Ligand Close-Packing and the Lewis Acidity of BF3 and BCl3

Bryan D. Rowsell, Ronald J. Gillespie,* and George L. Heard

Department of Chemistry, McMaster University, 1280 Main Road West, Hamilton, Ontario, Canada L8S 4M1

*Recei*V*ed June 17, 1999*

The unexpected greater Lewis acidity of $BCl₃$ than $BF₃$ with respect to strong bases such as $NH₃$ has been the subject of much discussion. A number of explanations have been proposed, among which the most popular and most widely quoted is that stronger back-donation from fluorine than from chlorine decreases the availability of the otherwise empty 2p orbital on boron from accepting an electron pair from a base. In contrast, toward weak bases such as CO , BF_3 is a stronger Lewis acid than BCl_3 . We have reinvestigated the relative acid strengths of BF_3 and BCI_3 toward Lewis bases by calculating geometries and atomic charges for the following adducts: BF_3 ^{*} NH3, BF3'N(CH3)3, BF3'OH2, BF3'O(CH3)2, BCl3'NH3, BCl3'N(CH3)3, BCl3'OH2, and BCl3'O(CH3)2. Our results show that the halogen ligands remain close-packed throughout the formation of an adduct and that the bond lengths increase accordingly. It takes more energy to lengthen the short strong BF bonds than the longer weaker BCl bonds and it is for this reason that $BCl₃$ is a stronger Lewis acid than $BF₃$ toward a strong base such as $NH₃$. In contrast, in the formation of a complex with a weak base such as CO , the $BX₃$ is barely distorted from planarity and so the acidity of BF_3 is greater than that of BCl_3 because the charge on boron is greater in BF_3 than BCl_3 .

Introduction

It has been well-established by several different experimental methods that the Lewis acidities of the boron halides toward a number of nitrogen and oxygen bases such as $N(CH_3)_3$ and $O(CH_2CH_3)_2$ is $BF_3 \leq BCl_3 \leq BBr_3$ ¹ Moreover, ab initional calculations have shown that the BN bond in gas-phase BCl₂. calculations have shown that the BN bond in gas-phase BCI_3 . NH₃ is stronger than in BF_3 ·NH₃ by 7.7 kcal mol⁻¹.² This order
is unexpected in view of the decrease in electronegativity from is unexpected in view of the decrease in electronegativity from fluorine to chlorine to bromine which would predict a decreasing positive charge on boron in the order BF_3 > BCl_3 > BBr_3 . This variation in the charge on boron has been confirmed by ab initio calculations for BF_3 and BCl_3 for which NBO charges are $+1.49$ and $+0.29$, respectively,³ and the AIM charges are $+2.43⁴$ and $+1.93$ ⁵ respectively. The generally accepted explanation for this apparently anomalous order of Lewis acidity is that there is back-donation of charge from one of the 2p orbitals of fluorine to the vacant 2p*^z* orbital of boron, leading to some double bond character for the BF bond in BF_3 . In BCl_3 , this back-donation is considered to be less important because of a poorer overlap between a chlorine 3p orbital and the boron 2p*^z* orbital. This back-donation makes the $2p_z$ orbital of boron in BF₃ less available for complex formation than that of BCl₃ and hence $BF₃$ is a weaker acid than $BCl₃$. However, in a recent paper Brinck³ showed that the overlap integral of Slater-type boron 2p and fluorine 2p orbitals at the experimental bond length is actually smaller than the corresponding integral for boron 2p and a chlorine 3p orbital. They also showed that the highestoccupied Hartree-Fock π molecular orbital for BCl₃ contains a larger contribution from the boron 2p orbital than the corresponding highest-occupied π molecular orbital in BF₃. These authors therefore proposed an alternative explanation in terms of a concept called charge capacity originally due to Huheey⁶ which was formulated as a measure of the ability of a molecule or a group of atoms within a molecule to accept charge. The charge capacities of the boron halides, which were calculated using the experimentally determined electron affinities and ionization potentials, were found to increase in the order $BF₃$ \leq BCl₃ \leq BBr₃. From the calculated NBO atomic charges they found that there is a larger charge transfer in the formation of $BCI₃·NH₃$ than for the formation of $BF₃·NH₃$ and proposed that the increasing charge capacity from $BBr₃$ to $BF₃$ is the reason that the acidity of the boron halides increases in this order.3

