Transition Metal Complexes with Sulfur Ligands. 136.¹ Enforced Trans Coordination of Thiolate Donors in Electron Rich Iron, Ruthenium, and Nickel $[M(L)(pyN_2H_2S_2)]$ and $[M(L)(pyS_4)]$ Complexes (L = CO, PPh₃, DMSO) (pyN_2H_2S_2²⁻ = 2,6-Bis(2-mercaptophenylamino)dimethylpyridine(2-); pyS₄²⁻ = 2,6-Bis(2-mercaptophenylthio)dimethylpyridine(2-))

Dieter Sellmann,* Jürgen Utz, and Frank W. Heinemann

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany

Received February 10, 1999

In the course of a systematic study of transition metal complexes exhibiting three properties, electron rich metal centers, core structures with trans thiolate donors, and the capability to bind nitrogenase related small molecules, the pentadentate ligands $pyN_2H_2S_2-H_2$ (=2,6-bis(2-mercaptophenylamino)dimethylpyridine) and pyS_4-H_2 (=2,6-bis(2-mercaptophenylamino)dimethylpyridine) bis(2-mercaptophenylthio)dimethylpyridine) have been synthesized. Alkylation of 2(3H)-benzothiazolone by 2,6bis[(tosyloxy)methyl]pyridine and subsequent alkaline hydrolysis yielded $pyN_2H_2S_2-H_2$ (3). Template alkylation of $[Ni(S_2C_6H_4)_2]^2$ (6) by 2,6-bis[(tosyloxy)methyl]pyridine gave $[Ni(pyS_4)]_2$ (7) whose acidic hydrolysis yielded pyS_4-H_2 ·HCl (9). The reaction of Fe(II) salts with $pyN_2H_2S_2^{2-}$ gave [Fe($pyN_2H_2S_2$)] (10). Five-coordinate 10 is paramagnetic (μ_{eff} (293 K) = 5.34 μ_{B}), has a trigonal bipyramidal structure, and coordinates CO to give diamagnetic $[Fe(CO)(pyN_2H_2S_2)]$ (11). Although the $\nu(CO)$ of 11 (1928 cm⁻¹ (KBr)) indicates electron rich Fe centers and strong Fe–CO bonds, 11 readily dissociated CO in solution. Reactions of $pyN_2H_2S_2^{2-}$ with ruthenium precursor complexes yielded diamagnetic $[Ru(L)(pyN_2H_2S_2)]$, (L = DMSO (12), PPh₃ (13), or CO (14)) which have practically substitution inert Ru-L bonds. Only 12 could be converted into 14 under drastic conditions (140 bar CO, 120 °C, 12 h, THF). Methylation of the thiolate donors to give $[Ru(L)(pyN_2H_2S_2-Me_2)]I_2$ (L = DMSO (15) and PPh₃ (16)) did not labilize the Ru–L bonds. The reaction of Fe(II) salts with pyS_4^{2-} in the presence of CO yielded [Fe(CO)(pyS₄)] (17). Complex 17 has a higher ν (CO) (1955 cm⁻¹ in KBr) than 11 but is stable toward Fe-CO dissociation. The spectroscopic data of all synthesized complexes and X-ray structure analyses of 7, 10, 13, 15, 16, and 17 showed that all six-coordinate $[M(L)(pyN_2H_2S_2)]$ and $[M(L)(pyS_4)]$ complexes uniformly have C_2 symmetrical core structures and trans thiolate donors, thus differing from analogous complexes of pentadentate N_xH_xS_y²⁻ ligands (x + y = 5) whose [MN_xS_y] cores exhibit either C_S or C₁ symmetry and cis or trans thiolate donors. The ν (CO) frequencies in homologous [Fe(CO)(N_xH_yS_y)] complexes (x + y = 5) showed that exchange of aromatic thioether S for amine NH donors considerably increases the electron density at the iron centers. A minor influence was observed for the exchange of aliphatic thioether S for NH donors or changes of the $[FeN_xS_y]$ core structures.

Introduction

Metal oxidation state, type, and number of donor atoms and core structures are major factors which determine structure– function relationships of transition metal complexes.^{2,3} Structure– function relationships can also be expected to control the ability of metal complex fragments to coordinate and activate or stabilize nitrogenase related small molecules such as N₂, N₂H₂, N₂H₄, NH₃, CO, H₂, etc.⁴

In our quest for transition metal complexes binding these molecules we have found that the $[Fe(NHS_4)]$ fragment exists in the two diastereometric forms **A** and **B** (Scheme 1). Diaste-

(4) Sellmann, D. Angew. Chem. 1993, 105, 67; Angew. Chem., Int. Ed. Engl. 1993, 32, 64. reomer **A** yields high-spin [Fe(L)(NHS₄)] complexes with L = N_2H_4 , NH₃, and MeOH, diastereomer **B** forms low-spin [Fe-(L)(NHS₄)] complexes with L = CO, N_2H_2 , and PR₃. Neither diastereomer **A** or **B**, however, binds N_2 .^{5–9}

Anticipating that a higher electron density at the Fe centers favors the binding of N₂,¹⁰ we have tried to systematically exchange the potentially π -accepting S thioether functions⁹ of the NHS₄²⁻ ligand for σ -donor NH amine functions. A series of pentadentate N_xH_xS_y-H₂ ligands (x + y = 5) was prepared (Scheme 1).^{1,7,11} The characteristic and, for our goals, important

- (8) Sellmann, D.; Hofmann, T.; Knoch, F. Inorg. Chim. Acta 1994, 224, 61.
- (9) Sellmann, D.; Sutter, J. Acc. Chem. Res. 1997, 30, 460.
- (10) Henderson, R. A.; Leigh, G. J.; Pickett, C. J. Adv. Inorg. Chem. Radiochem. 1983, 27, 245.

^{*} To whom correspondence should be addressed.

⁽¹⁾ For part 135, see: Sellmann, D.; Utz, J.; Heinemann, F. W. Eur. J. Inorg. Chem. 1999, 341.

⁽²⁾ Mellor, D. P. In Chelating Agents and Metal Chelates; Dwyer, F. P., Mellor, D. P., Eds.; Academic Press: New York, 1964; p 44.

⁽³⁾ Burger, K. In *Biocoordination Chemistry*; Burger, K., Ed.; Ellis Horwood: New York, 1990; p 11.

⁽⁵⁾ Sellmann, D.; Soglowek, W.; Knoch, F.; Ritter, G.; Dengler, J. *Inorg. Chem.* **1992**, *31*, 3711.

⁽⁶⁾ Sellmann, D.; Soglowek, W.; Knoch, F.; Moll, M. Angew. Chem. 1989, 101, 1244; Angew. Chem., Int. Ed. Engl. 1989, 28, 1271.

⁽⁷⁾ Sellmann, D.; Kunstmann, H.; Knoch, F.; Moll, M. Inorg. Chem. 1988, 27, 4183.

Transition Metal Complexes with Sulfur Ligands

feature common to all these ligands are the terminal thiolate functions. The ν (CO) bands of the iron carbonyl complexes [Fe-(CO)(N₂H₂S₃)] and [Fe(CO)(N₃H₃S₂)] (~1930 cm⁻¹) indeed indicate a higher electron density at the iron centers than in [Fe(CO)(NHS₄)] (1960 cm⁻¹). However, these CO complexes are labile in solution, readily dissociate CO, and exhibit the core structure **C**. This structure, due to its cis thiolate donors, is unfit to stabilize reactive species such as diazene via bifurcated N–H• ••(S)₂ bridges, which are a major stabilization factor of diazene in complexes such as [μ -N₂H₂{Fe(NHS₄)}₂] and related species.^{6,9}

Finally, the aromatic NH functions of $[M(L)(N_2H_2S_3)]$ and $[M(L)(N_3H_3S_2)]$ complexes readily deprotonate to give amide donors, possibly accounting for the limited coordination chemistry of [Fe(N₂H₂S₃)] and [Fe(N₃H₃S₂)] complex fragments that bind only CO. Analogous [Ru(L)(N₂H₂S₃)] and [Ru(L)(N₃H₃S₂)] complexes, which could only be obtained with $L = PR_3$ and NO^+ , also exhibit the core structure C, and proved virtually substitution inert. For these reasons we have now tried to exchange the conformationally flexible central NH(C2H4)2 bridge in the $N_xH_xS_y$ -H₂ ligands by the rigid 2,6-bismethylenepyridine entity (C₅H₃N)(CH₂)₂ ([py(CH₂)₂]).¹² The goal was to introduce steric constraints in the target ligands pyN₂H₂S₂- H_2 and pyS_4 - H_2 , to enforce meridional coordination of the three central donors and trans coordination of the terminal thiolate donors, such that the resulting core structure D compares to the diastereomer **B** of [Fe(NHS₄)].

When our studies were in progress, H. Vahrenkamp et al. published the synthesis of $pyN_2H_2S_2-H_2$ and one of its zinc complexes.¹³ We found that [Fe(CO)($pyN_2H_2S_2$)] exhibits the anticipated core structure **D** and a ν (CO) frequency (1928 cm⁻¹) indicating a high electron density at the iron center. Nevertheless, [Fe(CO)($pyN_2H_2S_2$)] proved as labile as [Fe(CO)($N_2H_2S_3$)] and [Fe(CO)($N_3H_3S_2$)] with respect to CO dissociation. This was a major reason to synthesize the pyS_4 -H₂ ligand and to

(12) Rothermel, G. L., Jr.; Miao, L.; Hill, A. L.; Jackels, S. C. Inorg. Chem. 1992, 31, 4854.

