Dioxygen Reactivity of Reduced Heme and Heme-**Copper Complexes Utilizing Tetraarylporphyrinates Tethered with Both a Pyridyl Axial Ligand and** *N***,***N***-Bis[2-(2-pyridyl)ethyl]amine Chelate**

Marie-Aude Kopf and Kenneth D. Karlin*

Department of Chemistry, The Johns Hopkins University, Charles and 34th Streets, Baltimore, Maryland 21218

*Recei*V*ed May 18, 1999*

Our continuing interest in developing reactivity models for the heme a_3 -Cu_B O₂-binding, O₂-reduction, and proton pumping site in heme-copper oxidases^{1,2} (e.g., cytochrome *c* oxidase $(CcO$))²⁻⁵ includes investigation of reactions of dioxygen with (porphyrinate)Fe^{II} and $(L^{Cu})Cu^I$ complexes.⁶⁻⁹ Thus, $(F_8 TPP)Fe^{II}/[(L^{Cu}) Cu¹$ \pm /O₂ reactions lead to O-O reductive cleavage and generation
of u -oxo complexes $[(E_0TPP)E_0^{III}$ -O-Cu^{II}(I^{Cu})¹⁺¹⁰ when emof μ -oxo complexes $[(F_8TPP)Fe^{III}-O-Cu^{II}(L^{Cu})]^{+}$,¹⁰ when em-
ploying pyridyl-alkylamine conner-ligand donors, either an N. ploying pyridyl-alkylamine copper-ligand donors, either an N4 tetradentate $L^{Cu} = TMPA$ or tridentate chelate $L^{Cu} = R-PYZ$.^{9,10} A developing approach in our laboratories^{6,14-16} and others¹⁷⁻²¹ is to utilize heterobinucleating ligands for such heme/ $Cu/O₂$ reactivity studies. We recently showed that reduced compounds [(*ⁿ***L**)FeII...CuI]+, where *ⁿ***L** possess a TMPA moiety covalently tethered to a tetraarylporphyrin periphery, react with $O₂$ giving analogous μ -oxo complexes $[(^nL)Fe^{III} - O - Cu^{II}]^+$.^{13,16} Here, we describe oxygenation chemistry using ³L and ⁴L (Scheme 1) with describe oxygenation chemistry using **³ L** and **⁴ L** (Scheme 1), with new features: (1) a PY2¹⁰ tridentate chelate is built in, to match

