AgF dissolved in aHF was poured into the limb containing the AF₃ (A = Ag, Au) and the reactor agitated for more than 1 day at \sim 20 °C. The AF₃ (A = Ag, Au) was unchanged in appearance, as was the residual weight on removal of the AgF solution. An XRDP showed unchanged AuF₃; in the case of AgF₃, there was some conversion¹⁶ to Ag_3F_8 .

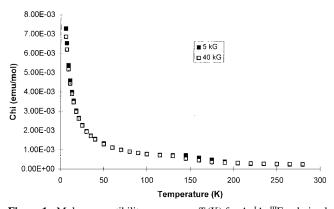

Preparation of AgIAgIIIF4. Various other attempts were made to synthesize $Ag^{I}Ag^{III}F_4$, all carried out in aHF: (a) $AgF + KAgF_4$; (b) XeF₅AgF₄ + AgBF₄; (c) AgBF₄ + KAgF₄. Reaction (a) gave only AgIIF2 as did reaction (b). Although the insolubility of AgIAgIIIF4 and the low solubility of AgBF4 in aHF rendered reaction (c) slow, it did provide AgIAgIIIF4 essentially free of AgF2. The red-brown AgIAgIIIF4 was on one occasion observed to transform rapidly to light-ochrecolored $Ag^{II}F_2$ (the latter established subsequently by its characteristic XRDP), accompanied by vigorous boiling of the aHF, indicative of the exothermicity of that change. The details that follow are for a preparation which gave AgIAgIIIF4, the XRDP of which revealed only AgBF₄ contamination and no AgIIF₂. SQUID measurements did exhibit a weak paramagnetism (shown in Figure 1) indicative of contamination by a trace of a weakly paramagnetic impurity, but this was not Ag^{II}F₂, since this is revealed by its characteristic field dependence¹⁷ below 163 K. The very low values of χ_g suggest that the bulk of the material is

Table 1. X-ray Powder Data (Debye-Scherrer Method, Cu Kα Radiation, Ni Filter) for AgAuF₄, Tetragonal Cell, with a =5.788(I) Å, c = 10.806(2) Å, V/Z = 90.49(5) Å³

		$1/d^2 \times 10^4$					1/	$1/d^2 \times 10^4$	
$I_{\mathrm{calc}}{}^a$	I/I_0	obs	calc	hkl	$I_{\mathrm{calc}}{}^a$	I/I_0	obs	calc	hkl
b	vvw	199			8	ms	7736	7340	244
5	VW	345	343	002	4	mw	7885	7869	228
9	W	596	597	110	8	m	8119	8104	512
100	VVS	944	940	112	3	W	8476	8456	336
30	ms	1197	1194	200	3	W	9167	9161	1110
8	m	1376	1370	004	2	VW	9545	9552	440
3	VW	1538	1537	202	2	VW	10243	10257	408
2	VVW	1585	1578	211	6	m, br^c	10511	10492	532
b	VVW	1644			6	W	10868	10844	156
1	VWW	1955	1967	114	3	W	10941	10922	444
1	VVW	2242	2263	213	7	m, br	11478	11451	248
14	ms	2386	2388	220	6	m, br	11566	11549	1310
28	VS	2567	2564	204	3	VW	11959	11940	620
1	VVW	2741	2741	222	2	VW	12134	12116	604
13	ms	3692	3680	116	1	VVW	12343	12332	0012
12	ms	3770	3758	224	7	mw	13251	13232	356
3	VW	4357	4355	134	8	m	13337	13310	264
3	W	4789	4776	400	4	VW	13531	13526	2012
1	VVW	5365	5373	330	4	VW	13954	13937	3310
2	VW	5480	5481	008	4	VW	14722	14720	2212
7	W	5723	5716	332	6	W	15043	15033	448
7	mw	5974	5970	420	11	ms	15280	15268	172
12	m	6070	6068	136	5	ms	15280	15268	552
8	mw, br	6132	6146	404	5	VWW	15529	15522	640
1	VVW	6301	6313	422	11	vw, br	16226	16227	608
4	mw	6689	6675	208	19	mw, br	16324	16325	1510

^a I_{calc} placed the atoms in the following positions of space group I4/mcm (140):

Atom positions were obtained from synchrotron powder diffraction data (Graudejus, O.; Bartlett, N. To be Published). b Impurity line. c br: broad.

Figure 1. Molar susceptibility, χ_M , versus T(K) for $Ag^IAg^{III}F_4$ admixed with AgBF₄.

diamagnetic. One arm of a T-reactor was loaded with KAgF₄ (111.3 mg, 0.499 mmol) and AgBF₄ (89.8 mg, 0.461 mmol), aHF (1.5 mL) was added, and the mixture was brought from -81 to +10 °C over \sim 24 h, with constant agitation. The yellow solution color (AgF₄⁻) faded, and a homogeneous red-brown insoluble solid was produced. The supernatant solution (still pale yellow) was decanted to the other limb and the aHF removed under vacuum. No attempt was made to wash the red-brown residue. The composition of the products was computed on the assumption that all Ag(I) remained with the aHF-insoluble residue and that all K+ transferred with the decanted solution. Found, red-brown residue (XRDP showed only a weak AgBF₄ pattern): 116.4 mg. Required: for 0.274 mmol of AgIAgIIIF4, 79.9 mg; for 0.188 mmol of AgBF₄, 36.5 mg; total, 116.4 mg. Found, as a pale yellow solid from the decanted solution (XRDP showing KAgF4 and KBF4): 86.4

⁽⁹⁾ Casteel, W. J., Jr.; Lucier, G.; Hagiwara, R.; Borrmann, H.; Bartlett, N. J. Solid State Chem. 1992, 96, 84.

⁽¹⁰⁾ Shamir, J.; Binenboym, J. Inorg. Chim. Acta 1968, 23, 101.

⁽¹¹⁾ Bartlett, N.; Lohmann, D. H. J. Chem. Soc. 1962, 5253.

⁽¹²⁾ McKee, D. E.; Bartlett, N. Inorg. Chem. 1973, 12, 2738

⁽¹³⁾ Edwards, A. J.; Falconer, W. E.; Griffiths, J. E.; Sunder, W. A.; Vasile, J. J. Chem. Soc., Dalton Trans. 1974, 1129.

⁽¹⁴⁾ Graudejus, O.; Elder, S. H.; Lucier, G. M.; Shen, C.; Bartlett, N. Inorg. Chem. 1999, 38, 2503-2509.

⁽¹⁵⁾ Lucier, G.; Elder, S. H.; Chacón, L.; Bartlett, N. Eur. J. Solid State Inorg. Chem. 1996, 33.

⁽¹⁶⁾ Żemva, B.; Lutar, K.; Jesih, A.; Casteel, W. J., Jr.; Wilkinson, P.; Cox, D. E.; Von Dreele, R. B.; Borrmann, H.; Bartlett, N. J. Am. Chem. Soc. 1991, 113, 4192

⁽¹⁷⁾ Gruner, E.; Klemm, W. Naturwissenschaften 1937, 25, 59. Charpin, P.; Diamoux, A. J.; Marquet-Ellis, H.; Nguyen-Nghi. C. R. Acad. Sci. **1967**. *264*. 1108.

mg. Required: for 0.274 mmol of KBF₄, 34.5 mg; for 0.225 mmol of KAgF₄, 50.3 mg; total, 84.8 mg.

