Flipping the Molecular Light Switch Off: Formation of DNA-Bound Heterobimetallic Complexes Using Ru(bpy)₂tpphz²⁺ and Transition Metal Ions

Steven A. Tysoe,* Roni Kopelman, and Dietrich Schelzig

Department of Chemistry and Physics, Skidmore College, Saratoga Springs, New York 12866

Received January 29, 1999

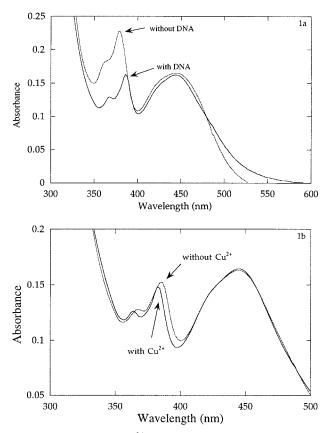
Over the past 15 years, several groups have reported on the DNA-binding properties of polypyridyl complexes of Ru(II).¹ Of these, complexes containing the ligand dppz (dppz = dipyrido-[3,2-a:2',3'-c]phenazine) have emerged as the most promising metal-based molecular probes of DNA.² The finding of strong binding constants (10^5-10^8 M^{-1}) for Ru(L)₂dppz²⁺ (L = bpy (bpy = 2,2'-bipyridine) or phen (phen = 1,10-phenanthroline)) in the presence of DNA, in conjunction with extensive spectral analysis, supports an intercalation binding model for these complexes.^{2,3} These complexes function as "molecular light switches" in aqueous solution, exhibiting negligible luminescence in the absence of DNA and strong luminescence upon addition of DNA. Protection of the phenazine nitrogens from solvent appears to be necessary for complexes of this type to luminesce in DNA solutions.⁴

The search for other "molecular light switch complexes" has led us to the investigation of $Ru(bpy)_2tpphz^{2+}$ (tpphz = tetrapyrido[3,2-a:2',3'-c:3",2"-h:2",3"-j]phenazine.⁵ In most respects, Ru-(bpy)₂tpphz²⁺ possesses properties similar to those of Ru- $(L)_2 dppz^{2+}$, including the "molecular light switch" property,⁴ placement of the phenazine nitrogens in a similar orientation, and planar architecture⁶ of the π -extended ligand. In contrast to Ru- $(L)_2 dppz^{2+}$, Ru $(bpy)_2 tpphz^{2+}$ contains a phenanthroline-like coordination site at the periphery of the tpphz ligand where metal complexation can occur.⁷ Spectroscopic evidence and correlation of data obtained for other Ru(II) complexes interacting with DNA8 suggest that Ru(bpy)₂tpphz²⁺ binds to DNA (at high [DNA-P]/ [Ru] ratios) primarily by intercalation of the tpphz ligand between adjacent base pairs of the duplex, similar to several other Ru(II) complexes that have been investigated previously.⁹ In addition, the peripheral coordination site on the tpphz ligand appears to remain accessible while $Ru(bpy)_2tpphz^{2+}$ is bound to DNA, evidenced by spectral changes consistent with metal coordination