(13) Brand, U.; Burth, R.; Vahrenkamp, H. Inorg. Chem. 1996, 35, 1083.

investigate its coordination to Fe(II) centers in orienting experiments.

Experimental Section

General Methods. Unless noted otherwise, all procedures were carried out under N₂ at room temperature using Schlenk techniques. Solvents were dried and distilled before use. As far as possible the reactions were monitored by IR spectroscopy. Spectra were recorded on the following instruments: IR, Perkin-Elmer 16 PC FT-IR; NMR, JEOL JNM-GX 270 and JNM-EX 270; mass spectra, Varian MAT 212 and JEOL JMS 700. [RuCl₂(PPh₃)₃],¹⁴ [RuCl₂(DMSO)₄],¹⁵ [Ru-(H)(Cl)(CO)(PCy₃)₂],¹⁶ 1,2-benzenedithiol,¹⁷ 2,6-bis[(tosyloxy)methyl]-pyridine,¹⁸ and 2(3*H*)-benzothiazolone¹⁹ were prepared by literature methods. Hydrazine was obtained by 2-fold distillation of N₂H₄·H₂O over solid potassium hydroxide under reduced pressure.

Syntheses. Alkylation of 2(3H)-Benzothiazolone (1) by 2,6-Bis-[(tosyloxy)methyl]pyridine To Give 2. A suspension of 2(3H)-benzothiazolone (1) (0.34 g, 2.25 mmol) and K₂CO₃ (0.38 g, 2.75 mmol) in 2-butanone (20 mL) was refluxed for 30 min and then combined with a suspension of 2,6-bis[(tosyloxy)methyl]pyridine (0.51 g, 1.14 mmol) in 2-butanone (20 mL). The reaction mixture was refluxed for another 14 h and evaporated to dryness. The white residue was dissolved in boiling EtOH (20 mL). Addition of H2O (40 mL) precipitated a white powder, which was separated, recrystallized from EtOH, and dried in vacuo yielding 0.33 g (72%) of **2**. IR (KBr, cm⁻¹): 1682 vs ν (CO). ¹H NMR (DMSO- d_6 , ppm, 269.6 MHz): $\delta = 7.80-7.01$ (m, 11 H, CH(aryl)), 5.17 (s, 4 H, CH₂). ¹³C{¹H} NMR (DMSO-d₆, ppm, 67.7 MHz): $\delta = 169.0$ (CO), 154.7, 138.4, 136.9, 126.4, 123.1, 122.8, 121.3, 120.9, 111.5 (C(aryl)), 46.9 (CH₂). MS (FD, DMSO): m/z 405 [2]⁺. Anal. Calcd for C₂₁H₁₅N₃O₂S₂ (405.50): C, 62.20; H, 3.73; N, 10.36; S, 15.82. Found: C, 62.42; H, 3.91; N, 10.45; S, 15.73.

 $pyN_2H_2S_2$ - H_2 (3). A solution of NaOH (0.26 g, 6.50 mmol) in H₂O (20 mL) was added to a suspension of 2 (0.33 g, 0.81 mmol) in EtOH (20 mL). The mixture was refluxed for 14 h, cooled to room temperature, and concentrated hydrochloric acid was added until pH 5 was reached. The resulting solution was concentrated in volume to one-half, diluted with H₂O (20 mL), and extracted with CH₂Cl₂ (50 mL). The combined CH₂Cl₂ phases were dried with anhydrous Na₂SO₄, filtered, and evaporated to dryness yielding **3** (0.28 g, 97%) as a viscous yellow oil which solidified at room temperature. IR (KBr, cm⁻¹): 3414

- (14) Stephenson, T. A.; Wilkinson, G. J. Inorg. Nucl. Chem. 1966, 28, 945.
- (15) Evans, I. P.; Spencer, A.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1973, 204.
- (16) Sellmann, D.; Ruf, R.; Knoch, F.; Moll, M. Inorg. Chem. 1995, 34, 4745.
- (17) Degani, J.; Fochi, R. Synthesis 1976, 7, 471.
- (18) Bradshaw, J. S.; Huszthy, P.; McDaniel, C. W.; Zhu, J. Y.; Dalley, N. K.; Izatt, R. M. J. Org. Chem. **1990**, 55, 3129.
- (19) Hunter, R. F. J. Chem. Soc. 1930, 125.

⁽¹¹⁾ Sellmann, D.; Utz, J.; Heinemann, F. W. Inorg. Chem. 1999, 38, 459.

w, 3395, 3374 m ν (NH), 2524, 2505 w ν (SH). ¹H NMR (CD₂Cl₂, ppm, 269.6 MHz): $\delta = 7.51-6.65$ (m, 11 H, CH(aryl)), 5.98-4.55 (s, br, 2 H, NH), 4.41 (s, 4 H, CH₂), 4.15-2.65 (s, br, 2 H, SH). ¹³C{¹H} NMR (CD₂Cl₂, ppm, 67.7 MHz): $\delta = 157.9$, 148.4, 137.5, 135.2, 129.6, 120.2, 117.4, 112.1, 111.0 (C(aryl)), 49.2 (CH₃). MS (FD, CH₂Cl₂): m/z 706 [(pyN₂H₂S₂-H₂)₂]⁺, 353 [pyN₂H₂S₂-H₂]⁺. Anal. Calcd for C₁₉H₁₉N₃S₂ (353.51): C, 64.55; H, 5.42; N, 11.89; S, 18.14. Found: C, 64.30; H, 5.54; N, 11.89; S, 19.71.

*pyN*₂*H*₂*S*₂-*Me*₂ (4). MeI (0.50 mL, 8.03 mmol) was added to a solution of pyN₂H₂*S*₂-H₂ (3) (1.09 g, 3.08 mmol) and LiOMe (6.20 mmol, 6.20 mL of a 1 M solution in MeOH) in THF (20 mL). The reaction mixture was stirred for 16 h and then evaporated to dryness. The residue was redissolved in a 1:1 mixture (80 mL) of H₂O and CH₂Cl₂. The CH₂Cl₂ phase was separated, dried with anhydrous Na₂-SO₄ and evaporated to dryness yielding 4 (1.00 g, 85%) as a yellow oil. ¹H NMR (CD₂Cl₂, ppm, 269.6 MHz): δ = 7.62 (t, 1 H, H_γ, pyridine), 7.42 (dd, 2 H, C₆H₄), 7.22 (d, 2 H, H_β, pyridine), 7.13 (dt, 2 H, C₆H₄), 6.67 (dt, 2 H, C₆H₄), 6.60 (d, 2 H, C₆H₄), 5.97 (t, 2 H, NH), 4.55 (d, 4 H, CH₂), 2.39 (s, 6 H, SCH₃). ¹³C{¹H} NMR (CD₂Cl₂, ppm, 67.7 MHz): δ = 158.5, 148.2, 137.5, 133.9, 129.5, 120.6, 120.0, 117.4, 110.7 (*C*(aryl)), 49.5 (*C*H₂), 18.2 (SCH₃). MS (FD, THF): *m*/*z* 762 {[pyN₂H₂S₂-Me₂]₂⁺, 381 [pyN₂H₂S₂-Me₂]⁺.

*pyN*₂*H*₂*S*₂-*Me*₂·2*HCl* (5). Concentrated hydrochloric acid (0.20 mL, 2.40 mmol) was added to a solution of pyN₂H₂*S*₂-Me₂ (4) (0.42 g, 1.10 mmol) in MeOH (20 mL). After removal of the solvents the bright yellow residue was digested three times with CH₂Cl₂ (15 mL), and dried in vacuo to yield 0.47 g (90%) of **5**. ¹H NMR (DMSO-*d*₆, ppm, 269.6 MHz): δ = 9.75 (s, br, 4 H, N*H*), 8.35 (t, 1 H, H_γ, pyridine), 7.72 (d, 2 H, H_β, pyridine), 7.28 (d, 2 H, C₆*H*₄), 7.00 (t, 2 H, C₆*H*₄), 6.61 (t, 2 H, C₆*H*₄), 6.59 (d, 2 H, C₆*H*₄), 4.92 (s, 4 H, C*H*₂), 2.35 (s, 6 H, SC*H*₃). ¹³C{¹H} NMR (DMSO-*d*₆, ppm, 67.7 MHz): δ = 155.6, 146.0, 146.0, 132.4, 128.6, 123.3, 120.6, 117.8, 110.3 (*C*(aryl)), 43.6 (CH₂), 17.2 (SCH₃). MS (FD, DMSO): *m*/*z* 381 [pyN₂H₂S₂-Me₂]⁺. Anal. Calcd for C₂₁H₂₅Cl₂N₃S₂·H₂O (472.51): C, 53.38; H, 5.76; N, 8.89; S, 13.57. Found: C, 53.54; H, 5.66; N, 8.71; S, 13.64.