Disproportionation of AgFAsF₆ in aHF. AgFAsF₆ (~600 mg) in one limb of a T-apparatus was treated with an aliquot (~1 mL) of aHF, to give a blue solution (akin to that formed when AgF2 and AsF5 in a 1:2 molar ratio dissolve in a small amount of aHF) and a black solid. The blue solution was decanted from the black solid, and the aHF and AsF5 were removed under vacuum. A fresh aliquot of aHF, added to the AgFAsF₆ retrieved from the decantate, again produced an insoluble black solid, which by successive rinsings and decantations was added to the original solvolysis product, the blue solution again separated from the mixture, and the remaining AgFAsF₆ was recovered as before. This was repeated several times until most of the AgFAsF₆ had been solvolyzed. Toward the end, it became apparent that the black solid was accompanied by a colorless solid which sedimented more slowly than the black solid in the aHF solution and so formed an upper layer in the sediment. XRDPs of the mixed solid product revealed that it contained¹⁸ AgAsF₆ (the colorless solid) and showed a pattern akin to that of a trifluoride, such as 19 RuF3 (this was characteristic of the black solid). It was found that oxidation of the AgFAsF₆ with O₂AsF₆ or with F_2 in aHF at ${\sim}20~^{\circ}\text{C}$ left the black solid uncontaminated by a second phase. It was also noted that when the black solid was exposed to aHF containing AsF₅, AgF₃ was released. That, and the preparation of AgF₄⁻ salts from the black solid with alkali-metal fluorides, suggested that the black solid contained AgF₄⁻. The pseudotrifluoride nature of the black solid and various gravimetries for high-yield syntheses (see below) indicated the composition Ag₃AsF₁₂.

Interaction of AgFAsF₆ with Massive aHF. The disproportionation of AgFAsF₆ to AgAsF₆ and Ag₃AsF₁₂ just described does not hold if a large multimolar excess of aHF is added to the AgFAsF₆ (i.e., when the AsF₅ concentration in the aHF from the solvolysis is very low). Under those circumstances, the solid product is largely AgF₂.

Quantitative Oxidation of AgAsF₆ to AgFAsF₆ by O₂AsF₆, at \sim 20 °C. A T-reactor was loaded with AgAsF₆ (128.8 mg, 0.4340 mmol) in the main tube and with O₂AsF₆ (100.1 mg, 0.4531 mmol) in the sidearm, and aHF (dried first with K₂NiF₆ and then with O₂AsF₆) was distilled (1.5 mL) onto each solid. The O₂AsF₆ solution was poured, in several batches, into the suspension of AgAsF₆ at \sim 20 °C. The mixture evolved O₂ and gave an intense blue solution as the mixing proceeded, and all solid AgAsF₆ was consumed. Removal of volatiles in vacuo

 $(\le 10^{-3} \, \text{Torr})$ left a blue-green solid, the XRDP of which indicated^{9,20} only the pattern of AgFAsF₆. Product weight: 145.5 mg; 0.434 mmol AgFAsF₆ requires 137 mg. (Some loss of container weight, resulting in apparent higher product mass, often occurs when O_2^+ and F_2 are used in the oxidations.)

Preparation of Ag₃AsF₁₂. This black aHF-insoluble solid was prepared in several ways: (1) by the fluorination of AgFAsF₆ in aHF; (2) by oxidation, using O₂AsF₆, of (a) AgF₂, (b) AgFAsF₆, or (c) AgFBF₄. The methods in (2) were used in the Ag₃MF₁₂ (M = Sb, Au, Pt, Ru) preparations. Route 2a provided the compound Ag₃AsF₁₂ in high purity and yield: AgF₂ (69.3 mg, 0.475 mmol) and O₂AsF₆ (36.8 mg, 0.167 mmol) were loaded respectively into the sidearm and the main tube of a prepassivated T-shaped Teflon-FEP reactor. Some aHF (~1.5 mL), dried over O₂AsF₆ in a separate FEP reactor, was transferred to the AgF₂ and to the O₂AsF₆. The O₂AsF₆ solution was poured slowly into the AgF2 suspension. Oxygen evolution was immediately observed, and a black solid was produced. This mixture was agitated for ~ 30 min. Then the supernatant solution was decanted into the main tube and the black solid was washed with back-distilled aHF (five times) to the point where the black solid no longer settled quickly but remained several minutes in suspension in the aHF. This was the signal that soluble salts had been largely removed. All volatiles were removed under a dynamic vacuum ($\leq 10^{-3}$ Torr). The XRDP showed only the pseudotrifluoride pattern which was completely indexed on the basis

Table 2. X-ray Powder Data (Debye-Scherrer Method, Cu Kα Radiation, Ni Filter) for Ag₃AsF₁₂^a

$1/d^2 \times 10^4$							1/6	$1/d^2 \times 10^4$		
I/I_0	$I_{\rm calc}$	obs	calc	hkl	I/I_0	$I_{\rm calc}$	obs	calc	hkl	
ms	53	671	665	002	W	2	6160	6161	330	
S	100	692	685	110	VW	1	6245	6253	402	
ms	36	1252	1243	$11\bar{2}$	W	3	6358	6352	116	
m	18	1295	1290	200	W	4	6449	6453	134	
ms	10	1459	1448	020	W	3	6449	6455	042	
ms	18	1459	1456	112	VW	3	6489	6507	332	
VVW	2	1646	1652	210	unobs	3		6565	314	
VW	3	1748	1743	$20\bar{2}$	VW	3	6604	6609	420	
VVW	2	1784	1770	120	VVW	1	6632	6639	206	
vw, br^b	4	1882	1859	013	VW	3	6845	6849	422	
vw, br	4	1882	1883	$12\overline{1}$	W	2	6971	6972	$40\overline{4}$	
VW	4	1927	1925	211	W	2	6971	6991	116	
m	14	2117	2113	022	VW	3	7070	7081	240	
W	8	2172	2168	202	VW	2	7116	7145	332	
VVW		2247		imp?	VVW	0	7313	7309	043	
mw	7	2669	2661	004	VW	3	7435	7434	026	
ms	14	2746	2738	220	VW	3	7540	7533	$24\bar{2}$	
m	14	3142	3133	$11\bar{4}$	VW	3	7674	7700	422	
m	13	3202	3190	$22\bar{2}$	w, br	2	7954	7916	206	
m	14	3267	3265	310	w, br	3	7954	7959	242	
mw, br	3	3573	3526	204	VW	2	8077	8087	226	
mw, br	7	3573	3558	114	VVW	2	8165	8183	334	
mw, br	8	3573	3580	130	VWW	1	8282	8316	316	
ms	7	3621	3611	312	w, br	1	8411	8419	424	
ms	6	3621	3616	222	w, br	2	8411	8427	510	
mw, br	7	4134	4108	024	w, br	2	8411	8451	044	
mw, br	6	4134	4138	$13\bar{2}$	wv, br	2	9346	9316	$24\overline{4}$	
W	6	4235	4250	312	wv, br	1	9346	9363	226	
m, <i>br</i>	9	4358	4351	132	wv, br	2	9346	9370	150	
m, <i>br</i>	5	4358	4377	204	VW	1	9608	9625	512	
mw	6	4976	4973	$22\overline{4}$	wv, br	1	9891	9872	406	
VW	3	5148	5162	400	wv, br	2	9891	9886	136	
mw	4	5300	5288	314	wv, br	2	9891	9929	152	
VW	2	5409	5402	$40\bar{2}$	vww, br	2	10018	10024	514	
m	1	5812	5790	040	wv, br	2	10156	10121	424	
m	3	5812	5824	224	wv, br	2	10156	10141	152	
w, br	1	6008	5087	006	vw, br	2	10156	10167	244	
w, br	2	6008	134							