In contrast to the relative Lewis acid strengths toward strong bases, the reverse order, namely that expected on the basis of the charge on the boron atom, has been observed for the weak bases CO, HCN, $CH_3CN²$ and $CH_3F⁷$

An extensive theoretical study of the Lewis acid-base conplexes of BH_3 , BF_3 , BCl_3 , $AICl_3$, and SO_2 has been carried out recently by Frenking et al.2 Their calculated dissociation energies for eighteen complexes were in good agreement with experimental gas-phase values where these are available. Their calculations confirmed and extended experimental observations that show that the BF and BCl bond lengths in BF_3 and BCl_3 complexes increase with increasing strength of the complex, an important observation that we shall return to.

The purpose of the present paper is to present a simple explanation of the Lewis acid strengths of the boron halides in terms of the recently proposed ligand close-packing (LCP) model.5,8

Computational Methods

Standard ab initio and density functional $(B3LYP)^9$ calculations have been performed on the molecules BF_3 ^{*}NH₃, BF_3 ^{*}N(CH₃)₃, BCI_3 ^{*}NH₃, BCl_3 ^{*}N(CH₃)₃, BF₃^{*}OH₂, BF₃^{*}O(CH₃)₂, BCl₃^{*}OH₂, and BCl₃^{*}O(CH₃)₂.

⁽¹⁾ Cotton, F. A.; Wilkinson, G. *Ad*V*anced Inorganic Chemistry*; John Wiley and Sons: New York, 1980.

⁽²⁾ Jonas, V.; Frenking, G.; Reetz, M. T. *J. Am. Chem. Soc.* **1994**, *116*, 8741.

⁽³⁾ Brinck, T.; Murray, J. S.; Politzer, P. *Inorg. Chem.* **1993**, *32*, 2622. (4) Robinson, E. A.; Johnson, S. A.; Tang, T.-H.; Gillespie, R. J. *Inorg. Chem.* **1997**, *36*, 3022.

⁽⁵⁾ Robinson, E. A.; Heard, G. L.; Gillespie, R. J. *J. Mol. Struct.* **1999**, *305*, 485.

⁽⁶⁾ Huheey, J. E. *J. Phys. Chem.* **1965**, *69*, 3284.

⁽⁷⁾ van der Veken, B. J.; Sluyts, E. J. *J. Am. Chem. Soc.* **1997**, *119*, 11516.

Table 1. Structural Parameters and Nonbonded Interatomic Distances (\AA) for BF₃ \cdot NH₃

	X -ray ^{<i>a</i>}	microwave ^b	MP2(FC)/TZ2P ^c	this work
$B-N$	1.60	1.59	1.678	1.685
$B-F$	1.38		1.367	1.372
$N-H$			1.012	1.020
\angle BNH			110.3	110.2
\angle NBF	107		103.9	104.1
\angle FBF	111			114.3
\angle HNH				108.7
$F--F$	2.27		2.298	2.305
$N--F$	2.40		2.406	2.418

^a Reference 14. *^b* Reference 15. *^c* Reference 2.

Table 2. Structural Parameters and Nonbonded Interatomic Distances (\AA) for BF₃ \cdot N(CH₃)₃

	X -ray ^{<i>a</i>}	ED ^b	MP2(FC)/TZ2P ^c	this work
$B-N$	1.585	1.664	1.661	1.686
$B-F$	1.39	1.354	1.374	1.377
$N-C$	1.50	1.468	1.478	1.512
\angle BNC	105	110.5	109.4	107.2
\angle NBF	112	105.5	105.2	105.5
\angle FBF	107	113.1	113.4	113.2
\angle CNC	112	108.5	109.5	111.6
$F--F$	2.24	2.259	2.297	2.299
$N--F$	2.52	2.410	2.417	2.445

^a Reference 14. *^b* Reference 16. *^c* Reference 2.