[*Fe*(*py*N₂*H*₂*S*₂)] (*10*). A solution of FeCl₂·4H₂O (0.123 g, 0.617 mmol) in MeOH (15 mL) was added to a solution of $pyN_2H_2S_2$ -H₂ (**3**) (0.218 g, 0.617 mmol) and LiOMe (1.23 mmol, 1.23 mL of a 1 M solution in MeOH) in THF (20 mL) yielding a yellow suspension. After 30 min the yellow solid was separated, washed with THF and MeOH (20 mL each), and dried in vacuo yielding 0.247 g (98%) of **10**. IR (KBr, cm⁻¹): 3283 m, 3152 w, br ν (NH). MS (FD, DMSO): *m/z* 407 [Fe(pyN₂H₂S₂)]⁺. μ_{eff} (293 K) = 5.34 μ_{B} . Anal. Calcd for C₁₉H₁₇FeN₃S₂ (407.35): C, 56.02; H, 4.21; N, 10.32; S, 15.74. Found: C, 55.97; H, 4.21; N, 10.31; S, 16.23.

[*Fe*(*CO*)(*py*N₂*H*₂*S*₂)] (11). CO was bubbled through a yellow suspension of [Fe(pyN₂H₂S₂)] (10) (0.38 g, 0.49 mmol) in CH₂Cl₂ (30 mL) for 2 h. An orange solid resulted which was separated, washed with CH₂Cl₂ (20 mL), and dried in vacuo yielding 0.42 g (99%) of 11. (11 is obtained in equally high yields when the reaction mixture resulting in the synthesis of 10 is directly treated with CO for 2 h.) IR (KBr, cm⁻¹): 3280 w, 3176 w, br ν (NH), 1928 vs ν (CO). ¹H NMR (DMSO-*d*₆, ppm, 269.6 MHz): δ = 7.83 (t, 1 H, H_γ, pyridine), 7.54 (d, 2 H, H_β, pyridine), 7.03 (d, 2 H, C₆H₄), 6.97 (d, 2 H, C₆H₄), 6.70 (m, 4 H, C₆H₄), 6.50 (d, 2 H, NH), 4.54 (dd, 2 H, CHH), 4.22 (d, 2 H, CHH). ¹³C{¹H} NMR (DMSO-*d*₆, ppm, 67.7 MHz): δ = 222.8 (CO), 158.1, 150.7, 149.2, 136.5, 129.4, 125.8, 124.6, 120.2, 119.7 (*C*(aryl)), 67.2 (*C*H₂). MS (FD, DMSO): *m*/*z* 407 [Fe(pyN₂H₂S₂)]⁺. Anal. Calcd for C₂₀H₁₇FeN₃OS₂·0.25CH₂Cl₂ (456.59): C, 53.27; H, 3.86; N, 9.20; S, 14.05. Found: C, 53.27; H, 4.09; N, 9.30; S, 14.24.

[$Ru(CO)(pyN_2H_2S_2)$] (14). (a) From [Ru(DMSO)(pyN_2H_2S_2)] (12). In an autoclave, a yellow suspension of [Ru(DMSO)(pyN_2H_2S_2)]·MeOH (12·MeOH) (0.100 g, 0.178 mmol) in THF (30 mL) was heated to 120 °C under 140 bar of CO pressure for 12 h. The yellow solid was separated, washed with THF and MeOH (30 mL each), and dried in vacuo yielding 0.078 g (88%) of 14·0.5MeOH. (b) From [Ru(H)(Cl)-(PCy₃)₂(CO)]. [Ru(H)(Cl)(PCy₃)₂(CO)] (0.206 g, 0.283 mmol) was added to a solution of $pyN_2H_2S_2-H_2$ (3) (0.100 g, 0.283 mmol) and LiOMe (0.28 mmol, 0.28 mL of a 1 M solution in MeOH) in THF (25 mL). The reaction mixture was stirred for 3 h and the resulting red solution refluxed for 3 h. The precipitating yellow solid was separated, washed with THF and MeOH (10 mL each), and dried in vacuo yielding 0.02 g (14%) of **14**·0.5MeOH. IR (KBr, cm⁻¹): 3284, 3241 w ν(NH), 1927 vs ν(CO). ¹H NMR (DMSO-*d*₆, ppm, 269.6 MHz): $\delta = 8.37$ (d, 2 H, N*H*), 7.73 (t, 1 H, H_γ, pyridine), 7.41 (d, 2 H, H_β, pyridine), 7.18–7.08 (m, 4 H, C₆*H*₄), 6.84–6.72 (m, 4 H, C₆*H*₄), 4.87 (dd, 2 H, C*H*H), 4.48 (d, 2 H, CH*H*). ¹³C{¹H} NMR (DMSO-*d*₆, ppm, 67.7 MHz): $\delta = 207.2$ (CO), 155.5, 149.9, 149.1, 137.3, 129.9, 126.1, 125.0, 120.5, 120.2 (*C*(aryl)), 69.2 (*C*H₂). MS (FD, DMSO, ¹⁰²Ru): *m/z* 481 [Ru(CO)(pyN₂H₂S₂)]⁺. Anal. Calcd for C₂₀H₁₇N₃ORuS₂·0.5CH₃OH (496.60): C, 49.58; H, 3.86; N, 8.46. Found: C, 49.83; H, 4.14; N, 7.51.

[*Ru*(*PPh*₃)(*pyN*₂*H*₂*S*₂)] (*13*). [RuCl₂(*PPh*₃)₃] (0.814 g, 0.849 mmol) was added to a solution of pyN₂H₂S₂-H₂ (3) (0.300 g, 0.849 mmol) and LiOMe (1.70 mmol, 1.70 mL of a 1 M solution in MeOH) in THF (20 mL). The reaction mixture was stirred for 15 h and then refluxed for 2 h yielding a red suspension. The red solid was separated, washed with MeOH and *n*-hexane (15 mL each), and dried in vacuo to yield 0.500 g (79%) of **13**·MeOH. IR (KBr, cm⁻¹): 3247, 3200 w ν (NH). ¹H NMR (DMSO- d_6 , ppm, 269.6 MHz): $\delta = 7.47$ (t, 1 H, H_y, pyridine), 7.24 (d, 2 H, H_{β}, pyridine), 7.19–6.50 (m, 23 H, C₆H₄ and P(C₆H₅) superimposed), 6.25 (d, 2 H, NH), 4.81 (dd, 2 H, CHH), 4.31 (d, 2 H, CH*H*). ¹³C{¹H} NMR (DMSO- d_6 , ppm, 67.7 MHz): $\delta = 156.6, 151.5, \delta = 156.6, 151.5, \delta = 156.6, 151.5, \delta = 156.6, 151.5, \delta = 156.6, 0.51,$ 148.9 (C(aryl)), 137.5 (d, P(C₆H₅)), 133.8 (C(aryl)), 132.8 (d, P(C₆H₅)), 129.8 (C(aryl)), 127.7 (br, P(C₆H₅)), 126.9 (d, P(C₆H₅)), 125.2, 124.8, 119.3, 119.0 (C(aryl)), 69.9 (CH₂). ³¹P{¹H} NMR (DMSO-d₆, ppm, 109.38 MHz): $\delta = 52.9$ (s, $P(C_6H_5)$). MS (FD, DMSO, ¹⁰²Ru): m/z715 [Ru(PPh₃)(pyN₂H₂S₂)]⁺. Anal. Calcd for C₃₇H₃₂N₃PRuS₂•CH₃OH (746.91): C, 61.11; H, 4.86; N, 5.63; S, 8.59. Found: C, 61.24; H, 4.65; N, 5.69; S, 8.70.

 $[Ru(PPh_3)(pyN_2H_2S_2-Me_2)]I_2$ (16). (a) From $[Ru(PPh_3)(pyN_2H_2S_2)]$. MeOH (13·MeOH). MeI (2.28 g, 16.1 mmol) was added to a red solution of [Ru(PPh₃)(pyN₂H₂S₂)]·MeOH (13·MeOH) (0.21 g, 0.28 mmol) in THF (30 mL). The reaction mixture was stirred for 2 d yielding a beige suspension. The beige solid was separated, washed with THF and MeOH (10 mL each), recrystallized from CH2Cl2/nhexane, and dried in vacuo to yield 0.23 g (80%) of 16.0.33CH₂Cl₂. (b) From pyN₂H₂S₂-Me₂ (4). pyN₂H₂S₂-Me₂ (4) was synthesized in situ by addition of MeI (0.15 mL, 2.41 mmol) to a solution of pyN2H2S2-H₂ (3) (0.34 g, 0.96 mmol) and LiOMe (1.95 mmol, 1.95 mL of a 1 M solution in MeOH) in THF (20 mL) and stirring the reaction mixture for 12 h. After removal of the solvent the yellow residue was dissolved in THF (20 mL) and [RuCl₂(PPh₃)₃] (0.86 g, 0.90 mmol) was added. The brown reaction mixture was refluxed for 4 h yielding a green suspension, from which a beige solid could be separated. The beige solid was washed with THF and MeOH (10 mL each), recrystallized from CH2Cl2/n-hexane, and dried in vacuo to yield 0.65 g (70%) of 16.0.33CH2Cl2. IR (KBr, cm⁻¹): 3190 w v(NH). ¹H NMR (DMSO $d_{6},$ ppm, 269.6 MHz): δ = 7.97 (t, 1 H, H_{\gamma}, pyridine), 7.93 (d, 2 H, NH), 7.58 (d, 2 H, H_{β}, pyridine), 7.47-7.03 (m, 23 H, C₆H₄ and P(C₆H₅)₃ superimposed), 5.56 (dd, 2 H, CHH), 4.58 (d, 2 H, CHH), 1.95 (s, 6 H, SCH₃). ¹³C{¹H} NMR (DMSO-d₆, ppm, 67.7 MHz): δ = 158.9, 151.8, 138.3, 132.9 (d), 132.0, 131.5 (d), 131.0, 129.7, 128.8, 128.0 (d), 125.2, 121.4 (C(aryl)), 69.1 (CH₂), 22.0 (d, SCH₃). ³¹P{¹H} NMR (DMSO- d_6 , ppm, 109.38 MHz): $\delta = 39.2$ (s, $P(C_6H_5)$). MS (FD, DMSO, ¹⁰²Ru): m/z] 745 [Ru(PPh₃)(pyN₂H₂S₂-Me₂)]⁺, 730 [Ru(PPh₃)- $(pyN_2H_2S_2-Me)$ ⁺, 715 [Ru(PPh₃)(pyN_2H_2S_2)]⁺. Anal. Calcd for C₃₉H₃₈I₂N₃PRuS₂•0.33CH₂Cl₂ (1027.05): C, 46.00; H, 3.79; N, 4.09; S, 6.24. Found: C, 45.89; H, 3.89; N, 4.14; S, 6.02.