^a The calculated $1/d^2$ values and intensities of reflections are based on the parameters obtained from the structure analysis on a perfectly disordered single crystal: a=5.6045(6) Å, b=5.2567(6) Å, c=7.8061(8) Å, $\beta=96.594(9)^\circ$, V=228.5(8) Å³, Z=1, space group P2/c. ^b br: broad.

of a primitive monoclinic cell (see Table 2). The weight of black solid was 95 mg; that expected for 0.1584 mmol of Ag_3AsF_{12} was 99.2 mg.

Preparation of Ag₃PtF₁₂ from the Interaction of O₂PtF₆ with AgFBF₄ in aHF. The experimental arrangement was like that for Ag₃-AsF₁₂, the salt AgFBF₄ (58.3 mg, 0.2728 mmol) in the place of the AgF₂ and O₂PtF₆ (100.3 mg, 0.2941 mmol) in the place of O₂AsF₆. The O_2PtF_6 (in ~ 1.5 mL of aHF) partly in solution, and the remainder in the slurried suspension, was added in small portions to the stirred suspension of the AgFBF4 (in ~1.5 mL of aHF). Immediately the precipitation of a nearly black solid (having a dark red reflectance) was observed. The mixture was agitated at ~20 °C for 30 min, and the yellow supernatant solution (containing the excess O₂PtF₆) was decanted to the other limb. The nearly black solid was washed with back-distilled aHF until the washings were free of color and then vacuum-dried ($\leq 10^{-3}$ Torr). The XRDP (see Table 3) was complex and indicated the presence of AgIIPtIVF6 as well as an Ag3AsF12-like phase. The data were indexed on a monoclinic cell akin to that of Ag₃-AsF₁₂ for the dominant phase, the remaining lines then being largely due to the rhombohedral cell¹⁴ of the Ag^{II}Pt^{IV}F₆. The insoluble solid weighed 81.7 mg. Required for conversion of all Ag(II) to equimolar quantities of the two products: for 0.0682 mmol of AgPtF₆, 28.3 mg; for 0.0682 mmol of Ag₃PtF₁₂, 50.8 mg; total, 79.1 mg.

Preparation of Ag₃AuF₁₂ from O₂AuF₆ and AgF₂ in Acidified aHF. With arrangements similar to those used for the synthesis of Ag₃-

⁽¹⁸⁾ Kemmitt, R. D. W.; Russell, D. R.; Sharp, D. W. A. J. Chem. Soc. 1963, 4408.

⁽¹⁹⁾ Casteel, W. J., Jr.; Wilkinson, A. P.; Borrmann, H.; Serfass, R. E.; Bartlett, N. Inorg. Chem. 1992, 31, 3124.

⁽²⁰⁾ Gantar, D.; Frlec, B.; Russell, D. R.; Holloway, J. H. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1987, C43, 618.

Table 3. X-ray Powder Data (Debye-Scherrer Method, Cu Kα Radiation, Ni Filter) for Ag₃PtF₁₂, Monoclinic Cell with a = 5.69(1)Å, b = 5.25(1) Å, c = 7.81(1) Å, $\beta = 97.7(1)^{\circ}$, Z = 1, V = 231(1) $Å^3$, Possible Space Group P2/c

		1/	$1/d^2 \times 10^4$				$1/d^2 \times 10^4$)4
I/I_0	$I_{\mathrm{calc}}{}^a$	obs	calc	hkl	I/I_0	$I_{\mathrm{calc}}{}^a$	obs	calc	hkl
vw		574			ms		2267		
VW		603			VW	7	2671	2673	004
VS	51	668	668	002	ms	14	2714	2710	220
	100	668	677	110	vw, br^b		2792		
W		707			VW		2928		
W		737			ms	14	3099	3105	$11\overline{4}$
VW		784			ms	13	3099	3135	$22\overline{2}$
VVW	3	1031	1031	012	ms	14	3181	3194	310
S	39	1220	1223	$11\overline{2}$	vw, br^b		3255		
S^b	19	1272	1258	200	W	7	3503	3494	$31\bar{2}$
VW		1371			ms	8	3577	3580	130
S	12	1452	1451	020	ms	7	3577	3596	114
S	20	1452	1468	112	VW		3805		
ms, $br^{b,c}$		1564			ms	7	4131	4125	024
ms, br	4	1680	1681	$20\bar{2}$	ms	6	4131	4125	$13\bar{2}$
vw, br	2	1858	1865	013	VW	6	4235	4231	312
vw, br	3	1858	1871	$12\bar{1}$	ms	8	4370	4371	132
vw, br	2	1962	1911	211	VVW			4669	
ms	16	2119	2120	022	VVW		4835		
vw	8	2183	2172	202	vvw	4	5118	5130	$31\overline{4}$

^a Calculated using the Parameters from (AgF)₂AgF₄AsF₆ singlecrystal analysis. b These lines, or contributions to them, are attributable to AgIIPtIVF₆ (ref 14). ^c br: broad.

Table 4. X-ray Powder Data (Debye-Scherrer Method, Cu Kα Radiation, Ni Filter) for Ag₃AuF₁₂, Monoclinic Cell with a =5.66(1) Å, b = 5.24(1) Å, c = 7.79(1) Å, $\beta = 97.5(1)^{\circ}$, Z = 1, V = 1229(1) Å³, Possible Space Group *P*2/*c*

		$1/d^2 \times 10^4$					$1/d^2 \times 10^4$		
I/I_0	$I_{\mathrm{calc}}{}^a$	obs	calc	hkl	I/I_0	$I_{\mathrm{calc}}{}^a$	obs	calc	hkl
m	51	675	671	002	W	4	3471	3470	$20\bar{4}$
VS	100	686	682	110	W	7	3533	3531	$31\overline{2}$
S	39	1233	1232	$11\bar{2}$	s, br^b	8	3610	3595	130
W	19	1268	1270	200	s, br	7	3610	3608	114
S	12	1463	1457	020	s, br	7	3610	3640	22
S	20	1463	1474	112	m, br	7	4138	4141	024
vvw	4	1703	1699	$20\bar{2}$	m, br	6	4138	4145	$13\bar{2}$
vvw	2	1884	1874	013	w, br	6	4270	4257	312
vvw	2	1884	1882	$12\overline{1}$	s, br	8	4398	4387	132
m	16	2126	2128	022	s, br	4	4398	4439	204
vw	8	2186	2184	202	m, br	6	4927	4927	$22\bar{4}$
W	7	2684	2684	004	vw, br	3	5056	5082	400
S	14	2720	2727	220	w, br	4	5190	5181	$31\bar{4}$
S	14	3123	3124	$11\overline{4}$	w, br	3	5873	5895	224
S	13	3159	3156	$22\bar{2}$	w, br	2	6126	6136	330
m	14	3224	3223	310	w, br	3	6330	6358	$11\bar{6}$

^a Calculated using the parameters from (AgF)₂AgF₄AsF₆ singlecrystal analysis. br: broad.

