Aminoferrocene Derivatives in Chloride Recognition and Electrochemical Sensing

Konstantinos Kavallieratos, Sharon Hwang, and Robert H. Crabtree*

Sterling Chemistry Laboratory, Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107

*Recei*V*ed July 8, 1999*

Introduction

Redox-active anion receptors¹⁻⁹ giving potential shifts on binding are useful in chemical sensor applications: $10-15$ cobaltocenium, $1-5,16,17$ ferrocene, $1-7,18-20$ and transition-metalbipyridyl^{8,9} cases are known.

Our readily available isophthalamide $(1)^{21}$ and disulfonamide $(2)^{22}$ receptors bind Cl⁻ and other anions very strongly in CH₂- $Cl₂,^{21,22}$ suggesting the neutral diferrocenyl analogues **3** and **4** might act as Cl⁻ sensors because the anion is closely coupled to the ferrocenyl (Fc) group.²³ Related aminomethylferrocene diamide analogues have recently been reported by Beer et al.²⁴ Amide receptors with two FcNH groups have not yet been reported since $FeNH₂$ is not commercially available and is difficult to prepare. $25-29$

- (1) Beer, P. D. *Chem. Soc. Re*V*.* **¹⁹⁸⁹**, *¹⁸*, 409.
- (2) Beer, P. D. *Ad*V*. Inorg. Chem.* **¹⁹⁹²**, *³⁹*, 79.
- (3) Beer, P. D.; Smith, J. K. *Prog. Inorg. Chem.* **1997**, *46*, 1 and references therein.
- (4) Beer, P. D.; Schnitt, P. *Curr. Opin. Chem. Biol.* **1997**, *1,* 475.
- (5) Beer, P. D. *Acc. Chem. Res.* **1998**, *31*, 71.
- (6) Jagessar, R. C.; Burns, D. H. *Chem. Commun.* **1997**, 1685.
- (7) Scherer, M.; Sessler, J. L.; Gebauer, A.; Lynch, V. *Chem. Commun.* **1998**, 85.
- (8) Beer, P. D.; Szemes, F.; Balzani, V.; Sala, C. M.; Drew, M. G. B.; Bent, S. W.; Maestri, M. *J. Am. Chem. Soc.* **1997,** *119,* 11864.
- (9) Szemes, F.; Hesek, D.; Chen, Z.; Dent, S. W.; Drew, M. G. B.; Goulden, A. J.; Graydon, A. R.; Grieve, A.; Mortimer, R. J.; Wear, T.; Weightman, J. S.; Beer, P. D. *Inorg. Chem.* **1996**, *35*, 5868.
- (10) Antonisse, M. M. G.; Reinhoudt, D. N. *Chem. Commun.* **1998**, 443.
- (11) Antonisse, M. M. G.; Snellink-Ruel, B. H. M.; Engbersen, J. F. J.; Reinhoudt, D. N. *J. Chem. Soc., Perkin Trans. 2* **1998**, 773.
- (12) Ohyama, T.; Wang, D. Q.; Cowan, J. A. *Chem. Commun.* **1998**, 467.
- (13) Gale, P. A.; Chen, Z.; Drew, M. G. B.; Heath, J. A.; Beer, P. D. *Polyhedron* **1998**, *17*, 405.
- (14) Mathisson, S.; Bakker, E. *Anal. Chem.* **1998**, *70*, 303.
- (15) Tsagatakis, J. K.; Chaniotakis, J. A.; Jurkschat, K. *Quim. Anal.* **1997**, *16*, 105.
- (16) Beer, P. D.; Hesek, J.; Hodacova, J.; Stokes, S. E. *J. Chem. Soc., Chem. Commun.* **1992**, 270.
- (17) Atwood, J. L.; Hollman, K. T.; Steed, J. W. *Chem. Commun.* **1996**, 1401.
- (18) Beer, P. D.; Chen, Z.; Goulden, A. R.; Graydon, S. E.; Stokes, S. E.; Wear, T. *J. Chem. Soc., Chem. Commun.* **1992**, 270.
- (19) Chen, Z.; Graydon, A. R.; Beer, P. D. *J. Chem. Soc., Faraday Trans.* **1995**, *91*, 295; **1996**, *92*, 97.
- (20) Beer, P. D.; Szemes, F. *Inorg. Chem.* **1997**, *36*, 2112.
- (21) Kavallieratos, K.; de Gala, S. R.; Austin, D. J.; Crabtree, R. H. *J. Am. Chem. Soc.* **1997**, *119*, 2325.
- (22) Kavallieratos, K; Bertao, C. M.; Crabtree, R. H. *J. Org. Chem.* **1999**, *64*, 1675.
- (23) Beer, P. D.; Drew, M. G. B.; Jagessar, R. *J. Chem. Soc., Dalton Trans.* **1997**, 881.
- (24) Beer, P. D.; Smith, D. K. *J. Chem. Soc., Dalton Trans.* **1998**, 417. (25) Knox; G. R.; Paulson, P. L.; Willison, D. *Organometallics* **1990**, *9*,
- 301.
- (26) Nesmeyanov A. N. *Dokl. Akad. Nauk SSSR, Ser. Khim.* **1955**, *102*, 535.
- (27) Arimoto, F.; Haven, A. C. *J. Am. Chem. Soc.* **1955**, *77*, 6295.
- (28) Herberhold, M.; Ellinger, M.; Kremnitz, W. *J. Organomet. Chem.* **1983**, *241*, 227.