[*Ru*(*DMSO*)(*pyN*₂*H*₂*S*₂)] (12). [RuCl₂(DMSO)₄] (0.137 g, 0.283 mmol) was added to a solution of pyN₂H₂S₂-H₂ (**3**) (0.100 g, 0.283 mmol) and LiOMe (0.57 mmol, 0.57 mL of a 1 M solution in MeOH) in THF (25 mL). The reaction mixture was stirred for 15 h and then refluxed for 2 h. A yellow suspension resulted, from which the yellow solid was separated, washed with THF (20 mL), and dried in vacuo yielding 0.11 g (69%) of **12**·MeOH. IR (KBr, cm⁻¹): 3106 w, br *v*-(NH), 1011 s *v*(SO). ¹H NMR (DMSO-*d*₆, ppm, 269.6 MHz): δ = 7.51 (t, 1 H, H_γ, pyridine), 7.47 (d, 2 H, N*H*), 7.24 (d, 2 H, H_β, pyridine), 7.22–7.14 (m, 4 H, C₆H₄), 6.77–6.64 (m, 4 H, C₆H₄), 4.68 (dd, 2 H, CHH), 4.28 (d, 2 H, CHH), 3.15 (s, 3 H, CH₃S(O)CH₃). ¹³C{¹H} NMR (DMSO-*d*₆, ppm, 67.7 MHz): δ = 156.8, 150.6, 150.0, 134.2, 130.0, 125.6, 125.2, 119.7, 119.4 (*C*(aryl)), 68.7

(CH₂), 46.4, 44.2 (CH₃). MS (FD, DMSO, 102 Ru): m/z 906 [Ru-(pyN₂H₂S₂)]₂⁺, 453 [Ru(pyN₂H₂S₂)]⁺. Anal. Calcd for C₂₁H₂₃N₃-ORuS₃·CH₃OH (562.75): C, 46.96; H, 4.84; N, 7.47. Found: C, 47.05; H, 5.01; N, 6.81.

[*Ru*(*DMSO*)(*pyN*₂*H*₂*S*₂-*Me*₂)]*I*₂ (*15*). MeI (0.1 mL, 1.6 mmol) was added to a yellow suspension of [Ru(DMSO)(*pyN*₂*H*₂*S*₂)]•MeOH (*12*• MeOH) (0.10 g, 0.178 mmol) in THF (30 mL). The reaction mixture was stirred for 2 d yielding a red suspension. The red solid was separated, washed with THF and MeOH (10 mL each), and dried in vacuo to yield 0.14 g (91%) of **15**•0.75THF. IR (KBr, cm⁻¹): 3260 w, br *v*(NH), 1020 s *v*(SO). ¹H NMR (DMSO-*d*₆, ppm, 269.6 MHz): δ = 10.18 (d, 2 H, NH), 8.00–7.41 (m, 11 H, CH(aryl)), 5.34 (dd, 2 H, CHH), 4.57 (d, 2 H, CHH), 3.00 (s, 3 H, CH₃S(O)CH₃), 2.74 (s, 3 H, CH₃S(O)CH₃), 2.08 (s, br, 6 H, CH₃). ¹³C{¹H} NMR (DMSO-*d*₆, ppm, 67.7 MHz): δ = 157.9, 151.6, 138.6, 132.3, 131.9, 131.5, 129.4, 125.9, 121.9 (*C*(aryl)), 67.3 (CH₂), 46.6, 45.7 (CH₃, DMSO), 21.9 (CH₃). MS (FD, DMSO, ¹⁰²Ru): *m*/*z* 561 [Ru(DMSO)(pyN₂H₂S₂-Me₂)]⁺. Anal. Calcd for C₂₃H₂₉I₂N₃S₃RuO•0.75C₄H₈O (868.67): C, 35.95; H, 4.06; N, 4.84. Found: C, 35.83; H, 4.32; N, 4.91.

[*Ni*(*pyS*₄)]₂ (7). A solution of Ni(ac)₂·4H₂O (0.96 g, 3.84 mmol) in MeOH (15 mL) was added to a solution of 1,2-benzenedithiol (1.09 g, 7.68 mmol) and LiOMe (15.3 mmol, 15.3 mL of a 1 M solution in MeOH) in MeOH (20 mL). The resulting solution was combined with a suspension of 2,6-bis[(tosyloxy)methyl]pyridine (1.72 g, 3.84 mmol) in THF (30 mL) and stirred for 14 h. A brown-yellow suspension formed from which the brown solid was separated, washed with THF and MeOH (20 mL each), and dried in vacuo to yield 1.4 g (79%) of 7•MeOH. IR (KBr, cm⁻¹): 3049 m ν (CH(aryl)), 1594 m, 1577 s ν -(CC(aryl)), 738 s δ (CH(aryl)). MS (FD, DMSO, ⁵⁸Ni): *m/z* 443 [Ni-(pyS₄)]⁺, μ_{eff} (293 K) = 3.28 μ_{B} . Anal. Calcd for C₃₈H₃₀N₂Ni₂S₈•CH₃OH (920.63): C, 50.88; H, 3.72; N, 3.04; S, 27.86. Found: C, 50.67; H, 3.44; N, 3.18; S, 26.13.

*pyS*₄-*H*₂·*HCl* (9). Concentrated hydrochloric acid (15 mL) was added to a suspension of [Ni(pyS₄)]₂·MeOH (7·MeOH) (1.0 g, 1.09 mmol) in CH₂Cl₂ (30 mL) and stirred for 1 h. The CH₂Cl₂ phase was separated from the green H₂O phase, dried with anhydrous Na₂SO₄, and evaporated to dryness yielding 9 (0.90 g, 98%) as a white foam. IR (KBr, cm⁻¹): 2550 m, br *v*(NH) + *v*(SH). ¹H NMR (CD₂Cl₂, ppm, 269.6 MHz): δ = 17.5 (s, br, 1 H, NH), 7.82 (t, 1 H, H_γ, pyridine), 7.35 (d, 2 H, C₆H₄), 7.32 (d, 2 H, C₆H₄), 7.21 (dt, 2 H, C₆H₄), 7.10 (d, 2 H, H_β, pyridine), 7.09 (dt, 2 H, C₆H₄), 4.59 (s, 4 H, CH₂), 4.34 (s, 2 H, SH). ¹³C{¹H} NMR (CD₂Cl₂, ppm, 67.7 MHz): δ = 154.1, 143.8, 138.6, 135.4, 129.8, 129.6, 126.5, 125.0 (*C*(aryl)), 35.6 (*C*H₂). MS (FD, CH₂Cl₂): *m/z* 388 [pyS₄-H₃]⁺. Anal. Calcd for C₁₉H₁₈ClNS₄ (424.08): C, 53.81; H, 4.28; N, 3.30; S, 30.25. Found: C, 53.70; H, 4.18; N, 3.32; S, 30.06.