All geometries have been optimized at the B3LYP level, as implemented in the Gaussian 94 program,¹⁰ using the 6-311+G(2d,p) basis set of Pople, 11 a method which is widely used for calculating charges and densities. Electron densities calculated at B3LYP/6-311+G(2d,p) have been analyzed using the theory of Atoms In Molecules.¹² In this theory, each atom is defined by a region of space bounded by an interatomic surface, and the charge on the atom is calculated by integrating the electron density throughout that region. AIM charges are, in general, larger than those calculated using $NBO₁₃$ the most rigorous of the orbital-based methods for calculating charges. Results of our geometry optimizations are presented in Tables $1-5$, with all inernuclear distances in Å and all angles in degrees. Calculated atomic charges are presented in Tables 6 and 7, and the energies of distortion of $BF₃$ and $BCl₃$ to pyramidal structures is presented in Table 8.

Results and Discussion

Calculated geometries for BF_3 'NH₃ and BF_3 'N(CH₃)₃ are presented in Tables 1 and 2, along with previous experimen $tal^{14,15,16}$ and theoretical² results. Our predicted geometries

- (8) Gillespie, R. J.; Robinson, E. A. *Ad*V*. Mol. Struct. Res.* **¹⁹⁹⁸**, *⁴*, 1.
- (9) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648. Stephens, P. J.; Devlin, C. F.; Chabalowski, C. F.; Frisch M. J. *J. Phys. Chem.* **1994**, *98*, 8, 11623. Lee, C.; Yang, W.; Parr, R. G. *Phys. Re*V*.* **¹⁹⁸⁸**, *B37*, 785.
- (10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Forsman, J. B.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94, Re*V*ision B.3*, Gaussian Inc. Pittsburgh, PA, 1995.
- (11) McLean, A. D.; Chandler, G. S. *J. Chem. Phys.* **1980**, *72*, 5639, Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. *J Chem Phys.* **1980**, *72*, 650.
- (12) Bader, R. F. W. *Atoms in Molecules: A Quantum Theory*; Clarendon Press*,* Oxford, UK, 1991. Bader, R. F. W. *Chem. Re*V*.* **¹⁹⁹¹**, *⁹¹*, 893. Bader, R. F. W. *Acc. Chem. Res.* **1985**, *18*, 9. Also see http:// www.chemistry.mcmaster.ca/aim/ for information and software downloads.

(13) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
- (13) Reed, A. E.; Curtiss, L. A.; Weinhold, F. *Chem. Re*V*.* **¹⁹⁸⁸**, *⁸⁸*, 899. (14) Hoard, J. L.; Geller, S.; Owen, T. B. *Acta Crystallogr.* **1951**, *4*, 405.
-
- (15) Legon, A. C.; Warner, H. E. *J. Chem. Soc., Chem. Commun.* **1991**, 1397.
- (16) Hargittai, M.; Hargittai, I. *J. Mol. Struct.* **1977**, *39*, 79. (17) Iijima, K.; Shibata, S. *Bull. Chem. Soc. Jpn.* **1980**, *53*, 1908.

Table 3. Structural Parameters and Nonbonded Interatomic Distances (\AA) for BCl₃ \cdot NH₃ and BCl₃ \cdot N(CH₃)₃

BCl_3 ·NH ₃			BCl_3 $N(CH_3)_3$		
MP2(FC) TZ2P ^a	this work	X -ray ϕ	ED ^c	MP2(FC) $TZ2P^a$	this work
1.606	1.621	1.610	1.652	1.634	1.663
1.833	1.845		1.836	1.841	1.855
			1.497	1.489	1.526
				111.0	108.7
105.0	105.2			107.6	107.7
113.5	113.4		110.9	111.3	111.2
			108.1	107.9	
3.066	3.084		3.025	3.039	3.061
2.732	2.757		2.833	2.806	2.843

^a Reference 2. *^b* Reference 22. *^c* Reference 17.