We have synthesized **³**-**5**, which, being neutral, are very soluble in organic solvents. The chloride-binding properties of **4** are studied. We also report an improved synthesis of FcNH2.

Results and Discussion

Synthesis of FcNH₂ and 3-5. FcNH₂, synthesized by a known route,²⁵ but with an improved isolation procedure, gave yields of $21-26\%$ versus $8-14\%$.^{25,30} The disulfonamide 4, synthesized in good yield $(54%)$ in one step from FcNH₂ and 1,3-benzenesulfonyl dichloride in EtOH,31 was isolated as a yellow powder, soluble in CH_2Cl_2 , and was characterized by ¹H NMR, FT-IR, and elemental analysis. Attempts to synthesize receptor 3 in CH_2Cl_2 gave only 8% of 3 but in EtOH gave a 24% yield of the amide ethyl ester **5**; both were fully characterized.

Anion Binding by $3-5$ **(¹H NMR).** Addition of Bu₄NX $(X = Cl^-)$ to CD_2Cl_2 solutions of **3** and **4** caused large chemical

- (29) Herberhold, M.; Ellinger, M.; Haumeier, L. *Organometallic Syntheses*; King, R. B., Eisch, J. J., Eds.; Elsevier: Amsterdam, 1986; Vol. 3, p 81.
- (30) Details are given in the Experimental Section.
- (31) Ertas, M.; Ahsen, V.; Gül, A.; Bekâroglu, O. *J. Organomet. Chem.* **1987**, *333*, 383.

Figure 1. ¹H NMR spectra of 4 before and after addition of 10 equiv of (*n*-Bu)4NCl. The resonance corresponding to the N-H (2H) shows a dramatic downfield shift from 6.4 to 9.4 ppm. Similarly the 2-C-^H (1H) shows a smaller downfeld shift from 8.2 to 9.5 ppm. The other aromatic protons are affected only slightly by anion addition.

Figure 2. Binding conformation of chloride-receptor complexes based on the NMR data and previous work on similar receptors.21,22

Table 1. Chemical Shift Changes ($\Delta\delta$ _{max}) for N-H and Aromatic 2-C-H Protons in the ¹ H NMR Spectrum upon Chloride Addition

	$\Delta\delta$ (N-H) (R ·Cl ⁻)	$\Delta\delta$ (2-C-H) (\mathbf{R} ·Cl ⁻)		
compound	(ppm)	(ppm)		
	3.37	1.07		
	3.13	1.03		
	2.88	0.23		

shift changes for protons (N-H and 2-C-H) affected by hydrogen bonding (Figure 1 and Table 1).