- (1) García-Horsman, J. A.; Barquera, B.; Rumbley, J.; Ma, J.; Gennis, R. B. *J. Bacteriol.* **1994**, *176*, 5587–5600. B. *J. Bacteriol.* **¹⁹⁹⁴**, *¹⁷⁶*, 5587-5600.
- (2) Ferguson-Miller, S.; Babcock, G. T. *Chem. Re*V*.* **¹⁹⁹⁶**, *⁹⁶*, 2889-2907. (3) Michel, H.; Behr, J.; Harrenga, A.; Kannt, A. *Annu. Re*V*. Biophys. Biomol.*
- *Struct.* **¹⁹⁹⁸**, *²⁷*, 329-356. (4) Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yamashita,
- E.; Inoue, N.; Yao, M.; Jei-Fei, M.; Libeu, C. P.; Mizushima, T.; Yamaguchi, H.; Tomizaki, T.; Tsukihara, T. *Science* **¹⁹⁹⁸**, *²⁸⁰*, 1723- 1729.
- (5) Ostermeier, C.; Harrenga, A.; Ermler, U.; Michel, H. *Proc. Natl. Acad. Sci. U.S.A.* **¹⁹⁹⁷**, *⁹⁴*, 10547-10553.
- (6) Kopf, M.-A.; Karlin, K. D. In *Biomimetic Oxidations*; Meunier, B., Ed.; Imperial College Press: London, 2000; Chapter 7, pp 309-362.
- Karlin, K. D.; Nanthakumar, A.; Fox, S.; Murthy, N. N.; Ravi, N.; Huynh, B. H.; Orosz, R. D.; Day, E. P. *J. Am. Chem. Soc.* **¹⁹⁹⁴**, *¹¹⁶*, 4753- 4763.
- (8) Nanthakumar, A.; Fox, S.; Karlin, K. D. *J. Chem. Soc., Chem. Commun.* **1995**, 499–501.
(9) Kopf, M.-A.; Neuhold, Y.-M.; Zuberbühler, A. D.; Karlin, K. D. *Inorg.*
- *Chem.* **¹⁹⁹⁹**, *³⁸*, 3093-3102.
- (10) Abbreviations used: F_8 TPP, tetrakis(2,6-difluorophenyl)porphyrinate; TMPA, tris(2-pyridylmethyl)amine; R-PY2, *N*,*N*-bis[2-(2-pyridyl)ethyl]- R-amine; $BAF = B[3,5-(CF_3)_2C_6H_3]_4^-$.
These same μ -oxo complexes can also b
- (11) These same μ -oxo complexes can also be synthesized from acid-base self-assembly procedures.^{9,12,13}
- (12) Fox, S.; Nanthakumar, A.; Wikström, M.; Karlin, K. D.; Blackburn, N. J. *J. Am. Chem. Soc.* **¹⁹⁹⁶**, *¹¹⁸*, 24-34.
- (13) Obias, H. V.; van Strijdonck, G. P. F.; Lee, D.-H.; Ralle, M.; Blackburn, N. J.; Karlin, K. D. *J. Am. Chem. Soc.* **¹⁹⁹⁸**, *¹²⁰*, 9696-9697.
- (14) Karlin, K. D.; Fox, S.; Nanthakumar, A.; Murthy, N. N.; Wei, N.; Obias, H. V.; Martens, C. F. *Pure Appl. Chem.* **¹⁹⁹⁵**, *⁶⁷*, 289-296.
- (15) Martens, C. F.; Murthy, N. N.; Obias, H. V.; Karlin, K. D. *Chem. Commun.* **¹⁹⁹⁶**, 629-630.
- (16) Ju, T. D.; Ghiladi, R. A.; Lee, D.-H.; van Strijdonck, G. P. F.; Woods, A. S.; Cotter, R. J.; Young, V. G., Jr.; Karlin, K. D. *Inorg. Chem.* **1999**, 38, 2244–2245.
(17) Collman, J. P.; Rapta, M.; Bröring, M.; Raptova, L.; Schwenninger, R.;
- Boitrel, B.; Fu, L.; L'Her, M. *J. Am. Chem. Soc.* **¹⁹⁹⁹**, *¹²¹*, 1387- 1388.
- (18) Collman, J. P.; Schwenninger, R.; Rapta, M.; Bröring, M.; Fu, L. *Chem. Commun.* **¹⁹⁹⁹**, 137-138.
- (19) Collman, J. P.; Fu, L.; Hermann, P. C.; Wang, Z.; Rapta, M.; Bröring, M.; Schwenninger, R.; Boitrel, B. *Angew. Chem., Int. Ed.* **1998**, *37*, 3397−3400.
Sasaki T∶M
- (20) Sasaki, T.; Nakamura, N.; Naruta, Y. *Chem. Lett.* **¹⁹⁹⁸**, 351-352.
- (21) Monzani, E.; Casella, L.; Gullotti, M.; Panigada, N.; Franceschi, F.; Papaefthymiou, V. *J. Mol. Catal. A: Chem.* **¹⁹⁹⁷**, *¹¹⁷*, 199-204.

Scheme 1

the number and type of N-ligands observed in CcO^{3-5} (2) while the copper ligands possess the PY2 unit, taking advantage of previously established Cu^{1}/O_{2} chemistry,²²⁻²⁴ (3) a heme axial pyridyl ligand is tethered to the porphryin periphery distal to the PY2 Cu ligand, mimicking the CcO arrangement, $3-5$ and (4) $3L$ and **⁴ L** possess different linkers to the PY2 and pyridine base; such model compound variations provide a way to probe the effects of subtle changes in metal environment, analogous to protein enforced active-site geometric relationships.25