AsF₁₂, AgF₂ (143.2 mg, 0.982 mmol) in aHF (\sim 2 mL) was shaken slowly into a solution of O₂AuF₆ (145.8 mg, 0.425 mmol) dissolved in aHF (\sim 2 mL), to which BF₃ (\sim 0.14 mmol) had been added to aid in the solubilization of the AgF2 [as Ag2+(BF4-)2]. As the AgF2 made contact with the yellow O₂AuF₆ solution, O₂ was evolved and a black solid precipitated. In the washing of the AgF₂ residue from the sidearm with cold back-distilled aHF containing BF₃, the characteristic blue color of dissolved Ag(II) was observed, but this rapidly dissipated on pouring into the yellow AuF₆⁻ solution. The mixture was agitated for 12 h, and the excess O₂AuF₆ in the supernatant solution was decanted and washed over to the sidearm. The XRDP of the black solid showed an Ag₃AsF₁₂ type pattern, which was fully indexed on a monoclinic cell of that type (see Table 4), and that of the orange solid from the decantate proved it to be O₂AuF₆. The observed weight of Ag₃AuF₁₂ was 244.7 mg; 0.327 mmol of Ag₃AuF₁₂ requires 244.9 mg. The observed residue of O₂AuF₆ was 39.6 mg, which in excess should have been 33.6 mg.

Ag₃RuF₁₂ and Ag₃SbF₁₂ Preparations. These were carried out in essentially the same manner as that of Ag₃PtF₁₂, using AgFBF₄ and the appropriate ${\rm O_2}^+{\rm MF_6}^-$ salt. The XRDP data for each product are given in Tables S1 and S2, respectively (Supporting Information).

Ag₃MF₁₂ Salts with Alkali-Metal Fluorides in aHF. The salts interact with alkali-metal fluorides (AFs) in aHF to generate a solution of the $AAgF_4$ and AMF_6 (A = Li has highest solubility, and A = Cs, the least) and an insoluble residue of AgF2. The interaction of Ag3-AsF₁₂ with KF is representative. A solution of KF (25.5 mg, 0.439 mmol) in aHF in the sidearm of a T-reactor was poured onto a suspension of Ag₃AsF₁₂ (111 mg, 0.177 mmol) in aHF (1.5 mL) at \sim 20 °C. The black solid was immediately converted to a yellow solution and a brown insoluble residue. The XRDP of the yellow solid from the decantate showed the pattern of KAgF4 strongly, lines characteristic of KAsF₆ and KHF₂ also being present. The brown residue was AgF₂.

Single-Crystal Growth of Ag₃AsF₁₂. The reaction vessels for crystal growth were usually constructed of ³/₈ in. FEP tubing, Teflon tees, and Teflon valves with Kel-F stems and Teflon tips. A restriction, ∼1 cm away from the sealed end of the sidearm, was made by pinching the FEP tubing under heat to less than half its diameter. The purpose of this was to slow the diffusion of F₂ during crystal growth. Typically, AgFAsF₆ was loaded into the main arm of the FEP reactor, the other starting material, either AgF₂ or AgFBF₄ (in slight molar deficit of the AgFAsF₆), was loaded into the sidearm, and aHF (1-2 mL) was condensed onto the AgFAsF₆. This gave a blue solution and a small amount of black solid. After the black solid had settled, the blue solution was carefully decanted onto the solid in the sidearm. F2 was then admitted into the reactor until the total pressure was about 1000 Torr. The reactor was then left undisturbed for about 1 week for crystal growth from this solution. During crystal growth, the blue solution usually became much paler; meanwhile, the initial AgF2 or AgFBF4 slowly diminished as highly reflective black crystallites grew, from solution, on the reactor wall. At the end of the crystal growth, the solution was carefully decanted back into the main tube, to leave the crystals on the sidearm wall, from which they were retrieved (in the DRILAB) after the system had been vacuum-dried (10⁻³ Torr) for several hours.

The multifaceted, highly reflective, jet black (AgF₂)₃AsF₆ crystallites were roughly cubical. They were usually very small, tended to form aggregates, and were usually twinned. The most satisfactory batch, from which a suitable single crystal of (AgF₂)₃AsF₆ was obtained, was from the reaction of AgFBF₄, AgFAsF₆, and F₂ with a small amount of KBF₄ present in the aHF.

Crystal Structure Determination of Ag₃AsF₁₂. Crystals were manipulated under a dry argon atmosphere in the DRILAB on a prepassivated Teflon sheet. The selected crystal was mounted in a 0.5 mm diameter quartz capillary, the narrow end of which had been further drawn down to a long taper. Preliminary Laue and precession photographs indicated monoclinic Laue symmetry and vielded cell dimensions close to those derived from the X-ray powder data (see Table 2).

The crystal used for data collection was transferred to an Enraf-Nonius CAD-4 diffractometer. Automatic peak search and indexing procedures yielded the same monoclinic cell as derived from the X-ray powder diffraction data and precession photographs. Testing showed that the cell was indeed primitive and that there was no superlattice present. Table 5 gives the crystal data and X-ray experimental parameters, and Table 6, the interatomic distances and angles. Positional and thermal parameters are given in Table S3 (Supporting Information).

A total of 1463 raw intensity data were collected. Inspection of the azimuthal scan data showed a variation of $I_{min}/I_{max} = 0.82$ for the average curve. An empirical correction based on the observed variation was applied to the data as a first approximation. The structure was solved by Patterson methods in space group $P\overline{1}$. Refinement and elucidation of additional atoms proceeded via standard least-squares and Fourier techniques.²¹ Examination of the triclinic model demonstrated the correct monoclinic space group, P2/c (the apparent absence of h0l, $l \neq 2n$ has been found), and refinement continued in that group

⁽²¹⁾ MolEN-1990; Delft Instruments, X-ray Diffraction D.V.: Rontgenweg 1, 2624 BD Delft, The Netherlands, 1990.