- Barton, J. K.; Danishefsky, A. T.; Goldberg, J. M. J. Am. Chem. Soc. 1984, 106, 2172–2176. Tossi, A. B.; Kelly, J. M. Photochem. Photobiol. 1989, 5, 545–556.
- (2) Friedman, A. E.; Chambron, J.-C.; Sauvage, J.-P.; Turro, N. J.; Barton, J. K. J. Am. Chem. Soc. **1990**, 112, 4960–4962. Hiort, C.; Lincoln, P.; Norden. J. Am. Chem. Soc. **1993**, 115, 3448–3454.
- (3) Haq, I.; Lincoln, P.; Suh, D.; Norden, B.; Chowdry, B. Z.; Chaires, J. B. J. Am. Chem. Soc. 1995, 117, 4788–4796.
- (4) Jenkins, Y.; Friedman, A. E.; Turro, N. J.; Barton, J. K. *Biochemistry* 1992, 31, 10809–10816. Dupureur, C. M.; Barton, J. K. J. Am. Chem. Soc. 1994, 116, 10286.
- (5) Bolger, J.; Gourdon, A.; Ishow, E.; Launay, J. Inorg. Chem. 1996, 35, 2937–2944. Bolger, J.; Gourdon, A.; Ishow, E.; Launay, J.-P. J. Chem. Soc., Chem. Commun. 1995, 1799–1800. MacDonnell, F. M.; Bodige, S. Inorg. Chem. 1996, 35, 5758–5759. Bodige, S.; Torres, A. S.; Maloney, D. J.; Tate, D.; Kinsel, G. R.; Walker, A. K.; MacDonnell, F. M. J. Am. Chem. Soc. 1997, 119, 10364–10369.
- (6) Slight twisting in the tpphz ligand was found for crystalline dimeric [(bpy)₂Ru(tpphz)Ru(bpy)₂]⁴⁺. See ref 5.
- (7) Ru-Ru and Ru-Os dimers of tpphz have been reported by Bolger et al. See ref 5.
- (8) Hartshorn, R. M.; Barton, J. K. J. Am. Chem. Soc. 1992, 114, 5919– 5925. Mesmaeker, A. K.; Orellana, G.; Barton, J. K.; Turro, N. J. Photochem. Photobiol. 1990, 52, 461–472.
- (9) Tysoe, S. A.; Morgan, R. J.; Baker, A. D.; Strekas, T. C. J. Phys. Chem. 1993, 97, 1707–1711.

to tpphz as transition metal ions are added to DNA-bound Ru- $(bpy)_2tpphz^{2+}$.

This report focuses on the formation of DNA-bound heterobimetallic complexes using Ru(bpy)₂tpphz^{2+ 10} and Cu²⁺. We propose that coordination of Cu²⁺ occurs while the tpphz portion of Ru(bpy)₂tpphz²⁺ is intercalated between the base pairs of DNA, and addition of Cu²⁺ causes loss of luminescence and absorption spectral shifts consistent with metal complexation, coupled with *retention* of binding by intercalation. We also propose that Cu²⁺ coordinates to tpphz from the opposite side of the helical axis with respect to the intercalated Ru(bpy)₂tpphz²⁺, analogous to a molecular nut (the Cu²⁺ ion) and bolt (the Ru(bpy)₂tpphz²⁺ complex) through DNA.


Absorption spectra¹² for aqueous and calf thymus DNA (Sigma) solutions of Ru(bpy)₂tpphz²⁺ in 5 mM Tris, pH 7.4 buffer are shown in Figure 1a. At [DNA-P]/[Ru] = 50, 10 μ M Ru, essentially all of the complex is bound, and hypochromism of the bands assigned as tpphz intraligand (IT) transition bands (n- π^* and $\pi - \pi^*$)⁵ in the range 350–390 nm is evident. The hypochromism observed is not altered as a function of ionic strength (up to 1 M NaCl), contrary to weaker binding complexes such as Ru(phen)₃^{2+ 13} which lose their hypochromism under high-salt conditions. Estimates of the binding constant of Ru-(bpy)₂tpphz²⁺ to DNA are 10⁵–10⁶ M⁻¹.

Coupled with hypochromism, strong luminescence¹² centered at 617 nm is found for DNA-bound Ru(bpy)₂tpphz²⁺ at [DNA-P]/[Ru] = 50, with a monoexponential luminescence lifetime¹² (630 ± 13 ns) exceeding the lifetime of the complex in CH₃CN (213 ± 10 ns). It is thus apparent that monomeric Ru(bpy)₂tpphz²⁺ binds strongly to DNA, suggesting intercalation as a probable binding mode.