Syntheses of 3L and 4L , 26 metalation (FeCl₂), air oxidation, and column chromatography yield porphyrinate-iron(III) complexes with an empty PY2 tether, $(^{3/4}L)Fe^{III}$ -OH (λ_{max} = 413-415 nm; $\delta_{\text{pyrrole}} = \sim 80$ ppm (room temperature)),²⁶ with spectrosopic properties paralleling those of $(F_8 T P P)Fe^{III}-OH.12$

- (22) Obias, H. V.; Lin, Y.; Murthy, N. N.; Pidcock, E.; Solomon, E. I.; Ralle, M.; Blackburn, N. J.; Neuhold, Y.-M.; Zuberbühler, A. D.; Karlin, K. D. *J. Am. Chem. Soc.* **¹⁹⁹⁸**, *¹²⁰*, 12960-12961.
- (23) Karlin, K. D.; Kaderli, S.; Zuberbühler, A. D. *Acc. Chem. Res.* **1997**, $30, 139-147$.
- 30, 139-147.
(24) Karlin, K. D.; Zuberbühler, A. D. In *Bioinorganic Catalysis*, 2nd ed.; Reedijk, J., Bouwman, E., Eds.; Marcel Dekker: New York, 1999; pp
- 469-534.

(25) As a function of the variable tether arm in ⁿ**L**, $[(nL)Fe^{III}-O-Cu^{II}]^+$

exhibit dramatic differences in structure (i.e. near-linear vs severely bent) exhibit dramatic differences in structure (i.e., near-linear vs severely bent) and μ -oxo basicity.¹³
- (26) See Supporting Information.

10.1021/ic990546q CCC: \$18.00 © 1999 American Chemical Society Published on Web 10/07/1999

Subsequent reduction $(Na_2S_2O_4(aq)/CH_2Cl_2)$ affords iron(II) species ($3/4$ **L**)Fe^{II}, **1a** and **1b**, respectively, both characterized by UVvis absorptions at 434 (Soret), 556, and 530 (sh) nm in CH_2Cl_2 solvent, consistent with high-spin $(S = 2)$ pentacoordination.²⁷ Supporting ¹H NMR spectroscopic observations^{28a} are four downfield β -pyrrolic signals (δ 49-54 ppm, in CD₂Cl₂, C₆D₆, and $(CD_3)_2CO$) plus additional paramagnetically shifted resonances (CD₂Cl₂: **1a**, 32.34, 25.77, 24.66, -3.53, -11.35 ppm; **1b**, 24.92, 23.87, 19.2, 17.73, 24.43, -2.93, -12.19 ppm) due to *one* coordinated axial pyridine tether arm.28b

 $(^{3}L)Fe^{II}$ (1a) binds O₂ reversibly (Scheme 1),²⁹ as monitored by UV-vis and ¹H NMR spectroscopies. In THF, toluene, or
CH-Cl₂ solutions bubbled with O_2 at -80 °C change and give CH_2Cl_2 , solutions bubbled with O₂ at -80 °C change and give rise to a low-temperature stable species **3a**, with 421 (Soret) and 540 nm features (Figure 1). Complex **3a** is formulated as (**3L**)- $Fe-O₂$, a low-spin six-coordinated hemoglobin/myoglobin model compound, since a spectrophotometric titration²⁶ shows that $Fe/$ $O_2 = 1:1$ (-80 °C, THF), and it gives a diamagnetic ($S = 0$) ¹H NMR spectrum. Vacuum/purge followed by oxygenation cycles allows facile interconversion of $(^{3}L)Fe^{II}$ (**1a**) and $(^{3}L)Fe^{-O_{2}}$ (**3a**), and even simple warming of **3a** to room temperature gives back and even simple warming of **3a** to room temperature gives back the spectrum $(\lambda_{\text{max}} = 434 \text{ nm})$ of **1a**.²⁶ Monitoring by ¹H NMR
shows that downfield pyrrole resonances for **1a** begin to appear shows that downfield pyrrole resonances for **1a** begin to appear when solutions of **3a** are warmed to ca. -30 °C. The analogous complex $(^{4}L)Fe^{II}$ (1b) also reacts to give an O_{2} adduct with spectral features similar to those of $3a$. However, O_2 binding is *not* reversible, again demonstrating how subtle changes in ligand architecture can significantly alter the observed chemistry.25