Table 4. Structural Parameters and Nonbonded Interatomic Distances (Å) for BF_3 ⁻OH₂ and BF_3 ⁻O(CH₃)₂

	BF_3 •OH ₂		BF_3 O $(CH_3)_2$	
	X -ray ^{<i>a</i>}	this work	ED ^b	this work
$B-O$	1.532	1.902	1.75	1.712
$B-F$	1.388	1.345×2.1333	1.325	$1.355 \times 2, 1.363$
$O-C$			1.439	1.446
\angle BOC				114.7
\angle OBF	106.8	$98.3 \times 2, 100.8$	99.9	102.1×2 , 103.3
\angle FBF	111.5	$117.6 \times 2, 117.3$	117.1	$115.1 \times 2, 116.1$
\angle COC			110	113.0
F---F	2.295	$2.291 \times 2.2.297$	2.26	2.293
$O--F$	2.347	$2.483 \times 2, 2.519$	2.36	$2.396 \times 2, 2.421$

^a Reference 18. *^b* Reference 19.

Table 5. Calculated Structural Parameters and Nonbonded Interatomic Distances (\AA) for BCl₃[•]OH₂ and BCl₃[•]O(CH₃)₂

	BCl_3 OH ₂	BCl_3 $O(CH_3)$
$B-O$	1.680	1.633
$B - C1$	$1.814 \times 2, 1.836$	$1.831 \times 2, 1.844$
$O-C$		1.462
\angle BOC		116.9
\angle OBCl	$102.6 \times 2, 104.0$	$105.8 \times 2, 105.7$
\angle CIBCI	$114.3 \times 2, 116.5$	$113.3 \times 2, 112.1$
\angle COC		110.9
$Cl---Cl$	$306.6 \times 2,308.5$	$307.0 \times 2,303.7$
$O---Cl$	$272.6 \times 2, 276.9$	$276.6 \times 2, 277.4$

Table 6. Calculated Atomic Charges in Adducts with NH₃ and $N(CH_3)$ 3

compare favorably with MP2(FC)/TZ2P calculations by Frenking and also with the gas-phase electron diffraction geometry for BF_3 ^{\cdot}N(CH₃)₃, with the exception of the N-C bond length, which is slightly longer than the previous estimates. Our calculated geometries for BCI_3 . NH₃ and BCI_3 . N(CH₃)₃ molecules in Table 3 are also in agreement with Frenking's calculations, and for BCl_3 ⁻N(CH₃)₃ similar agreement is found
with the previous electron diffraction data ¹⁷ The N–C bond is with the previous electron diffraction data.¹⁷ The N-C bond is
again slightly longer at the density functional level than at MP2 again slightly longer at the density functional level than at MP2 and compared to the experimental value. There is little

Table 7. Calculated Atomic Charges in Adducts with OH₂ and $O(CH_3)_2$

	BF_3 • OH_2			BF_3 \cdot O(CH ₃) ₃ BCl ₃ \cdot OH ₂ BCl ₃ \cdot O(CH ₃) ₂
q(B)	$+2.41$	$+2.39$	$+1.92$	$+1.90$
q(0)	-1.10	-1.07	-1.16	-1.06
q(F)	$-0.84 \times 2, -0.83$	-0.85		
q (Cl)			-0.67	-0.67
q(H)	$+0.60$		$+0.62$	
$qCH_3)$		$+0.62$		$+0.59$
$q(BX_3)$ -0.10		-0.16	-0.09	-0.11
$q(OR_2) + 0.10$		$+0.16$	$+0.09$	$+0.11$

Table 8. Calculated Differences in Energy (in kJ mol⁻¹) between Planar and Pyramidal Geometries of BF₃ and BCl₃. The Pyramidal Geometries Are Defined by an Assumed XBA Angle Formed with a Lewis Base (A). All Values Are Calculated at B3LYP/ $6-311+G(2d,p)$ unless Noted

^{*a*} HF/6-31+G(d,p) calculated value from ref 3. ^{*b*} MP2/6-31+G(d,p) calculated value from ref 3.