The absorption spectra in Figure 1b show DNA-bound Ru-(bpy)₂tpphz²⁺ at [DNA-P]/[Ru] = 50, 10 μ M Ru with and without 10 μ M Cu²⁺ at 25 °C. Clearly, the IT band at 384 nm shifts to higher energy, but no evidence for cation exchange as a result of added Cu²⁺ is apparent, as the hypochromism of the IT band is retained after the addition of Cu²⁺. Similarly, the IT band of the dimeric complex [(bpy)₂Ru(tpphz)Ru(bpy)₂]⁴⁺ in CH₃CN is found to be higher in energy relative to monomeric Ru(bpy)₂tphz²⁺ in CH₃CN, with an IT band at 370 nm for the dimer and 380 nm for the monomer.⁵

In association with the IT band energy shift, Figure 2 indicates that total loss of luminescence occurs with increasing amounts of Cu²⁺. A Cu²⁺ titration using a 10 μ M Ru, [DNA-P]/[Ru] = 50 solution indicated that total loss of luminescence occurred at

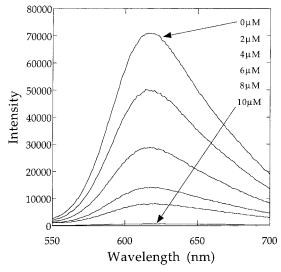

- (10) See Supporting Information for the preparation of Ru(bpy)₂tpphz²⁺.
- (11) Dervan, P. B. Science 1986, 464. Sigman, D. S. Acc. Chem. Res. 1986, 19, 180.
- (12) The experimental conditions are reported in the Supporting Information.
 (13) Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. *Biochemistry* 1992, 39, 9319–9324.
- (14) See Supporting Information concerning the binding of dinuclear [(bpy)₂Ru-(tpphz)Ru(bpy)₂]⁴⁺ to DNA.
- (15) Baker, A. D.; Morgan, R. J.; Strekas, T. C. J. Chem. Soc., Chem. Commun. 1992, 1099–1100.

Figure 1. (a) Ru(bpy)₂tpphz²⁺ (10 μ M) with and without 500 μ M calf thymus DNA, 5 mM Tris buffer, pH 7.4, [DNA-P]/[Ru] = 50 at 298 K. Reagent blanks containing 5 mM Tris and 500 μ M DNA were used for the DNA-containing solutions. (b) Same with 10 μ M Cu²⁺ added. Spectra were collected after 5 min at 298 K. A reagent blank containing 5 mM Tris and 500 μ M DNA was used.

a ca. 1:1 [Ru(bpy)₂tpphz²⁺]/[Cu²⁺] ratio. During the titration, while intensity of the luminescence decreased as a function of Cu²⁺, it was noted that the luminescence lifetime of the complex in DNA remained constant as Cu²⁺ was added. Similar quenching of luminescence due to transition metal complexation has also been observed with other Ru(II) systems, for example, with aqueous solutions of Ru(bpy)₂ppz²⁺/Cu²⁺.¹⁵

The quenching observed for this system is not consistent with quenching by diffusion-contolled intermolecular electron or energy transfer found in other systems which involve Ru(II) polypyridyls such as aqueous Ru(bpy)₃²⁺ and Ru(phen)₃²⁺.¹⁶ Typical experiments with Ru(bpy)₃²⁺ and quenchers such as ferricyanide demonstrate a decrease in luminescence intensity coupled with decreasing luminescence lifetime as a function of increasing quencher concentration, characteristic of diffusional quenching. For systems like aqueous Ru(bpy)₃²⁺, higher concentrations of quencher are generally required to see decreases in luminescence intensity and lifetime. With the DNA-bound Ru(bpy)₂tpphz²⁺ system, a decrease in luminescence intensity of DNA-bound Ru(bpy)₂tpphz²⁺ upon addition of Cu²⁺ is coupled with a nondecreasing luminescence lifetime, indicative of strong associational