 $[Fe(CO)(pyS_4)]$ (17). (a) From pyS_4 -H₂·HCl (9). To a solution of pyS₄-H₂·HCl (9) (1.55 g, 3.65 mmol) and LiOMe (10.95 mmol, 10.95 mL of a 1 M solution in MeOH) in MeOH (20 mL), into which CO was continuously introduced, a solution of FeCl₂·4H₂O (0.726 g, 0.65 mmol) in MeOH (20 mL) was added. A red suspension resulted which was saturated with CO for another 2 h. The red solid was separated, washed with MeOH (30 mL), and dried in vacuo yielding 1.56 g (85%) of 17 MeOH. (b) From 1,2-benzenedithiol. FeCl₂ 4H₂O (0.87 g, 4.38 mmol) was added to a solution of 1,2-benzenedithiol (1.25 g, 8.79 mmol) and LiOMe (17.6 mmol, 17.6 mL of a 1 M solution in MeOH) in MeOH (40 mL). The resultant solution was saturated with CO for 3 h, combined with a solution of 2,6-bis[(tosyloxy)methyl]pyridine (1.97 g, 4.40 mmol) in THF (40 mL) and stirred for 24 h. After filtration the solution was concentrated in volume to one-half and diluted with MeOH (40 mL). A red solid precipitated which was separated, washed with MeOH (25 mL), and dried in vacuo to yield 1.20 g (55%) of 17 · MeOH. IR (KBr, cm⁻¹): 1955 vs v(CO). ¹H NMR (THF-d₈, ppm, 269.6 MHz): $\delta = 7.63 - 7.56$ (m, 2 H, C₆H₄), 7.44 (t, 1 H, H_y, pyridine), 7.36-7.30 (m, 2 H, C₆H₄), 7.28 (d, 2 H, H_β, pyridine), 6.90-6.80 (m, 4 H, C₆H₄), 4.99 (d, 2 H, CHH), 4.68 (d, 2 H, CHH). ¹³C{¹H} NMR (THF- d_8 , ppm, 67.7 MHz): $\delta = 217.9$ (CO), 159.2, 158.8, 136.5, 133.8, 132.3, 131.0, 128.8, 122.4, 122.0 (C(aryl)), 56.5 (CH2). MS (FD, THF, [m/z]): 882 { $[Fe(pyS_4)]_2$ }⁺, 441 [$Fe(pyS_4)$]⁺. Anal. Calcd for C₂₀H₁₅-FeNOS₄·CH₃OH (501.50): C, 50.30; H, 3.82; N, 2.79; S, 25.58. Found: C, 50.58; H, 3.60; N, 2.79; S, 25.76.

X-ray Structure Analysis of [Fe(pyN₂H₂S₂)] (10), [Ru(PPh₃)- $(pyN_2H_2S_2)$]·1.5THF (13·1.5THF), $[Ru(PPh_3)(pyN_2H_2S_2-Me_2)]I_2$ · CH2Cl2 (16·CH2Cl2), [Ru(DMSO)(pyN,H2S2-Me2)]I05Cl15·1.5CH2Cl2· 0.5DMSO (15'·1.5CH₂Cl₂·0.5DMSO), [Fe(CO)(pyS₄)]·MeOH (17· MeOH), and $[Ni(pyS_4)]_2$ (7). Brown plates of $[Fe(pyN_2H_2S_2)]$ (10) were obtained by layering a solution of $pyN_2H_2S_2$ -H₂ (3) (0.109 g, 0.309 mmol) and LiOMe (0.62 mmol, 0.62 mL of a 1 M solution in MeOH) with a solution of FeCl2+4H2O (0.062 g, 0.309 mmol) in MeOH (20 mL). Green plates of [Ru(PPh₃)(pyN₂H₂S₂)]·1.5THF (13·1.5THF) formed when a saturated solution of 13 in THF was layered with Et₂O. Yellow-green blocks of [Ru(PPh3)(pyN2H2S2-Me2)]I2·CH2Cl2 (16·CH2-Cl₂) and green blocks of [Ru(DMSO)(pyN₂H₂S₂-Me₂)]I_{0.5}Cl_{1.5}·1.5CH₂-Cl₂•0.5DMSO (15'•1.5CH₂Cl₂•0.5DMSO), respectively, were grown from a saturated solution of 16 in CH_2Cl_2 and 15 in a 10:1 mixture of CH₂Cl₂:DMSO which was layered with n-hexane. The Cl⁻ ions located in the structure of 15' are assumed to derive from the solvent CH₂Cl₂. The distribution of the counterions Cl⁻ and I⁻ was estimated from the X-ray data as well as from the elemental analysis (Anal. Calcd for $[Ru(DMSO)(pyN_2H_2S_2\text{-}Me_2)]I_{0.5}Cl_{1.5}\text{-}1.5CH_2Cl_2\text{-}0.5DMSO:\ C,\ 36.30;$ H, 4.18; N, 4.98; S, 13.30. Found: C, 35.38; H, 4.22; N, 4.72; S, 12.95). Layering a saturated solution of 17 in THF with MeOH gave red columns of [Fe(CO)(pyS₄)]·MeOH (17·MeOH). Dark green plates of $[Ni(pyS_4)]_2$ (7) formed by layering a solution of pyS_4 -H₂·HCl (9) (0.100 g, 0.236 mmol) and LiOMe (0.707 mmol, 0.707 mL of a 1 M solution in MeOH) in THF (30 mL) with a solution of Ni(ac)2·4H2O (0.059 g, 0.236 mmol) in MeOH (30 mL). Suitable single crystals were sealed under N₂ in glass capillaries and data were collected with a Siemens P4 diffractometer using Mo K α radiation ($\lambda = 71.073$ pm, graphite monochromator). The structures were solved by direct methods (SHELXTL 5.03).²⁰ Full-matrix least-squares refinements were carried out on F^2 -values (SHELXTL 5.03).²⁰ In the case of 10, 16, 15', and 7 all hydrogen atoms were calculated for ideal geometries. Their isotropic displacement parameters were tied to those of the adjacent carbon atoms by a factor of 1.5. 16 crystallizes with 1 molecule of CH₂Cl₂ per formula unit. 15' crystallizes with 1.5 molecules of CH2Cl2 and 0.5 molecule of DMSO per formula unit. One CH2Cl2 as well as the DMSO molecule are located on a crystallographic mirror plane. The methyl group bound to S1 is disordered (C1A and C1B). Two sites could be refined, of which site A is occupied to 67(2)% and site B to 33(2)%. Compound 13 crystallizes with 1.5 molecules of THF per unit of which half a THF is disordered and located on an inversion center. The H atoms of the other THF molecule were calculated for ideal geometries. Their isotropic displacement parameters were tied to those of the adjacent carbon atoms by a factor of 1.5. For the disordered THF no H atoms were considered. All other H atoms of 13 as well as the H atoms of 17 were located in a difference Fourier synthesis and isotropically refined, except H2 (hydroxyl H atom) of 17. For H2 of compound 17 both the coordinates and an isotropic displacement parameter were kept fixed during refinement. Table 1 contains selected crystallographic data of [Fe(pyN₂H₂S₂)] (10), [Ru(PPh₃)(pyN₂H₂S₂)]·1.5THF (13·1.5THF), [Ru-(PPh₃)(pyN₂H₂S₂-Me₂)]I₂•CH₂Cl₂ (16•CH₂Cl₂), [Ru(DMSO)(pyN₂H₂S₂-Me2)]I0.5Cl1.5.1.5CH2Cl2.0.5DMSO (15'-1.5CH2Cl2.0.5DMSO), [Fe- $(CO)(pyS_4)$]·MeOH (17·MeOH), and $[Ni(pyS_4)]_2$ (7).

Results and Discussion

Syntheses of Ligands. The target ligands $pyN_2H_2S_2$ - H_2 (3) and pyS_4 - H_2 (8) were synthesized according to the routes indicated in Scheme 2.

For the synthesis of $pyN_2H_2S_2-H_2$ (**3**), we used the route which had proved successful in the preparation of the analogous $N_2H_2S_3-H_2$ and $N_3H_3S_2-H_2$ ligands.^{1,11} Treatment of deprotonated 2(*3H*)-benzothiazolone (**1**) with 2,6-bis[(tosyloxy)methyl]pyridine yielded **2**. Traces of byproducts resulting from *O*-alkylation of **1**²¹ were removed by extracting the crude product with EtOH. The *N*-alkylation of **1** could be confirmed, in particular, by the CO group ¹³C{¹H} NMR signal ($\delta = 169.0$ ppm) and

 ⁽²⁰⁾ SHELXTL 5.03, Siemens Analytical X-ray Instruments, 1995.
 (21) Cf.: Klein, G.; Prijs, B. *Helv. Chim. Acta* 1954, *37*, 2057.