Table 5. Crystal and Data Parameters for Ag₃AsF₁₂

formula	Ag_3AsF_{12}
fw	626.5
space group	P2/c
a/Å	5.6045(6)
$b/ ext{Å}$	5.2567(6)
c/Å	7.8061(8)
β (deg)	96.594(9)
V/\mathring{A}^3	228.5(8)
Z	1
T/K	298
$\rho_{\rm calcd}/{\rm g~cm^{-3}}$	100.6
radiation, λ/Å	0.710 73 (Mo Kα)
reflns measd	$\pm h, \pm k \pm l$
residuals	$R^a = 2.44$; $R_w^b = 2.89$

 $^{a}R = \sum ||F_{o}| - |F_{c}||/\sum |F_{o}|. \, ^{b}R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2}/\sum wF_{o}^{2}]^{1/2}.$

Table 6. Crystal and Data Parameters for Ag₃AsF₁₂

Table 6. Crystal and	Data Parame	eters for Ag ₃ AsF ₁₂	
As/Ag2-F2	1.80(2)	Ag1-F1	2.003(4)
As/Ag2-F3	1.81(2)	Ag1-F2	2.34(2)
As-F4	1.72(3)	Ag1-F3	2.32(2)
Ag2-F4	2.61(3)	-	
F2-F3	2.51(3)	F2-F3	2.59(3)
F2-F4	2.36(4)	F2-F4	2.62(3)
F3-F4	2.38(3)	F3-F4	2.60(3)
F1-F2	3.19(2)	F1-F2	2.96(3)
F1-F3	3.01(2)	F1-F3	3.12(2)
F1-F4	3.14(3)	F1-F4	3.09(3)
F2-F2	2.98(3)	F2-F3	3.22(3)
F2-F3	3.11(3)	F2-F4	3.26(3)
F2-F4	3.09(3)	F3-F3	3.16(4)
F3-F3	3.02(4)	F3-F4	3.08(3)
F3-F4	3.09(4)	F3-F4	3.26(3)
F1-Ag1-F1	180	F1-Ag1-F2	94.4(6)
F1-Ag1-F2	85.6(6)	F1-Ag1-F3	87.8(5)
F1-Ag1-F3	92.2(5)	F2-Ag1-F2	180
F2-Ag1-F3	92.4(7)	F2-Ag1-F3	87.6(7)
F3-Ag1-F3	180	F2-Ag2-F2	180
F2-Ag2-F3	88.2(9)	F2-Ag2-F3	91.8(9)
F2-Ag2-F4	93.2(8)	F2-Ag2-F4	86.8(8)
F3-Ag2-F3	180	F3-Ag2-F4	86.7(9)
F3-Ag2-F4	93.3(9)	F4-Ag2-F4	180
F2-As-F2	180	F2-As-F3	88.2(9)
F2-As-F3	91.8(9)	F2-As-F4	93.2(8)
F2-As-F4	86.8(8)	F3-As-F3	180
F3-As-F4	86.7(9)	F3-As-F4	93.3(9)
F4-As-F4	180	Ag1-F1-Ag1	154(2)
Ag1-F2-As/Ag2	136.0(9)	Ag1-F3-As/Ag2	137.2(9)
As-F4-Ag2	127(2)		

with a completely disordered model for Ag2 and the As and half-occupancy for F4 (that closest to As, along c).

After solution of the structure and assignment of the correct space group, an empirical correction²² was applied to the data on the basis of the combined differences of $F_{\rm o}$ and $F_{\rm c}$ following refinement of all atoms with isotropic thermal parameters (corr(max) = 1.32, corr(min) = 0.79; no θ dependence). Removal of systematically absent data and averaging of redundant data (R_I = 4.3% for observed data) left 670 unique data in the final data set.

The final residuals for 40 variables refined against the 213 data for which $F^2 > 2.5\sigma(F^2)$ were R = 2.44%, $R_{\rm w} = 2.89\%$, and GOF = 1.06. The R value for all 670 data was 15.2%. (This very large value is in part an artifact of the way that reflections with negative measured intensities are treated in the calculation of $R_{\rm all}$. In part it is due to the fact that only 15 0kl and general hkl reflections with l = 2n + 1 are "observed" in the data set.)

The quantity minimized by the least squares program was $\sum w(|F_o| - |F_c|)^2$. The p factor, used to reduce the weight of intense reflections, was set to 0.03 throughout the refinement. The analytical forms of the

scattering factor for the neutral atoms were used,²³ and all scattering factors were corrected for both the real and imaginary components of anomalous dispersion.²⁴

Inspection of the residuals ordered in ranges of $(\sin\theta)/\lambda$, $|F_{\rm o}|$, and parity and values of the individual indexes showed no unusual features or trends, other than those caused by the strong pseudotranslation of $^{1}/_{2}c$ in the structure. There was no indication of secondary extinction in the high-intensity low-angle data.

Results and Discussion

The favored disproportionation of silver in AgO to Ag(I) and $Ag(III)^2$ contrasts with the behavior of the mixed-oxidation-state fluoride $Ag^IAg^{III}F_4$, prepared in these studies, which undergoes exothermic conversion to Ag^IF_2 :

$$Ag^{I}Ag^{III}F_{4} \rightarrow 2Ag^{II}F_{2} \tag{3}$$

It was anticipated that $Ag^IAg^{III}F_4$, like $Ag(I)Au(III)F_4$, would have its square-planar anions arranged perpendicular to one another and all parallel to the 4_2 axis of the $KBrF_4$ type structure observed in alkali-metal AgF_4^- and AuF_4^- salts^{6,7} and, as found here, for $AgAuF_4$ (see Table 1). It was hoped that this simple symmetric structure would provide kinetic stability. With the synthetic approach used to obtain $Ag^IAg^{III}F_4$

$$\begin{split} Ag^{I}BF_{4}(c) + K^{+}(solv) + Ag^{III}F_{4}^{-}(solv) \xrightarrow{aHF, \leq 0 \text{ °C}} \\ Ag^{I}Ag^{III}F_{4}(c) + K^{+}(solv) + BF_{4}^{-}(solv) \ \ (4) \end{split}$$

the mixed-valence red-brown solid was always noncrystalline, probably as a consequence of the small particle size associated with the insolubility of the material in aHF and its rather rapid generation at low temperatures [both deliberately employed to reduce the possibility of making the thermodynamically more favorable Ag^{II}F₂].

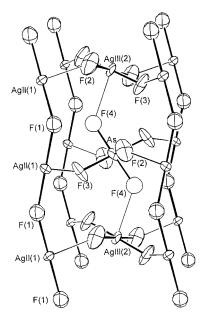
The thermodynamic stability of $Ag^{II}F_2$ does contrast with the failure to generate AuF_2 from $Au(SbF_6)_2$, that product²⁵ disproportionating to Au(0) and Au(III), i.e.

$$4Au^{2+}(solv) + 8F^{-}(solv) \xrightarrow{aHF} Au^{II}(Au^{III}F_4)_2(c) + Au(c)$$
(5)

and in highly basic aHF (with which AgF_2 does not react) Au(II) is completely converted to Au(III) and Au(0):

$$8F^{-}(solv) + 3Au^{II}(Au^{III}F_{4})_{2}(c) \rightarrow 8AuF_{4}^{-}(solv) + Au(c)$$
(6)

This difference [represented by eq 1 contrasted with (5) and (6)] can be ascribed to a large relativistic effect at gold, $^{26-28}$ which enhances the binding of the Au s electrons and simultaneously (by the enhanced screening effect of the s electrons) causes the d electrons to be less bound. This effect causes metallic gold to be more strongly bonded than metallic silver and, at the same time, makes for easier oxidation of gold to Au(III) than of silver to Ag(III).