Addition of a cuprous salt, $[Cu(CH₃CN)₄](BAT)$, to complexes **1a** and **1b** gives the desired Fe^{II}/Cu^{I} complexes $[(³L)Fe^{II}Cu^{I}]^{+}$ $(2a)$ and $[(4L)Fe^{II}Cu^{I}]^{+}$ $(2b)$ (Scheme 1) having UV-vis absorptions $(434 \text{ (Soret)} 556, 530 \text{ (sh)} \text{ nm})$ similar to those of 1a and tions (434 (Soret), 556, 530 (sh) nm) similar to those of **1a** and **1b** at room temperature. In (weakly) coordinating solvents such as MeCN and THF,³⁰ cooling results in the reversible splitting of the Soret band (∼ 433 and 429 nm, Figure 1), whereas no change is observed in toluene. This behavior is tentatively explained by a competition between the coordination of the tethered pyridine axial base versus the solvent, the latter being favored at low temperature. ¹ H NMR spectra of **2a**,**b** are very similar to those of **1a**,**b**, consistent with a high-spin behavior and coordination to the tethered pyridine axial ligand.32

Both **2a** and **2b** react with O_2 at -80 °C (THF or EtCN solvents) to give dioxygen adducts **4a** and **4b**, with new UVvis features at 418 (Soret) and 536 nm, Figure 1. Formation of **4a**,**b** is irreversible, on the basis of the lack of displacement of bound O_2 following argon purges or application of a vacuum. The ⁴**L**-containing O₂ adduct is formulated as $[(4\text{L})\text{Fe}-O_2-Cu]^+$
(4**h**) a neroxo level $\text{Fe}^{\text{III}}-Cu^{\text{II}}$ species³³ (i) the stoichiometry of (**4b**), a peroxo level Fe^{III}–Cu^{II} species:³³ (i) the stoichiometry of O₂ binding (spectrophotometric titration)²⁶ is **2b**/O₂ = 1:1, (ii) a ¹H NMR spectrum of **4b** at -80 °C in THF- d_8 exhibits

-
- (33) Collman, J. P.; Herrmann, P. C.; Boitrel, B.; Zhang, X.; Eberspacher, T. A.; Fu, L.; Wang, J.; Rousseau, D. L.; Williams, E. R. *J. Am. Chem. Soc.* **¹⁹⁹⁴**, *¹¹⁶*, 9783-9784.

Figure 1. $[(4L)Fe^{I}Cu^{I}]^{+}$ (2b, λ_{max} 429 nm, -80 °C in EtCN) reacts with O_2 giving $[(4L)Fe^{-}O_2-Cu]^{+}$ (4b) λ_{max} 418 nm). Rapid warming to room- O_2 giving $[(4L)Fe-O_2-Cu]^+$ (4b, λ_{max} 418 nm). Rapid warming to roomtemperature affords products which include μ -oxo complex $[(4L)Fe^{III} O - Cu^{H}$ ⁺ (λ_{max} 446 nm). See text.

diamagnetic behavior, analogous to the Fe/Cu O_2 adducts of Collman and co-workers;^{33,34} and (iii) complex $[(4L)Fe-O₂-Cu]⁺$
(4**h**) is EPR-silent (THE 84 K) consistent with a strongly counled (**4b**) is EPR-silent (THF, 84 K), consistent with a strongly coupled peroxo-bridged species. An iron-only O_2 adduct (pyridyl)-(porphyrinate) $Fe-O₂$ is ruled out, since this would leave an unreacted Cu(I)-PY2 moiety; $[(\text{MePY2})\text{Cu}^{\text{I}}(\text{CH}_3\text{CN})](\text{BArF})$ is
known to react with Ω_2 to give a peroxo diconner(II) complex known to react with O_2 to give a peroxo dicopper(II) complex with intense 360 nm absorption,²² which is not observed here.