Table 1. Selected Crystallographic Data for [Fe($pyN_2H_2S_2$)] (10), [Ru(PPh_3)($pyN_2H_2S_2$)]·1.5THF (13·1.5THF),[Ru(PPh_3)($pyN_2H_2S_2$ -Me_2)]I₂·CH₂Cl₂ (16·CH₂Cl₂), [Ru(DMSO)($pyN_2H_2S_2$ -Me_2)]I_{0.5}Cl_{1.5}·1.5CH₂Cl₂·0.5DMSO (15'·1.5CH₂Cl₂·0.5DMSO),[Fe(CO)(pyS_4)]·MeOH (17·MeOH), and [Ni(pyS_4)]₂ (7)

compd	10	13- 1.5THF	$16 \cdot CH_2Cl_2$	15'-1.5CH ₂ Cl ₂ -0.5DMSO	17 •MeOH	7
formula	C ₁₉ H ₁₇ FeN ₃ S ₂	C43H44N3O1.5PRuS2	$C_{40}H_{40}Cl_2I_2N_3PRuS_2$	C25.5H35Cl4.5I0.5N3O1.5RuS3.5	C21H19FeNO2S4	C38H30N2Ni2S8
fw	407.33	820.96	1083.61	843.82	501.46	888.54
cryst size, mm ³	$0.6\times0.3\times0.15$	$0.5 \times 0.3 \times 0.1$	$0.5 \times 0.4 \times 0.3$	$0.6 \times 0.5 \times 0.4$	$0.5 \times 0.4 \times 0.1$	$0.25 \times 0.25 \times 0.08$
cryst system	monoclinic	triclinic	monoclinic	orthorhombic	triclinic	triclinic
space group	$P2_{1}/c$	$P\overline{1}$	$P2_{1}/n$	Pnma	$P\overline{1}$	$P\overline{1}$
a, pm	1290.3(3)	1086.1(2)	1059.5(1)	1852.9(6)	840.5(3)	837.6(2)
b, pm	960.3(5)	1355.2(3)	2342.6(2)	3337.2(6)	1126.0(6)	1064.9(2)
c, pm	1421.9(3)	1443.8(3)	1684.6(2)	1085.1(3)	1226.5(5)	1094.2(2)
α, deg	90	111.13(1)	90	90	67.97(4)	77.56(1)
β , deg	96.52(2)	103.74(1)	92.85(1)	90	84.30(3)	79.19(2)
γ , deg	90	97.82(1)	90	90	88.50(4)	81.24(2)
V, nm ³	1.750(1)	1.8670(7)	4.1760(7)	6.710(3)	1.0706(8)	0.9298(3)
Ζ	4	2	4	8	2	1
$d_{\rm calc}, {\rm g/cm^3}$	1.546	1.460	1.724	1.671	1.556	1.587
μ (Mo K α), mm ⁻¹	1.106	0.615	2.153	1.531	1.113	1.494
<i>T</i> , K	200	200	293	200	293	293
2θ range, deg	$5.1 \le 2\theta \le 55.2$	$4.2 \le 2\theta \le 54.0$	$3.4 \le 2\theta \le 54.5$	$4.3 \le 2\theta \le 50.0$	$4.2 \le 2\theta \le 54.3$	$4.9 \le 2\theta \le 52.0$
meas reflns	5720	9288	11229	7385	5365	4422
indep reflns	4051	7803	9207	6013	4737	3641
obsd reflns	2699	5250	5360	4458	3595	1162
refined params	226	598	462	384	334	226
R_1 (w R_2), ^{<i>a,b</i>} %	4.48 (12.66)	5.60 (12.81)	4.45 (11.99)	6.70 (19.02)	2.68 (6.86)	5.86 (14.86)
q^b	0.0684	0.0328	0.0601	0.1000	0.0419	0.0457
r^{b}		2.9082				
$^{a}R_{1} = \left[\sum F_{0} \right]$	$- F_{\rm c} /\Sigma F_{\rm o} $ for	$F > 4\sigma(F)$. ^b wR ₂ =	$\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2 - F_c^2)$	$[w(F_0^2)^2]^{1/2}$, where $w = 1/[\sigma]$	$^{2}(F_{o}^{2}) + (qP)^{2} +$	rP] and $P = (F_0^2 +$

 $K_1 = [\Delta || F_0 |$ $2F_c^2)/3.$

the ν (CO) IR band at 1682 cm⁻¹ (in KBr). Alkaline hydrolysis of **2** and subsequent acidification gave **3** in quantitative yield as a yellow oil, which solidified at room temperature. This preparation of **3** differs from that reported by Vahrenkamp et al., who used 2,6-pyridinedialdehyde and 1,2-aminothiophenol as starting materials.¹³ The alkylation of **3** with MeI yielded the *S*-alkylated ligand pyN₂H₂S₂-Me₂ (**4**) as a yellow oil which was purified via its white dihydrochloride pyN₂H₂S₂-Me₂•2HCl (**5**).

For the synthesis of pyS_4-H_2 (8) nickel coordinated 1,2benzenedithiolate $[Ni(S_2C_6H_4)_2]^{2-}$ (6)²²⁻²⁶ was template alkylated with 2,6-bis[(tosyloxy)methyl]pyridine to give the dinuclear brown $[Ni(pyS_4)]_2$ (7). Complex 7 readily hydrolyzed when treated with hydrochloric acid to yield pyS_4-H_2 (8) which was isolated as the pyridinium salt pyS_4-H_2 (9).

The compounds 2, 3, 4, and 9 are well soluble in CH_2Cl_2 and THF, the salts 5 and 9 dissolve in MeOH while complex 7 is only sparingly soluble in hot DMF and DMSO. The compounds were characterized by elemental analysis and spectroscopic methods, and the molecular structure of 7 was determined by X-ray diffraction.

Syntheses and Reactions of Complexes. Scheme 3 summarizes the syntheses and reactions of $pyN_2H_2S_2^{2-}$ and pyS_4^{2-} complexes.

The reaction between Fe(II) salts and the $pyN_2H_2S_2^{2-}$ anion resulting from deprotonation of **3** with LiOMe gave yellow paramagnetic [Fe($pyN_2H_2S_2$)] (**10**) (μ_{eff} (293 K) = 5.34 μ_B). X-ray structure determination proved that **10** is mononuclear

- (23) Sellmann, D.; Fünfgelder, S.; Pöhlmann, G.; Knoch, F.; Moll, M. Inorg. Chem. 1990, 29, 4772.
- (24) Sellmann, D.; Fünfgelder, S.; Knoch, F.; Moll, M. Z. Naturforsch. 1991, 46b, 1601.
- (25) Sellmann, D.; Bail, P.; Knoch, F.; Moll, M. Chem. Ber. 1995, 128, 653.
- (26) Sellmann, D.; Bail, P.; Knoch, F.; Moll, M. Inorg. Chim. Acta 1995, 237, 137.

and exhibits a structure which had been aimed at by introducing the $[py(CH_2)_2]$ bridge into the $[FeN_3S_2]$ core. Complex **10** readily coordinated CO to give the C_2 symmetric and diamagnetic $[Fe(CO)(pyN_2H_2S_2)]$ (**11**) showing trans thiolate donors. The $\nu(CO)$ of **11** (1928 cm⁻¹) further indicated a high electron density at the Fe center and strong Fe–CO π -back-bonding. Although **11** is stable in solid state, it slowly dissociated CO in THF solution to give back **10**. CO dissociation had also been observed for the analogous $[Fe(CO)(N_3H_3S_2)]$. In a further analogy to the $[Fe(N_3H_3S_2)]$ fragment, the $[Fe(pyN_2H_2S_2)]$ fragment did not add any other ligand than CO when treated, for example, with N₂H₄, NEt₄N₃, PMe₃, or N₂ under pressure.

These findings prompted us to proceed as in the previous investigations with the $N_2H_2S_3^{2-}$ and $N_3H_3S_2^{2-}$ ligands^{1,11} and to also study those ruthenium complexes that could be expected to be less labile. Treatment of [RuCl₂(DMSO)₄] and [RuCl₂- $(PPh_3)_3$] with $pyN_2H_2S_2^{2-}$ gave yellow $[Ru(DMSO)(pyN_2H_2S_2)]$ (12) and red $[Ru(PPh_3)(pyN_2H_2S_2)]$ (13), which proved not only less labile but virtually substitution inert. They did not exchange their DMSO or PPh₃ coligand for CO (50 bar, 20 °C, 2 d), N₂H₄ (N₂H₄ used as solvent, 40 °C, 1 d) or other nitrogen compounds at ambient or moderately elevated temperatures. Only under drastic conditions (140 bar of CO, 120 °C, 12 h) could DMSO/ CO exchange be observed for 12 to give yellow [Ru(CO)- $(pyN_2H_2S_2)$] (14). As for the homologous [Fe(CO)($pyN_2H_2S_2$)] (11), the ν (CO) of 14 (1927 cm⁻¹) indicates a high electron density at the metal center and a strong M-CO bond, but in contrast to the Fe complex 11, the ruthenium complex 14 is stable in solid state as well as in solution at ambient and elevated temperatures up to 100 °C. Complex 14 was also obtained from $[Ru(H)(Cl)(CO)(PCy_3)_2]$ and $pyN_2H_2S_2^{2-}$, but only in very low yields. In an attempt to diminish the substitution inertness of $[Ru(DMSO)(pyN_2H_2S_2)]$ (12) and $[Ru(PPh_3)(pyN_2H_2S_2)]$ (13), the thiolate donors of 12 and 13 were alkylated with MeI,²⁷⁻³⁰

⁽²²⁾ Baker-Hawkes, M. J.; Billig, E.; Gray, H. B. J. Am. Chem. Soc. 1966, 88, 4870.

⁽²⁷⁾ Sellmann, D.; Mahr, G.; Knoch, F.; Moll, M. Inorg. Chim. Acta 1994, 224, 45.