Monoamide **5** gave smaller changes for the same protons. The 2-C-H shift (0.23 ppm) being much smaller than the 4-C-H (0.50 ppm) suggests an anti binding conformation. On the other hand, the large shift changes for the 2-C-H protons of **3** and **4** suggest^{21,22} a syn-syn binding conformation is adopted

(Figure 2).

No crystals were obtained for X-ray study of any complex of **3** and **4**, but previous studies^{21,22} with **1** and **2** strongly suggest that all have a syn-syn binding conformation with two convergent N-H'''Cl hydrogen bonds (Figure 2).

Solution and Thin Film FT-IR for Receptors and Adducts. To compare Cl- binding of **4** and **5** in solution and the solid state, we examined the solution and thin $film³² FT-IR$ spectra of the receptors and their adducts (Table 2). Free $4(10^{-1} M)$, gave v_{N-H} bands at 3360 and 3228 cm⁻¹ (w) for self-associated N-H. The thin film spectrum shows only the 3228 cm^{-1} band. With a slight excess of $(n-Bu)$ ₄NCl, a new band appears for $N-H^{\bullet}$ cm⁻¹ at 3260 cm⁻¹ (thin film, 3258 cm⁻¹).

Figure 3. Titration curve of 5 with $(n-Bu)$ ₄NCl at 19.4 °C in CD₂Cl₂.

Table 2. FT-IR $ν_{N-H}$ Stretching Frequencies in CH₂Cl₂ Solution and a Thin Film for the Free Receptors and Their Adducts $(X = Cl)$

FT-IR spectrum of	$v_{\text{N-H}}$ (solution) $\rm (cm^{-1})$	$v_{\text{N-H}}$ (thin film) $\rm (cm^{-1})$	FT-IR spectrum οf	$v_{\text{N-H}}$ (solution) $\rm (cm^{-1})$	$v_{\text{N-H}}$ (thin film) $\rm (cm^{-1})$
4	3360 and 3228 (weak)	3228	$5. X^-$	3434 3434	3263 3176
$4 \cdot X^-$	3360 and 3260	3258			

As before,²² the self-associated sulfonamide band (3228 cm^{-1}) does not appear in the solution or film spectra of **⁴**'X-. For the monoamide ferrocenyl receptor we were able to observe the free N-H band in solution at 3434 cm^{-1} and the self-associated N-H band at 3263 cm⁻¹ in a thin film. For $5°C$ ⁻ only a broad $N-H^{\bullet}$ ^{-Cl-} band at 3175 cm⁻¹ appeared in thin film, but the solution spectra did not show many other differences from that of free **5**, suggesting a much weaker anion complexation.33

1H NMR Titrations. Association Constants. The association constants, K_a , were determined for 4 and 5 with Cl⁻ in a CD_2Cl_2 solution, by a standard NMR titration³⁴ monitoring $\Delta\delta(N-H)$ and $\Delta\delta(2-C-H)$ in a dilute receptor CD₂Cl₂ solution of concentration range $(0.5-1) \times 10^{-3}$ M, with the addition of 1.0×10^{-2} to 1.0×10^{-1} M CD₂Cl₂ solutions of $(n-Bu)_{4}$ NCl in the same receptor concentration. One to one binding curves for the N-H protons (Figure 3) were analyzed using a nonlinear regression method.³⁵ The 1:1 binding isotherm³⁴ of eq 3 gave consistent fits for both 2-C-H and N-H.

$$
\Delta \delta = ([\mathbf{R}]_t + [Cl^-]_t + K_a^{-1} - ((([\mathbf{R}]_t + [Cl^-]_t + K_a^{-1})^2 - 4[Cl^-]_t [\mathbf{R}]_t)^{1/2})) \Delta \delta_{\text{max}} / (2[\mathbf{R}]_t)
$$
 (3)