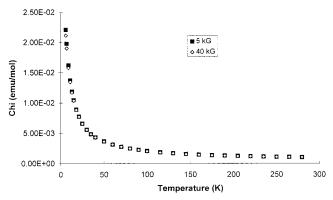

- (26) Pitzer, K. Acc. Chem. Res. 1979, 12, 271.
- (27) Pyykkö, P.; Desclaux, J.-P. Acc. Chem. Res. 1979, 12, 276.
- (28) Pyykkö, P. Chem. Rev. 1988, 88, 563.

⁽²²⁾ Walker, N., Stuart, D. *Acta Crystallogr., Sect A* **1983**, *A39*, 159 (as used by the program DIFABS in MolEN).

⁽²³⁾ Cromer, D. T.; Waber, J. T. *International Tables for X-ray Crystallography*; The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2.B.

⁽²⁴⁾ Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.3.1.

⁽²⁵⁾ Elder, S. H.; Lucier, G. M.; Hollander, F. J.; Bartlett, N. J. Am. Chem. Soc. 1997, 119, 1020.


Figure 2. Ordered structural unit for the structure of Ag_3AsF_{12} . The ellipsoids are scaled to represent the 75% probability surface.

Although strongly basic aHF failed to disproportionate aHFinsoluble Ag^{II}F₂ (eq 1), it was found that dissolved Ag(II) would disproportionate in moderately acidic aHF. Precipitation of a black product, insoluble in aHF, was first noted in the studies of Žemva and co-workers²⁹ when 1 equiv of AsF₅ was added to AgF₃. An insoluble black solid was also produced when AgFAsF₆ was treated with fluorine in aHF or when (in an attempt at Berkeley to intercalate the puckered-sheet-structure of) AgF₂ was oxidized by O₂⁺AsF₆⁻. The black product of the last reaction was recognized as having a pseudotrifluoride XRDP, and the entire pattern was convincingly indexed on a monoclinic distortion of a rhombohedral trifluoride lattice.³⁰ This, in combination with gravimetry, eventually fixed the composition of the black solid as Ag₃AsF₁₂. Methods were then worked out for the slow generation of Ag₃AsF₁₂ from AgF₂, to produce single crystals. The most effective route was the slow fluorination of a blue solution of silver(II) fluoroarsenate (obtained by decantation from its solvolysis products-see below) in contact with either solid AgF₂ or solid AgFBF₄. The structure, illustrated in Figure 2, with interatomic distances and angles in Table 6, is in its essence, the salt $(AgF^+)_2AgF_4^-AsF_6^-$, the cations being chains akin to those first described by Gantar et al.20 for AgFAsF6 and those subsequently observed in a variety of AgF⁺ salts from these laboratories.^{9,31} The chain cations, running parallel to c, enclose stacks of alternating AgF₄⁻ and AsF₆⁻. An ordered stacking sequence of the anions is required, as adjacent AsF₆⁻ would result in F4 ligand collision and repulsion of the anions. This would result in significant variation in the z parameters of the As and Ag2 atom positions, whereas the data fix the z parameters precisely. The ordered anion stacks, however, are not in registry with one another, and this renders all of the Ag(II) ions of the cation chains effectively equivalent. The observed As/Ag2-F distance (Table 6) of

Table 7. Comparison of Cell Dimensions for Ag_3MF_{12} (M = As, Au, Pt, Sb, Ru)

	Ag ₃ AsF ₁₂	$Ag_3AuF_{12}^a$	$Ag_3PtF_{12}^a$	Ag ₃ SbF ₁₂ ^a	Ag ₃ RuF ₁₂ ^a
a (Å)	5.6045(6)	5.66	5.69	5.70	5.67
b (Å)	5.2567(6)	5.24	5.25	5.27	5.23
c (Å)	7.8061(8)	7.79	7.81	7.83	7.80
β (deg)	96.594(9)	97.5	97.7	97.2	97.2(4)
$V(Å^3)$	228.5(8)	229	231	233	230(2)

 a The standard deviation being always 1 in the last digit unless otherwise noted.

Figure 3. Molar susceptibility, χ_M , versus T (K) for Ag₃AsF₁₂.

1.81(2) Å is compatible with the average of Ag-F (in $KAgF_4$)³² = 1.889(3) Å and As-F (in $KAsF_6$)³³ = 1.719(3) Å, which is 1.804 Å. The As-F4 distance of 1.72(3) Å is not significantly different from that expected for As(V)-F. It should be noted that the F-ligand bridging (including that of AsF_6^- with AgF_4^-) from each anion to its four closest Ag(II) ions gives each Ag(II) or Ag(III) ion a distorted octahedral F-ligand environment, not much different from that of the AsF_6^- . This brings the $(AgF)_2-AgF_4AsF_6$ structure close to that of the trifluoride structure³⁴ of RhF_3 or the pseudotrifluoride³⁵ $Pd^{II}Pd^{IV}F_6$.

It was found that relatives of $(AgF)_2AgF_4AsF_6$ could be prepared, with AsF_6^- replaced by MF_6^- (M=Sb, Ru, Pt, Au), the generally useful approach being to oxidize AgF_2 (solubilized in aHF with BF₃), or $AgFBF_4$, with the appropriate $O_2^+MF_6^-$ salts as oxidizers:

$$3AgF^{+}(solv) + 3BF_{4}^{-} + O_{2}^{+}(solv) + MF_{6}^{-}(solv) \xrightarrow{aHF} (AgF)_{2}AgF_{4}MF_{6}(c) + 3BF_{3}(g)(solv) + O_{2}(g)$$
 (7)

The close similarity of their XRDPs and their unit cells (see Table 7) indicates that essentially the same pseudotrifluoride structure occurs in all of these materials.

The magnetic behavior of (AgF)₂AgF₄AsF₆ (see Figure 3) is very like that of AgFAsF₆ and indicates that the nearly temperature-independent paramagnetism is a property of the chain cation.^{9,31} Although this is consistent with a partially filled band for the cation obedient to Fermi–Dirac statistics,³⁶ neither the anticipated Peierls distortion nor electrical conduction has ever been observed in these (AgF)_nⁿ⁺ systems. Even contacts to single crystals of (AgF)₂AgF₄AsF₆ with massive gold rods failed to find evidence of electrical conductance along the

⁽²⁹⁾ Jesih, A.; Lutar, K.; Žemva, B. Unpublished observations, 1988

⁽³⁰⁾ The original indexing of the pattern was achieved with a pseudotriclinic distortion of a trifluoride-like rhombohedral cell, with $a^{*2}=0.0541$, $b^{*2}=c^{*2}=0.0529$, $2a^*b^*\cos\gamma^*=0.0386=2a^*c^*\cos\beta^*$, and $2b^*c^*\cos\alpha^*=0.0390$, the equalities of which indicated the true monoclinic nature of the lattice.

⁽³¹⁾ Lucier, G.; Munzenberg, J.; Casteel, W. J., Jr.; Bartlett, N. Inorg. Chem. 1995, 34, 2692.