experimental background for the complexes of $H₂O$ and $O(CH_3)_2$ with BF₃ and BCl₃. A crystal structure for BF₃^{-OH₂¹⁸
and an electron diffraction study of BE₃^{-O}(CH₂)¹⁹ are compared} and an electron diffraction study of BF_3 ^{\cdot}O(CH₃)₂¹⁹ are compared
with our calculations in Table 4. As has been observed ²⁰ the with our calculations in Table 4. As has been observed, 20 the bond distances in the solid state are typically much shorter than the gas phase, and the comparison with experiment for BF_3 . OH₂ is not a fair one. The calculated C_s geometry of BF₃ \cdot $O(CH₃)₂$ is in good agreement the electron diffraction data. In the calculated geometry of both of these molecules there are two sets of B-F bond distances and angles due to the differing environments of the fluorine lying in the plane of symmetry, and the two fluorines that lie off the symmetry plane. There has been no experimental observation of the chloride analogues of these molecules, BCl_3 ⁻OH₂ and BCl_3 ⁻O(CH₃)₂; we have calculated their geometries and presented them in Table 5.

Our calculated geometries confirm the accepted order of Lewis acidity for BF_3 and BCl_3 . The B-N and B-O bond distances are shorter for the molecules of BCl₃ than they are for the corresponding BF₃ adducts, indicative of a stronger bond between the boron and the nitrogen or oxygen. The distance from boron to fluorine (which is 1.314 Å in BF_3) increases to 1.372 Å on interaction with NH₃, 1.377 Å with N(CH₃)₃, 1.349 Å (average) with OH₂, and 1.359 Å (average) with O(CH₃)₂. The distance from boron to chlorine (which is 1.750 Å in BCI_3) increases upon interaction with the Lewis bases to 1.845 Å (NH₃), 1.855 Å (N(CH₃)₃), 1.825 Å (OH₂, average), 1.837 Å $(O(CH₃)₂$, average), an average increase of 0.05 Å in BF₃ compared with 0.09 Å in BCl₃. The XBX angles similarly are smaller in the adducts than the 120° of planar BF₃ and BCl₃, the average angle in the BF_3 adducts being 115° compared with 113° for BCl₃ adducts.

In our previous studies of ligand close-packing we have published a series of nonbonded radii for atoms coordinated to central cations.⁵ The values in coordination to boron are 1.13 Å for F, 1.51 Å for Cl, 1.24 Å for N, and 1.19 Å for O. Thus, if the adducts follow the guidelines for ligand close packing, we would expect interatomic distances of 2.26 Å for F---F, 3.02 \AA for Cl---Cl, 2.37 \AA for N---F, and 2.32 \AA for O---F. All the calculated F---F distances are very close to 2.26 Å, indicating that the fluorine atoms remain close-packed about the boron nucleus. The Cl---Cl distances in all four adducts are also very close to that predicted on the basis of ligand close packing. In keeping with the accepted order of base strengths, the methylated molecules are calculated to form adducts with shorter adduct bond lengths, and greater distortion of the BX_3 group than NH_3 and OH₂. It appears that NH₃ distorts the BX₃ group to a greater extent than OH₂.

Atomic charges for all the atoms have been calculated using the theory of atoms in molecules (AIM). The charges on fluorine and chlorine remain fairly constant across all of the molecules studied. The charge on fluorine is intermediate between the charge on fluorine in BF_3 , which is -0.81 and in BF_4^- , which is -0.86 . Similarly the charge on chlorine is calculated to be is -0.86 . Similarly the charge on chlorine is calculated to be between the values for BCl_3 and BCl_4^- (-0.65 and -0.70, respectively)⁵. The charge on boron decreases slightly upon respectively).5 The charge on boron decreases slightly upon methylation of the adduct. The argument has been put forward that the lower Lewis acidity of BF_3 is due to its poor charge capacity when compared with $BCI₃$.³ We can calculate the charges on each molecule in the adduct and hence calculate the charge transfer by summing the charges on the individual atoms. We can see that contrary to this argument, the charge transfer is greater for the fluorides than the chlorides, and $BF₃$ is actually accepting more electron density from the Lewis bases than BCl₃.