Comparison of the data for Cl⁻ binding (K_a = 9500 M⁻¹ $(\pm 30\%)$, **4**^{-Cl⁻; 30 M⁻¹ ($\pm 5\%$), **5**^{-Cl⁻; $\Delta G_f = -22.3$ kJ/mol,}} **⁴**'Cl-; -8.3 kJ/mol, **⁵**'Cl-) demonstrates the importance of the two convergent hydrogen-bonding groups;36-³⁸ the second N-^H increases *^K*^a by >300-fold and [∆]*G*^f by >2-fold. In our previous studies with the organic analogues **1** and **2**, 21,22 we found similar binding constants for the two receptors, suggesting that the higher acidity of the sulfonamide is a secondary factor.

- (34) Connors, K. A. *Binding Constants*, 1st ed.; John Wiley & Sons: New York, 1987.
- (35) KaleidaGraph, Version 3.0.2, Synergy Software (PCS Inc.), Reading, PA 19606; developed by Abelbeck Software Inc.
- (36) Schmidtchen, F. P.; Berger, M. *Chem. Re*V*.* **¹⁹⁹⁷**, *⁹⁷*, 1609.

⁽³²⁾ The thin film is formed by slow evaporation on a NaCl plate of the same solution used for the solution FT-IR study.

⁽³³⁾ We have found that typically for association constants of $\leq 100 \text{ M}^{-1}$ the hydrogen-bonded band is normally not observed in dilute solution.

Figure 4. Cyclic voltammograms of 4 (\cdots), $4 + (n-Bu)_{4}NCl$ (1 equiv) $(--)$, and $4 + (n-Bu)_{4}NCl$ (5 equiv) $(-)$. The total concentration of 4 is 5×10^{-4} M. The scan rate is 100 mV/s.

Electrochemical Study (Cyclic Voltammetry). The CVs of 5×10^{-4} M solutions of FeCp₂ (standard), **4**, and **5** in CH₂Cl₂ were recorded before and after addition of 1 and 5 equiv of solid $(n-Bu)$ ₄NCl (final concentrations 5 and 25×10^{-4} M Cl⁻). $(n-Bu)_{4}NBF_{4}$ (0.1 M) was an inert electrolyte. All the waves corresponded to quasi-reversible oxidations. In certain cases, $19,20$ Beer saw an EC mechanistic response, but our compounds and conditions (including solvent) are somewhat different and **4** binds halides very strongly; in other cases 23 Beer saw results similar to our results. 4 showed a shift of -20.0 mV after addition of 1 equiv of (*n*-Bu)4NCl increasing only marginally for 5 equiv of $(n-Bu)$ ₄NCl, as expected for anion binding²³ (Figure 4). In contrast, control **5** gave only a weak negative shift (<5 mV) for the solution containing 1 equiv of (*n*-Bu)4NCl and no negative shift for the solution containing 5 equiv of (*n*-Bu)4NCl, so the two convergent hydrogen-bonding groups are very important for effective sensing. A small nonspecific positive potential shift linearly dependent on [Cl-] for the Cp2Fe standard explains why the voltammograms obtained for solutions with 5 equiv of chloride for **4** and **5** show no further increase (**4**) or reversal (**5**) of the previously observed negative shift. The source of this shift-only expected in the case of an interaction with a positive charge³⁹-remains unexplained.

Conclusion

The new diferrocenyl sulfonamide receptor **4** is capable of anion binding and electrochemical sensing. With its two convergent N-H'''Cl H-bonds, disulfonamide **⁴** has a much higher anion affinity than the monoamide analogue **5** (NMR, e-chem).