Scheme 2. Synthesis of Ligands

a) + 2 K₂CO₃, + (C₅H₃N)(CH₂OTs)₂, 2-butanone, reflux, 14 h; b) 1. + NaOH, EtOH / H₂O, reflux, 24 h;

2. + HCl; c) + 2 LiOMe, + exc. Mel, 16 h; d) + HCl, MeOH

yielding the thioether derivatives [Ru(DMSO)(pyN₂H₂S₂-Me₂)]- I_2 (15) and $[Ru(PPh_3)(pyN_2H_2S_2-Me_2)]I_2$ (16). Complexes 15 and 16 were fully characterized, but they proved as substitution inert as the precursor complexes 12 and 13. For example, the PPh₃ ligand of [Ru(PPh₃)(pyN₂H₂S₂-Me₂)]I₂ (16) could not be substituted by CO or N₂H₄. In these experiments it was noted that 16 is not deprotonated by N₂H₄ to give, e.g., [Ru-(PPh₃)(pyN₂HS₂-Me₂)]I, thus differing from the related [Ru-(PPh₃)(N₃H₃S₂-Me₂)]I₂ which readily and reversibly deprotonates to give $[Ru(PPh_3)(N_3H_2S_2-Me_2)]I$. This indicates a potentially important reactivity difference of $[M(L)(N_3H_3S_2)]$ and $[M(L)(pyN_2H_2S_2)]$ complexes. In fact, the core structure of $[M(L)(pyN_2H_2S_2)]$ complexes is expected to disfavor the deprotonation of the aromatic NH functions into amide functions, as the deprotonation requires a conversion of tetrahedral four-coordinate N into planar three-coordinate N atoms.³¹

The extreme substitution inertness of the $[Ru(L)(pyN_2H_2S_2)]$ complexes and the very limited coordination chemistry of the $[Fe(pyN_2H_2S_2)]$ complex fragment on one hand, and the rich coordination chemistry of the $[Fe(NHS_4)]$ complex fragment on the other hand, prompted us to return to complexes with $[Fe(NS_4)]$ cores and to synthesize the pyS_4^{2-} ligand. As a

first target complex, [Fe(CO)(pyS₄)] (17) was prepared. Complex 17 was obtained either by template alkylation of [Fe(CO)₂(S₂C₆H₄)₂]²⁻³² with [py(CH₂OTs)₂] or from FeCl₂· 4H₂O and pyS₄²⁻ in the presence of CO. Although the ν (CO) of 17 (1955 cm⁻¹) indicates a weaker Fe–CO bond in 17 than in [Fe(CO)(pyN₂H₂S₂)] (11) (1928 cm⁻¹), 17 is stable toward Fe–CO dissociation in solid state as well as in solution.

General Spectroscopic Properties of Complexes. All complexes, with the exception of $[Fe(pyN_2H_2S_2)]$ (10) and [Ni- (pyS_4)]₂ (7), are diamagnetic. They are soluble in DMF and DMSO, only moderately soluble in CH₂Cl₂ and usually insoluble in other common organic solvents. All complexes have been characterized by elemental analysis and IR, NMR, and mass spectra. The FD mass spectra exhibited either the molecular ions or ions resulting from loss of the coligands. The complexes with $[M(pyN_2H_2S_2)]$ cores exhibit either one unresolved broad or two weak ν (NH) IR bands in the region of 3290–3100 cm⁻¹. Characteristic IR bands are the very strong ν (CO) absorptions of **11** (1928 cm⁻¹), **14** (1927 cm⁻¹), and **17** (1955 cm⁻¹). The frequency of the strong $\nu(SO)$ IR bands of [Ru(DMSO)- $(pyN_2H_2S_2)$] (12) (1011 cm⁻¹) and $[Ru(DMSO)(pyN_2H_2S_2 Me_2$]I₂ (15) (1020 cm⁻¹) indicated S coordination of the DMSO ligands.¹⁵ The ¹³C{¹H} NMR spectra proved the most suitable spectroscopic probe for determining the symmetry of the complexes. Nine plus one ¹³C NMR signals for the aromatic

⁽²⁸⁾ Sellmann, D.; Rohm, C.; Moll, M. Z. Naturforsch. 1995, 50b, 1729.

⁽²⁹⁾ Treichel, P. M.; Rosenhein, L. D. Inorg. Chem. 1981, 20, 942.

⁽³⁰⁾ Sellmann, D.; Becker, T.; Knoch, F. Chem. Eur. J. 1996, 2, 1072.

⁽³¹⁾ Cameron, B. R.; House, D. A.; McAuley, A. J. Chem. Soc., Dalton Trans. 1993, 1019.

⁽³²⁾ Sellmann, D.; Kreutzer, P.; Unger, E. Z. Naturforsch. 1978, 33b, 190.

a) + FeCl₂ · 4 H₂O, MeOH / THF; b) + CO, 1 bar, 2 h, CH₂Cl₂; c) + [RuCl₂(PPh₃)₃], THF, reflux, 2 h; d) + exc. Mel, THF, 2 d; e) + [Ru(H)(Cl)(CO)(PCy₃)₂], THF, reflux, 3 h; f) + [RuCl₂(DMSO)₄], THF, reflux, 2 h; g) + CO, 140 bar, THF, 120 °C, 12 h

h) + (C₅H₃N)(CH₂OTs)₂, THF / MeOH, 24 h; i) + FeCl₂ · 4 H₂O, + CO, MeOH, 2 h

and the methylene C atoms of the chelate ligands clearly indicated C_2 symmetry for the [M(L)(pyN₂H₂S₂)] complexes and [Fe(CO)(pyS₄)]. One ¹³C NMR signal for the S methyl groups of 16 further indicated that S-alkylation of 13 had occurred in a diastereoselective way yielding only one diastereomer of 16. The S-CH₃ ¹³C NMR signal of 15 is distinctly broadened and probably consists of two unresolved singlets indicating the formation of two diastereomers, which were revealed by the X-ray structure determination of 15. The ¹H NMR spectra, too, are consistent with C_2 symmetrical structures. For example, the chemically equivalent CH₂ protons of the free ligands become magnetically nonequivalent in $[M(pyN_2H_2S_2)]$ or $[Fe(CO)(pyS_4)]$ (17) giving rise to two signals. In the case of 17, these signals are split into doublets; in the case of [M(L)- $(pyN_2H_2S_2)$] complexes the lower field doublet is further split into a doublet of doublets due to coupling with the adjacent NH proton.

X-ray Structure Determinations. X-ray structure analyses corroborated the spectroscopic results for several complexes. Figure 1 depicts the molecular structures of $[Fe(pyN_2H_2S_2)]$ (10) and $[Fe(CO)(pyS_4)]$ ·MeOH (17·MeOH). Table 2 lists selected distances and angles. The core structure of 10 is a distorted

Figure 1. ORTEP diagrams of (a) $[Fe(pyN_2H_2S_2)]$ (10) and (b) $[Fe(CO)(pyS_4)]$ ·MeOH (17·MeOH) (50% probability ellipsoids; H atoms and solvate molecules omitted).

trigonal bipyramid in which the pyridine donor N3 and the two thiolate donors occupy equatorial and the two amine donors N1 and N2 apical positions. Complex **10** exhibits approximate C_2 symmetry with the C_2 axis going through the Fe1–N3 bond. The [Fe(pyS₄)] core of pseudo-octahedral [Fe(CO)(pyS₄)] (**17**) also has approximate C_2 symmetry. The distinct difference of Fe–S and Fe–N distances in paramagnetic **10** vs diamagnetic **17** can plausibly be traced back to electrons in antibonding metal–ligand molecular orbitals.^{5,9}

Figure 2. ORTEP diagrams of (a) $[Ru(PPh_3)(pyN_2H_2S_2)]$ ·1.5THF (13·1.5THF), (b) the cation of $[Ru(PPh_3)(pyN_2H_2S_2-Me_2)]I_2$ ·CH₂Cl₂ (16·CH₂-Cl₂), and (c) the cation of $[Ru(DMSO)(pyN_2H_2S_2-Me_2)]I_{0.5}Cl_{1.5}$ ·1.5CH₂-Cl₂·0.5DMSO (15'·1.5CH₂Cl₂·0.5DMSO) (50% probability ellipsoids; H atoms and solvate molecules omitted).

Table 2. Selected Distances (pm) and Angles (deg) of $[Fe(pyN_2H_2S_2)]$ (10) and $[Fe(CO)(pyS_4)]$ ·MeOH (17·MeOH)

complex	10	17·MeOH	complex	10	17·MeOH
Fe1-N1	223.6(3)	201.4(2)	N3/S4-Fe1-S2	135.36(8)	90.26(5)
Fe1-S1	236.9(1)	231.1(2)	N2/S3-Fe1-S2	84.41(8)	87.43(5)
Fe1-S2	232.1(1)	228.9(2)	N2/S3-Fe1-S1	121.12(8)	89.87(5)
Fe1-N2/S3	226.4(3)	222.5(1)	N1-Fe1-N3/S4	75.41(11)	85.12(6)
Fe1-N3/S4	209.8(3)	223.2(1)	N1-Fe1-S2	107.01(8)	89.44(6)
Fe1-C1		175.7(2)	N1-Fe1-C1		178.19(8)

The Fe-S and Fe-N distances of **10** lie between those found in related high-spin and low-spin Fe(II) complexes.⁵⁻⁹ For example, the Fe-S distances of **10** (236.9(1) and 232.1(1) pm) are longer than in **17** (d(Fe-S(thiolate)): 231.1(2) and 228.9-(2) pm) but shorter than in high-spin [Fe(N₂H₄)(NHS₄)] (d(Fe-S(thiolate)): 238.1(3) and 240.2(3) pm).