⁽³²⁾ Lutar, K.; Milićev, S.; Žemva, B.; Müller, B. G.; Bachmann, B.; Hoppe, R. Eur. J. Solid State Inorg. Chem. 1991, 28, 1335.

⁽³³⁾ Grafner, G.; Kruger, G. J. Acta Crystallogr., Sect. B 1974, B30, 250.

⁽³⁴⁾ Grosse, L.; Hoppe, R. Z. Anorg. Allg. Chem. 1987, 552, 123.

⁽³⁵⁾ Tressaud, A.; Winteberger, M.; Bartlett, N.; Hagenmuller, P. C. R. Acad. Sci., Ser. C 1976, 282, 1069.

⁽³⁶⁾ Kittel, C. Introduction to Solid State Physics; Wiley: New York, 1986; p 413.

expected conducting path (c). It must be pointed out, however, that even massive gold could be surface oxidized and fluorinated by such a powerful oxidizer,³¹ and this could provide an insulating barrier.

Perhaps the most surprising aspect of $(AgF)_2AgF_4AsF_6$ is that it is sufficiently stable thermodynamically to drive the disproportionation of Ag(II) to Ag(I) and Ag(III), as $AgFAsF_6$ is solvolyzed by aHF:

$$4AgFAsF_{6} \xrightarrow{aHF \text{ limited}} AgAsF_{6}(c) + Ag_{3}AsF_{12}(c) + 2AsF_{5}(solv) (8)$$

This occurs when the amount of added aHF is small and the resultant acidity (AsF $_5$ concentration) moderately high. A mixture of colorless AgAsF $_6$ and black Ag $_3$ AsF $_{12}$ is formed. These solids sediment at different rates, the latter being more dense (4.55 versus 4.20 g cm $^{-3}$), resulting in the white solid depositing above the black in the aHF. Addition of fluorine or O $_2$ AsF $_6$ (see below) to this mixture converts the AgAsF $_6$ to AgFAsF $_6$:

$$^{1}/_{2}F_{2}(g) + AgAsF_{6}(c) \xrightarrow{aHF} AgFAsF_{6}(c)$$
 (9)

Thus, with these oxidizers present and the reaction of eq 8 repeated, all of the solid can be converted to Ag_3AsF_{12} . The interaction of $AgFAsF_6$ with a large excess of aHF (with the consequence that the acidity in AsF_5 is low) leads to simple solvolysis and AgF_2 production:

$$AgFAsF_{6} \xrightarrow{aHF \text{ large}} AgF_{2}(c) + AsF_{5}(solv)$$
 (10)

Formation of Ag_3AsF_{12} appears to be a consequence of the solvolytic disproportionation of $AgFAsF_6$, since oxidation of the blue solutions of $Ag^{2+}(solv)$ does not generate it. Certainly the salt O_2AsF_6 does not interact with the blue solution in aHF prepared by adding two molar aliquots of AsF_5 to one of AgF_2 . On the other hand, O_2AsF_6 rapidly and quantitatively oxidizes $AgAsF_6$ to such a blue solution, from which clear, blue-green $AgFAsF_6$ solution is recovered:³⁷

$$AgAsF_{6}(c) + O_{2}^{+}(solv) + AsF_{6}^{-}(solv) \xrightarrow{aHF} Ag^{2+}(solv) + 2AsF_{6}^{-}(solv) + O_{2}(g)$$
 (11)

The interaction of AgAsF₆ with O_2PtF_6 proceeds quite differently from (11), there being no significant O_2 evolution. Evidently the Ag(I) oxidation to Ag(II) is brought about by the PtF_6^- , which produces the insoluble $Ag^{II}Pt^{IV}F_6$ product, O_2AsF_6 being the aHF-soluble product:

$$AgAsF_6(c) + O_2^+(solv) + PtF_6^-(solv) \rightarrow AgPtF_6(c) + O_2^+(solv) + AsF_6^-(solv)$$
 (12)

The different outcomes of the two reactions (eqs 11 and 12) probably stem from the anionic nature of the PtF₆⁻ oxidizer, which must interact rapidly in its attractive encounter with Ag⁺-(solv) (from the slightly soluble AgAsF₆). Electron transfer to generate the close-packed pseudotrifluoride lattice¹⁴ of Ag²⁺PtF₆²⁻ must occur immediately. The insolubility of this salt in aHF contributes to the simplicity of reaction 12.

Reaction 1 may involve interaction of $Ag^+(solv)$ with the solvated radical $O_2F(solv)$ rather than with $O_2^+(solv)$, since the weakness of the O_2F base³⁸ and the merely moderate strength of AsF_5 as a F^- acceptor³¹ in the aHF solvent may mean that the O_2AsF_6 solution is not fully ionized:

$$O_2^+(solv) + AsF_6^-(solv) \stackrel{aHF}{\rightleftharpoons} O_2F(solv) + AsF_5(solv)$$
 (13)

Attack on $Ag^+(solv)$ by $O_2F(solv)$ in the presence of $AsF_5(solv)$ could then provide the observed $Ag^{2+}(solv)$:

$$Ag^{+}(solv) + AsF_{6}^{-}(solv) + O_{2}F(solv) +$$

 $AsF_{5}(solv) \xrightarrow{aHF} Ag^{2+}(solv) + 2AsF_{6}^{-}(solv) + O_{2}(g)$ (14)

Removal of AsF_5 and aHF from this solution gives pure, bluegreen $AgFAsF_6$, but as soon as aHF is added to this, the solvolytic disproportionation represented in eq 8 occurs. Neither reaction 11 nor reaction 12, however, gives a Ag_3MF_{12} product. For formation of the latter, it appears to be necessary to disproportionate the $AgFMF_6$ salt.

In the interaction of O_2PtF_6 with $AgFBF_4$, the main product is the mixed-valence salt $(AgF)_2AgF_4PtF_6$, but $Ag^{II}Pt^{IV}F_6$ is a sizable byproduct that is easily detected in the XRDP of the products (see Table 3). If we assume that the generation of Ag_3-PtF_{12} requires the disproportionation of $AgFPtF_6$

$$4AgFPtF_{6}(c) + 2BF_{4}^{-} \rightarrow AgPtF_{6}(c) + Ag_{3}PtF_{12} + 2BF_{3}(g) + 2PtF_{6}^{-}(solv)$$
 (15)

analogously to eq 8, $AgPtF_6$, which is^{14} $Ag^{II}Pt^{IV}F_6$, should represent one-quarter of the initial $AgFBF_4$. $Ag^{II}Pt^{IV}F_6$, a salt of Ag(II) (probably as a result of its insolubility in aHF), does not interact with the dissolved O_2^+ . The observed yields of Ag_3 - PtF_{12} and $AgPtF_6$ are close to those expected on the basis of eq 15. This stands in contrast to the interaction of $AgFBF_4$ with O_2AuF_6 , where Ag_3AuF_{12} is produced free of $AgAuF_6$ (see Table 4).