Experimental Section

General Procedures. Solvents (analytical grade) and materials (Aldrich Chemical Co.) were used as received. 1H NMR spectra (GE-Omega 300 MHz) were referenced to residual solvent. FT-IR spectra were recorded on a MIDAC M1200 FT-IR spectrophotometer. Elemental analyses were performed by Atlantic Microlab Inc. (Norcross, GA) or Robertson Microlit Laboratories Inc. (Madison, NJ). Highresolution MS were obtained by Dr. S. Mullen (University of Illinois, Urbana-Champaign). Electrochemical data were obtained using a Princeton Model 243 potentiostat. *O*-Benzylhydroxylamine was prepared²⁵ from the hydrochloride and distilled.

Aminoferrocene. *N*-Butyllithium (15.9 mL of 2.5 M solution in hexanes, 0.0339 mmol) was added using a gas-tight syringe to

(39) Togni, A.; Hayashi, T. *Ferrocenes*; VCH: Weinheim, New York, 1995.

anhydrous Et₂O (55 mL). Ferrocene (3.34 g, 18 mmol) was added and the mixture refluxed (6 h) and then stirred (12 h). The mixture was then cooled $(-22 \degree C)$ and *O*-benzylhydroxylamine added dropwise over 15 min. The mixture was then warmed to room temperature for 45 min. HCl (30 mL, 0.1 N) was added at 0 °C and the acid layer (now orange) discarded. Two more aliquots of HCl (30 mL, 0.1 N) were added, and from the combined green-dark brown extract, an off-white product was crystallized on addition of excess 12 M NaOH dropwise, then filtered, and dried in vacuo. The product was spectroscopically identical to the reported product $(^1H$ NMR) (yield 0.75-0.93 g, $21 - 26\%$).

*N***,***N*′**-Bisferrocenyl 1,3-Benzenedicarboxamide (3).** Aminoferrocene (100 mg, 0.5 mmol) was added to isophthaloyl dichloride (51 mg, 0.25 mmol) in distilled CH₂Cl₂ (20 mL). Triethylamine (0.05 mL, 0.5 mmoL) was added and the mixture stirred for 3 h. The mixture was then washed with HCl $(3 \times 10 \text{ mL}, 0.1 \text{ N})$, and then with water $(3 \times 10 \text{ mL})$. The CH₂Cl₂ layer was dried with MgSO₄. Dropwise addition of hexanes precipitated a yellow solid (10.0 mg) which was filtered and dried in vacuo (7.5% yield). ¹H NMR (CD₂Cl₂, 19.2 °C): *δ* (ppm) 8.58 (s, 1H, ar H-2), 8.04 (d, 2H, ar H-3, $J_{3-1} = 7.5$ Hz), 7.63 (t, 1H, H-1, $J_{1-3} = 7.6$ Hz), 7.42 (br s, 2H, N-H), 4.69 (s, 4H, Fc H-4), 4.15 (s, 10H, Fc H-5), 4.03 (s, 4H, Fc H-6). Anal. Calcd for $C_{28}H_{24}N_2O_2Fe_2$: C, 63.20; H, 4.55. Found: C, 62.93; H, 4.70.