When a boron trihalide acts as a Lewis acid, as the bond forms between the boron and the donor atom the halogen atoms are repelled to the opposite side of the boron atom. They remain in contact with each other, as evidenced by the near-constant halogen-halogen distances which are in accord with the nonbonded distances predicted by the ligand close packing model. As the bond angle decreases the bond lengths increase accordingly. The high strength of the $B-F$ bond, which is due to the large charges on B and F, and the smaller size of the F atom, allowing it to come close enough to boron to form a strong polar bond, mean that more energy is required to distort the BF_3 moiety from planarity. In the case of BCl_3 , the bond is not so strong, the chlorine atoms are not as close to the boron nucleus, and the ability of the molecule to distort is much greater, hence the shorter adduct bonds and the greater Lewis acid strength of BCl3. The "pyramidalization" energy, defined as the difference in energy between planar BX_3 and a geometry where the three XBX angles have been set at 103.5° and the ^B-X bond distance has been optimized, has been reported by Brinck at the HF and MP2 level.³ We have calculated the pyramidalisation energies for several degrees of distortion of BF₃ and BCl₃ and presented these energies in Table 8. In accord with the previously calculated values, at the B3LYP level of theory, both small and large distortions of $BF₃$ require greater energy than distortions of BCl3. In the case of very weak interactions such as those with $CH₃F$ or $CH₃CN$ the parent molecules are barely distorted, and the interaction is purely electrostatic in nature. This is the reason for the weak interactions having the opposite trends in acid strength to the stronger interactions with amines and ethers.

A strong Lewis base needs to get close to the boron atom to form a bond, and thus repels the fluorides or chlorides. It is questionable whether in the gas phase this approach is close enough to consider the entire molecule to be close-packed, and the oxygen or nitrogen atom of the donating molecule to be in

⁽¹⁸⁾ von Mootz, D.; Steffen, M. *Z. Anorg. Allg. Chem.* **1981**, *483*, 171.

⁽¹⁹⁾ Iijima, K.; Yamada, T.; Shibata, S. *J. Mol. Struct.* **1981**, *77*, 271. (20) Leopold, K. R.; Canagaratna, M.; Phillips, J. A. *Acc. Chem. Res.* **1997**,

³⁰, 57.

contact with the halogen atoms on the boron. The nonbonded interatomic distances are all slightly longer than those predicted by the ligand close packing model, however in the solid state the energy required to repel the halogen atoms to the point where a strong bond can be formed is obtained from the interaction with the condensed medium environment.²⁰ The increase in molecular dipole moment caused by the shortening of the $B-N$ bond has been observed in polarizable continuum calculations.²¹ In the solid state the geometry is close-packed, and the interligand distances are in agreement with those predicted by the ligand close packing model.

Conclusions

We have shown that the difference in Lewis acidity between BF₃ and BCl₃ with strong donor molecules, can be explained on the basis of ligand close packing. As the donor molecule is attracted toward the boron atom by its large positive charge it repels the chlorine or fluorine ligands thus decreasing the XBX angle and increasing the BX bond length while the X---X distances remain constant in accordance with the LCP model. The ease with which this distortion occurs depends on the strength of the BX bonds. BF bonds are stronger and more

difficult to stretch than BCl bonds. Hence with strong Lewis bases, such as NH_3 , BF_3 is a weaker Lewis acid than BCl_3 . Although the F and Cl ligands remain close packed through the formation of the acid-base complex in general the $B-N$ or B-O distances are not short enough that the O or N atoms are also close packed with the halogen ligands. However in the solid-state structures of BF_3 ·NH₃ and BF_3 .OH₂ the medium provides sufficient energy to allow the BF_3 molecule to be distorted to a very nearly tetrahedral geometry and in these cases the F---N and F---O distances show that all four ligands are close packed around the boron. This explanation of the relative acid strengths of BF_3 and BCl_3 is simpler and more quantitative than the back-bonding explanation for which there is little, if any, compelling evidence.

With very weak bases such as CO the Lewis acid BX_3 is barely distorted from its planar geometry so no pyramidalization energy is required and the strength of the acid-base interaction depends only on the charge of the boron atom which is larger in BF_3 than in BCl_3 . So for these complexes BF_3 is a stronger acid than BCl₃.

IC990713M

⁽²¹⁾ Wong, M. W.; Frisch, M. J.; Wiberg, K. B. *J. Am. Chem. Soc.* **1990**, *113*, 4776.

⁽²²⁾ Clippard, P. H.; Hanson, J. C.; Taylor, R. C. *J. Cryst. Mol. Struct.* **1971**, *1*, 363.