Warming of these low-temperature stable O_2 adducts **4a** and **4b** (with excess O_2 removed in vacuo) shows interesting differences. For $[(4L)Fe-O_2-Cu]^+$ (4b), the major product (>70%) is the μ -oxo complex formulated as $[(4L)Fe^{III}-O-Cu^{II}]^{+}$, possessing the distinctive features {(i) red-shifted Soret band (446 nm) (Figure 2), (ii) ¹H NMR $\delta_{\text{pyrrole}} = \sim 70$ ppm (room temperature), (iii) upfield-shifted Cu-ligand resonances} observed in established [(porphyrinate)Fe III -O-Cu^{II}]⁺ complexes,^{13,31} including the closely related $[(F_8TPP)Fe^{III}-O-Cu^{II}(MePY2)]^+$.^{9,35}
By contrast, no *u*-oxo final species is ever observed from the Q. By contrast, no μ -oxo final species is ever observed from the O_2 adduct of 3L , 4a ;³⁶ features associated with $({}^3L)Fe^{III}$ -OH (vide
supra) are observed and are tentatively assigned to a product $({}^3L)$ supra) are observed and are tentatively assigned to a product [(**³ L**)- Fe^{III} -OH \cdots Cu^{II}]^{*n*+}.

In summary, a new class of binucleating ligands 37 for use in heme-Cu complex chemical studies has been synthesized. These should be useful for more in-depth $O₂$ reactivity studies, having a tridentate ligand for copper with its own previously established $Cu^I/O₂$ chemistry. The initial studies reported here, with reversible heme/O₂ binding, formation of a heme/Cu/O₂ adduct $[(4L)Fe Q_2$ -Cu]⁺ (4b), and observation of ligand architecture influences on reactivity, validate the design of ligands and approach. Further characterization and studies are in progress.

Acknowledgment. We are grateful to the National Insitutes of Heath (GM28962) for research support.

Supporting Information Available: Figure S1, with UV-vis spectra illustrating reversible O_2 -binding for iron-only complex $1a$. Synthesis and characterization of ligands and complexes. This material is available free of charge via the Internet at http://pubs.acs.org.

IC990546Q

- (34) Collman, J. P.; Fu, L.; Herrmann, P. C.; Zhang, X. *Science* **1997**, *275*,
- 949-951.

(35) The minor product contains the $(^{4}L)Fe^{III}$ -OH moiety, $\lambda_{max} = 414$ nm

(Figure 2) $\delta_{current} = \sim 80$ ppm (room temperature) (Figure 2), $\delta_{\text{pyrrole}} = \sim 80$ ppm (room temperature).
- (36) A μ -oxo product is not observed even in an acid-base synthesis, by addition of a Cu(II) salt and base to $(^{3}L)Fe^{III}-OH$.
- (37) For purposes of comparison, we have also synthesized analogues of **³ L** and **⁴ L** which lack the pyridine containing arm axial base ligand.

⁽²⁷⁾ Komatsu, T.; Sano, K.; Tsuchida, E. *Chem. Commun.* **¹⁹⁹⁸**, 977-978.

^{(28) (}a) ¹⁹F NMR spectra of **1a** and **1b** show four resonances between -108 and -110 ppm (THF; relative to $CF_3C_6H_5$) in a 1:1:2:2 ratio, consistent with the low symmetry of these ligands. (b) Support for this assignment comes from study of an analogue heme with a ligand similar to **³ L** which has the axial pyridine tether arm, but otherwise has only a nitro *o*-phenyl substituent instead of the whole PY2 tether arm. In this case, very similarly located extra ¹H NMR peaks are observed for a high-spin Fe-(II) complex.

⁽²⁹⁾ See: Collman, J. P.; Fu, L. *Acc. Chem. Res.* **¹⁹⁹⁹**, *³²*, 455-463.

⁽³⁰⁾ In solvents such as THF and MeCN, (F₈TPP)Fe^{II} is high-spin. In noncoordinating solvents (e.g., CD₂Cl₂, C₇D₈), it is four-coordinate and intermediate-spin $(S = 1)$.^{8,31}