The $AuF_6^-(solv)$ species has a very stable dt_{2g}^6 electron configuration. Unlike $PtF_6^-(solv)$, which has^{14} an electron affinity ≥ 60 kcal mol^{-1} , $AuF_6^-(solv)$ is not a strong one-electron oxidizer since its lowest lying empty orbital is of antibonding σ character. In $PtF_6^-(solv)$ on the other hand, the addition of an electron generates the filled-subshell dt_{2g}^6 species, $PtF_6^{2-}(solv)$. When, therefore, the disproportionation comparable to that represented in eq 15 occurs for $AgFAuF_6$, the $AgAuF_6$ product 14 is $Ag^IAu^VF_6$. The latter salt, like Ag^IAsF_6 and unlike $Ag^{II}Pt^{IV}F_6$, is oxidized by O_2^+ to give soluble Ag(II) species, and so the conversion to Ag_3AuF_{12} is completed.

The RuF_6^- species also has a favorable electron configuration (high-spin dt_{2g}^3) with favorable exchange energy. It is not a strong one-electron oxidizer³¹ and, with Ag^+ , gives $Ag^IRu^VF_6$. The oxidation of $AgFBF_4$ by O_2RuF_6 therefore is akin to the oxidations involving O_2AsF_6 and O_2AuF_6 , and the product is clean Ag_3RuF_{12} .

Since, in strongly acidified aHF, where all Ag(II) is Ag^{2+} (solv), there is no oxidation by O_2^+ to give the Ag_3MF_{12} salts and, on the other hand, basic or neutral aHF gives only AgF_2 , it is clearly necessary to regulate closely the acidity of the aHF, if the Ag_3MF_{12} salts are to be obtained efficiently in high purity. It appears that BF_4^- provides the appropriate buffering control. This derives from the weak-acid nature of BF_3 , which has low

⁽³⁷⁾ It should be noted that, at -80 °C (the solubility of O₂ in aHF then being higher and the TΔS term for eq 11 much smaller), the reverse reaction is essentially complete; i.e., all Ag²⁺(solv) is reduced to AgAsF₆(c) by O₂, which then precipitates as O₂AsF₆.

⁽³⁸⁾ Lucier, G. M.; Shen, C.; Elder, S. H.; Bartlett, N. Inorg. Chem. 1998, 37, 3829-3834.

solubility in the aHF solvent. So, when O_2MF_6 acts as an oxidizer for $AgFBF_4$, it is the release of BF_3 that keeps the acidity essentially constant:

$$3AgFBF_4 + O_2MF_6 \rightarrow Ag_3MF_{12} + O_2(g) + 3BF_3(g)$$
 (16)

As a consequence of the reactions expressed in eqs 8 and 9, the action of elemental fluorine on $AgFAsF_6$ converts one-third of the Ag(II) to Ag(III). The latter can be recovered as an alkalimetal AgF_4^- salt by treating the black solid with alkali fluoride in aHF:

$$2F^{-}(solv) + (AgF)_{2}AgF_{4}AsF_{6}(c) \rightarrow 2AgF_{2}(c) + AgF_{4}^{-}(solv) + AsF_{6}^{-}(solv)$$
 (17)

For the heavier alkali metals (K, Rb, Cs), the AsF_6^- salts are of low solubility in aHF, whereas the AgF_4^- salts are highly soluble. Therefore, this treatment provides for ready preparation of AgF_4^- salts by room-temperature fluorination of $AgFAsF_6$ in aHF and without the need of photodissociation of the F_2 . The latter is required 39 for the direct synthesis of AgF_4^- from AgF_2 and F_2 in basic aHF.

It is surprising that the oxidation of Ag(II) in aHF (especially the interaction between AgF_2 and O_2^+ salts) should generate $(AgF)_2AgF_4MF_6$ and not the silver relative of $Au(AuF_4)_2Au-(SbF_6)_2$. The mixed-valence gold compound²⁵ is the product of the action of fluorine on the salt $Au(SbF_6)_2$ in solution in aHF:

$$4Au^{2+}(solv) + 8SbF_6^-(solv) + F_2(g) \rightarrow$$

 $Au(AuF_4)_2Au(SbF_6)_2(c) + 6SbF_5(solv)$ (18)

The $[Au(AuF_4)_2Au]^{2+}$ component of the structure²⁵ is a slightly distorted relative of a puckered sheet of the $Ag^{II}F_2$ structure.^{40,41} The SbF_6^- species are packed closely between

the AuF_2 -composition sheets, as would be anticipated for the intercalation of AuF_2 , if it existed and were isostructural with AgF_2 . Yet the oxidation of AgF_2 has given (so far), not the related structure but, rather, $(AgF)_2AgF_4MF_6$. In passing, it should be noted that in $AgFRuF_6$ the Ag(II) coordination³¹ is roughly square (and akin to that of Ag(II) in AgF_2),^{40,41} so the failure to form the silver analogue of $Au(AuF_4)_2Au(MF_6)_2$ cannot be attributed to a distinct favoring of two-coordination by cationic Ag(II).

Comparison of the isostructural salts⁴² $Ag^{2+}(SbF_6^-)_2$ and²⁵ $Au^{2+}(SbF_6^-)_2$ indicates that each A^{2+} (A=Ag, Au) distorts the SbF_6^- to the same extent, this despite the Ag^{2+} having a higher first electron affinity⁴³ than Au^{2+} (21.5 and 20.5 eV, respectively). It therefore remains possible that the $Ag(AgF_4)_2$ - $Ag(SbF_6)_2$ relative of the gold compound may yet be made. A similar synthetic challenge is the preparation of a gold relative of the silver salts $(AuF)_2AuF_4MF_6$.

Acknowledgment. The authors gratefully acknowledge support from the National Science Foundation, under Grant No. DMR-9404755, and the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Science and Materials Science Divisions of the U. S. Department of Energy, under Contract No. DE-AC-03-76SF00098. B.Ž. participated in the work during his tenure of a Miller Visiting Professorship (Spring Semester, 1993) for which professorship the Miller Institute, U.C. Berkeley, is thanked. O.G. also gratefully acknowledges the Alexander von Humboldt Foundation for a Feodor-Lynen Fellowship. Refinement of the Ag₃AsF₁₂ structure was completed with the assistance of Dr. F. Hollander of the U.C. Berkeley College of Chemistry CHEX-RAY facility.

Supporting Information Available: Listings of X-ray powder diffraction data, positional and thermal parameters, crystal data, and X-ray experimental details. This material is available via the Internet at http://pubs.acs.org.

IC9905603

⁽³⁹⁾ Lucier, G. M.; Whalen, J. M.; Bartlett, N. J. Fluorine Chem. 1998, 89, 101–104.

⁽⁴⁰⁾ Charpin, P.; Plurien, P.; Mereil, P. Bull. Soc. Fr. Mineral. Cristallogr. 1970, 93 7

⁽⁴¹⁾ Jesih, A.; Lutar, K.; Žemva, B.; Bachmann, B.; Becker, S.; Müller, B. G.; Hoppe, R. Z. Anorg. Allg. Chem. 1990, 588, 77.

⁽⁴²⁾ Gantar, D.; Leban, I.; Frlec, B.; Holloway, J. H. J. Chem. Soc., Dalton Trans. 1987, 2379.

⁽⁴³⁾ Moore, C. E. Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra; NSRDS-NBS 34; National Bureau of Standards: Washington, DC, 1970.