*N***,***N*′**-Bisferrocenyl 1,3-Benzenedisulfonamide (4).** Aminoferrocene (100 mg, 0.5 mmol) was dissolved in EtOH (20 mL) containing NaHCO₃ (1 g) and MgSO₄ (2 g). 1,3-Benzenedisulfonyl chloride (56 mg, 0.25 mmol) dissolved in ethanol (17 mL) was then added dropwise. The mixture was refluxed for 20 h. The resulting dark brown solution was cooled to room temperature, and after filtration of MgSO₄ and NaHCO₃, the ethanol was evaporated. The dark brown residue was redissolved in CH₂Cl₂ and the solution washed with HCl (3×20 mL, 0.1 N, or until the aqueous layer appeared colorless). The organic layer was then washed with H₂O (3×20 mL) and dried with MgSO₄. After filtration, slow evaporation of the CH_2Cl_2 gave a bright yellow powder which was filtered and dried in vacuo (66.1 mg, 54% yield). ¹H NMR (CD2Cl2, 19.2 °C): *δ* (ppm) 8.19 (s, 1H, ar H-2), 7.75 (dd, 2H, ar H-3, $J_{3-1} = 7.8$ Hz, $J_{3-2} = 0.9$ Hz), 7.50 (t, 1H, H-1, $J_{1-3} = 7.9$ Hz), 6.38 (br s, 2H, N-H), 4.21 (s, 4H, Fc H-4), 4.11 (s, 10H, Fc H-5), 4.03 (s, 4H, Fc H-6). FT-IR (thin film, cm-¹): 3228, 3090, 1492, 1178, 1157. Anal. Calcd for C₂₆H₂₄N₂S₂O₄Fe₂: C, 51.70; H, 4.00; N, 4.64. Found: C, 51.55; H, 3.99; N, 4.54.

(*N***-Ferrocenyl)-3-(ethylcarboxylate) Benzene-1-carboxamide (5).** The compound was prepared as above but from isophthaloyl dichloride (51 mg, 0.25 mmol) and with 16 h of reflux. The product precipitated as an orange powder (22.9 mg 24% yield). ¹H NMR (CD₂Cl₂, 19.2 °C): δ (ppm) 8.42 (s, 1H, ar H-2), 8.20 (d, 1H, ar H-3, $J_{3-5} = 7.5$ Hz), 8.06 (d, 1H, ar H-4, J_{4-5} = 7.3 Hz), 7.59 (t, 1H, H-5, $J_{5-4,3}$ = 7.6 Hz), 7.38 (br s, 1H, N-H), 4.74 (s, 2H, Fc H-6), 4.40 (q, 2H, H-8 $-CH_2$, J_{8-9} = 7.0 Hz), 4.19 (s, 5H, Fc H-7), 4.07 (s, 4H, Fc H-8), 1.42 (t, 3H CH₃-H-9, $J_{9-8} = 7.0$ Hz). FT-IR (thin film, $-$ cm⁻¹):
3263 3093 1719 1600 1487 Anal Calcd for CasH₁₂NO₂Fe: C, 63.70: 3263, 3093, 1719, 1600, 1487. Anal. Calcd for C₂₀H₁₉NO₃Fe: C, 63.70; H, 5.08; N, 3.71. Found: C, 62.81; H, 4.91; N, 3.60. High-resolution mass spectrometry (FAB): calcd 377.071 433, found 377.071 700.

¹H NMR Titration Experiments. Solutions of 4 and 5 in CD_2Cl_2 $(5 \times 10^{-4}$ to 1×10^{-3} M) were titrated by the standard procedure reported in ref 22, but dried $(n-Bu)$ ₄NCl was used as a titrant (1.0 \times 10^{-2} and 1.0×10^{-1} M).

Cyclic Voltammetry. Solutions $(5 \times 10^{-4} \text{ M})$ of 4, 5, and ferrocene (control) were prepared in CH_2Cl_2 containing 0.1 M $(n-Bu)_{4}NBF_4$ as supporting electrolyte. $(n-Bu)$ ₄NCl was used as a Cl^- source. The CVs were recorded using a Pt working electrode and a Ag/AgCl reference electrode before and after the addition of solid (*n*-Bu)4NCl in molar ratios of 1:1 and 1:5.

Acknowledgment. We thank Professor Gary W. Brudvig and Olaf Kievit for their kind help and the National Science Foundation for funding.

IC990813S

⁽³⁷⁾ Seel, C.; de Mendoza, J. In *Comprehensive Supramolecular Chemistry*; Vögtle, F., Ed.; Pergamon: London, 1996; Vol. 2, p 519.

⁽³⁸⁾ Fan, E.; Van Arman, S. A.; Hamilton, A. D. *J. Am. Chem. Soc.* **1993**, *115*, 369.