Figure 2. Ru(bpy)₂tpphz²⁺ (10 μ M) in 500 μ M calf thymus DNA, 5 mM Tris buffer, pH 7.4, [DNA-P]/[Ru] = 50 at 298 K. Increasing amounts of Cu²⁺ up to 10 μ M were added. All samples were excited at 450 nm and collected under the same instrumental conditions.

quenching.¹⁷ This observation is consistent with formation of a nonluminescent species, most likely the heterobimetallic dimer $[Ru(bpy)_2(tpphz)Cu]^{4+}$. It is apparent that as Cu^{2+} becomes available, it coordinates to the $Ru(bpy)_2tpphz^{2+}$, initiating associational quenching. Those $Ru(bpy)_2tpphz^{2+}$ ions which are not coordinated to Cu^{2+} (due to insufficient availability of Cu^{2+}) remain luminescent in the DNA (with the same lifetime) until sufficient Cu^{2+} is made available for coordination to Ru- $(bpy)_2tpphz^{2+}$.

In summary, Ru(bpy)₂tpphz²⁺, a highly luminescent DNA probe, can be rendered nonluminescent yet remain intercalated in DNA by addition of equimolar concentrations of Cu²⁺. Formation of a DNA-bound heterobimetallic complex is evidenced by the retention of hypochromism of the IT bands, binding which is independent of salt concentration up to 1 M, and spectral shifts reminiscent of metal ion complexation, coupled with luminescence quenching at [Ru]/[Cu] = 1. Studies using DNA-bound Ru-(bpy)₂dppz²⁺ under identical conditions showed no evidence of luminescence quenching upon addition of Cu²⁺, presumably because Ru(bpy)₂dppz²⁺ lacks a vacant coordination site. A plausible binding model for the [Ru(bpy)₂(tpphz)Cu]⁴⁺ heterobimetallic complex situates the Ru(bpy)2tpphz2+ region of the complex intercalated between the base pairs of DNA, and places the tpphz coordination site (where Cu²⁺ coordinates) on the opposite side of the helix with respect to $Ru(bpy)_2tpphz^{2+}$. It is likely that Ru(bpy)₂tpphz²⁺ is oriented such that the periphery of the tpphz ligand protrudes out of the opposite side of the helix sufficiently to allow for coordination of Cu2+ to occur. It is evident from this binding model that if $Ru(bpy)_2tpphz^{2+}$ intercalates from the major groove, then Cu²⁺ must be coordinated in the minor groove, and conversely, if Ru(bpy)₂tpphz²⁺ intercalates from the minor groove, then Cu^{2+} must be coordinated in the major groove.

Acknowledgment. S.A.T. thanks the W. M. Keck Foundation for their continuing support of summer collaborative research. S.A.T. also thanks Physical Optics Corp. for their generous supply of reagents and Tom Werner of Union College for use of the PTI Quantamaster spectrofluorimeter.

Supporting Information Available: Synthetic and spectroscopic details and comments. This material is available free of charge via the Internet at http://pubs.acs.org.

IC9901315

⁽¹⁶⁾ Juris, A.; Balzani, V.; Barigelleti, F.; Campagna, S.; Belser, P.; Von Zelewsky, A. *Coord. Chem. Rev.* 1988, *84*, 279 and references therein.
(17) Demas, J. N. *Excited State Lifetime Measurements*; Academic Press: New

York, 1983. (18) Arkin, M. R.; Stemp, E. D. A.; Holmlin, R. E.; Barton, J. K.; Hormann,

Aixin, M. R., Steing, E. D., R., Holmint, K. E., Baron, J. K., Holmann, A.; Olson, E. J. C.; Barbara, P. F. *Science* **1996**, *37*, 475–480. Hall, D. B.; Holmlin, R. E.; Barton, J. K. *Nature* **1996**, *382*, 731–735. Meade, T. J.; Kayyen, J. F. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 352–354.