The closest analogue to **10** is high-spin [Fe(NHS₄)]•THF,⁸ which also has a pseudo-trigonal bipyramidal structure. The closest structural analogue to **17** is [Fe(CO)(NHS₄)]. Both **17** and [Fe(CO)(NHS₄)] exhibit virtually identical Fe–S(thiolate) and Fe–S(thioether) distances. They differ in the Fe–N distances (**17**, 201.4(2) pm; [Fe(CO)(NHS₄)], 207.2(8) pm) and in their symmetry. While **17** has approximate C_2 symmetry in solid state and C_2 symmetry in solution, [Fe(CO)(NHS₄)] has, due to the NH(C₂H₄)₂ bridge, only C_1 symmetry in solid state and in solution.

Figure 2 depicts the molecular structures of the ruthenium complexes [Ru(PPh₃)(pyN₂H₂S₂)] \cdot 1.5THF (**13** \cdot 1.5THF), [Ru-(PPh₃)(pyN₂H₂S₂-Me₂)]I₂ \cdot CH₂Cl₂ (**16** \cdot CH₂Cl₂), and [Ru(DMSO)-(pyN₂H₂S₂-Me₂)]I_{0.5}Cl_{1.5} \cdot 1.5CH₂Cl₂ \cdot 0.5DMSO (**15**' \cdot 1.5CH₂Cl₂ \cdot 0.5DMSO). Selected distances and angles are listed in Table 3.

In all complexes the ruthenium centers are pseudo-octahedrally surrounded and the [Ru($pyN_2H_2S_2$)] cores exhibit approximate C_2 symmetry. Distances and angles show no anomalies. The Ru–S(thiolate) are only slightly longer than the Ru– S(thioether) distances (~237 vs ~233 pm), and the Ru–NH distances (~213 pm) are distinctly longer than the Ru– N(pyridine) distances (~201 pm). The relatively large difference

Figure 3. ORTEP diagram of $[Ni(pyS_4)]_2$ (7) (50% probability ellipsoids; H atoms omitted).

 Table 3.
 Selected Distances (pm) and Angles (deg) of

 $[Ru(PPh_3)(pyN_2H_2S_2)] \cdot 1.5THF$ (13 $\cdot 1.5THF$),

 $[Ru(PPh_3)(pyN_2H_2S_2-Me_2)]I_2 \cdot CH_2Cl_2$ (16 $\cdot CH_2Cl_2$), and

 $[Ru(DMSO)(pyN_2H_2S_2-Me_2)]I_0.5Cl_{1.5} \cdot 1.5CH_2Cl_2 \cdot 0.5DMSO$ (15' $\cdot 1.5CH_2Cl_2 \cdot 0.5DMSO$)

complex	13·1.5THF	$16{\boldsymbol{\cdot}} CH_2 Cl_2$	15'-1.5CH ₂ Cl ₂ -0.5DMSO
Ru1-N1	211.9(4)	214.1(4)	213.4(6)
Ru1-N2	217.3(4)	214.4(4)	213.5(6)
Ru1-N3	201.2(4)	203.8(4)	199.5(5)
Ru1-S1	236.5(2)	234.8(2)	232.4(2)
Ru1-S2	238.0(2)	232.5(2)	234.0(2)
Ru1-P1/S3	230.1(1)	237.4(1)	227.0(2)
N1-Ru1-S1	85.0(1)	83.6(1)	83.8(2)
N2-Ru1-S1	92.1(1)	98.4(1)	95.2(2)
N2-Ru1-S2	83.3(1)	83.9(1)	84.0(2)
N3-Ru1-N1	78.9(2)	79.4(2)	79.7(2)
N3-Ru1-S1	86.8(1)	93.2(1)	91.7(2)
N3-Ru1-P1/S3	170.7(1)	177.7(1)	176.3(2)

Table 4. Selected Distances (pm) and Angles (deg) of $[Ni(pyS_4)]_2$ (7)

Ni1-N1	206.0(8)	S4-Ni1-S2	87.5(1)
Ni1-S1	239.6(3)	S3-Ni1-S2	92.9(1)
Ni1-S2	238.1(3)	S3-Ni1-S1	87.07(9)
Ni1-S3	239.7(3)	N1-Ni1-S4	82.5(2)
Ni1-S4	237.5(3)	N1-Ni1-S2	93.3(2)
Ni1-S1A ^a	244.8(3)	N1-Ni1-S1A	173.4(2)

^{*a*} Symmetry code: -x, -y + 2, -z + 1.

in the Ru–N1 and Ru–N2 distances of **13** (211.9(4) vs 217.3-(4) pm) is certainly due to crystal packing effects, because the NMR spectra unambiguously reveal C_2 symmetry for **13** in solution. The molecular structure of **15'** confirmed the S coordination of the DMSO ligand which had been indicated by the IR spectrum. Worth noting is the formation of only one diastereomer in the case of [Ru(PPh₃)(pyN₂H₂S₂-Me₂)]²⁺ while two diastereomers in a ratio of 2:1 are formed in the case of the [Ru(DMSO)(pyN₂H₂S₂-Me₂)]²⁺ cation. The 2:1 ratio of the two diastereomers follows from the disorder of the S1–CH₃ groups which could be refined with an A:B occupancy of 67-(2):33(2)%. The formation of only one diastereomer in the case of the cation of **16** can be traced back to the sterically demanding PPh₃ ligand which allows nucleophilic attack of the thiolate donors only from one side.

Figure 3 depicts the molecular structure of $[Ni(pyS_4)]_2$ (7) which had been obtained as intermediate in the pyS_4 -H₂ synthesis. Table 4 lists selected distances and angles.

The dinuclear $[Ni(pyS_4)]_2$ (7) exhibits crystallographically imposed inversion symmetry. The nickel centers are pseudooctahedrally coordinated, the $[Ni(pyS_4)]$ cores are approximately C_2 symmetrical, and bridged via thiolate donors. The Ni-S thiolate and thioether distances in the range of 237–240 pm are typical for paramagnetic six coordinate nickel complexes Scheme 4. Donor Atom Sets, Core Structures and ν (CO) Frequencies (cm⁻¹) of [Fe(CO)L] Complexes (L = S₅²⁻, NHS₄²⁻, pyS₄²⁻, N₂H₂S₃²⁻, N₃H₃S₂²⁻, pyN₂H₂S₂²⁻)

and have also been found in the closely related $[Ni(NHS_4)]_2$.³³ The Ni-N(pyridine) distances in **7** (206.0(8) pm) are (expectedly) shorter than Ni-N distances to aliphatic NH donors such as in $[Ni(NHS_4)]_2$ (d(Ni-N): 214.4(7) pm).

The structures of all complexes described here demonstrate that the C_2 symmetrical core structures can be considered a typical feature of $[M(pyN_2H_2S_2)]$ and $[M(pyS_4)]$ fragments because they are maintained over a wide range of metal donor distances in both five- and six-coordinate complexes which can be diamagnetic or paramagnetic.

Influence of Donor Atom Sets and Core Structures upon the Metal Electron Density in Six-Coordinate [Fe(CO)(N_xS_y)] **Complexes** (x + y = 5). The ligands and iron carbonyl complexes described in this and preceding papers^{34,35} render it possible to estimate the influence of donor atom sets and core structures upon the electron density at the iron centers. The ν -(CO) frequency of the complexes is used as a probe and [Fe- $(CO)(S_5)]$ (S₅²⁻ = 2,2'-bis(2-mercaptophenylthio)diethyl sulfide-(2-)) as the starting complex. Scheme 4 schematically depicts the structures of the relevant complexes and demonstrates that exchange of aliphatic thioether S atoms for either aliphatic N or pyridine N donors does not significantly change the $\nu(CO)$ frequencies in $[Fe(CO)(S_5)]$ (1960 cm⁻¹) and $[Fe(CO)(NHS_4)]$ (1960 cm^{-1}) or $[Fe(CO)(pyS_4)]$ (1955 cm^{-1}) . (The Fe-S distances within the [FeS₄] planes of these three complexes also remain approximately identical.)

The ν (CO) decrease of 27 cm⁻¹ between [Fe(CO)(pyS₄)] and the isostructural [Fe(CO)(pyN₂H₂S₂)] allows a conclusion that the comparable ν (CO) difference of 26–28 cm⁻¹ between [Fe-(CO)(NHS₄)] (1960 cm⁻¹) and [Fe(CO)(N₂H₂S₃)] (1932 cm⁻¹) or [Fe(CO)(N₃H₃S₂)] (1934 cm⁻¹) is rather due to the exchange of aromatic thioether S by aromatic NH donors than caused by different core structures.

Conclusion

The primary aim of this work was the synthesis of the new ligands $pyN_2H_2S_2^{2-}$ and pyS_4^{2-} in order to introduce steric constraints into iron and ruthenium complexes with either $[MN_3S_2]$ or $[MNS_4]$ cores. Variation of the electron density at the metal centers and enforced trans coordination of the thiolate donors as found in low-spin $[Fe(L)(NHS_4)]$ complexes (L = CO, PR₃, N₂H₂) were intended to favor the coordination of nitrogenase related small molecules including N₂.

- (33) Sellmann, D.; Fünfgelder, S.; Knoch, F. Z. Naturforsch. 1991, 46b, 1593.
- (34) Sellmann, D.; Binker, G.; Moll, M.; Herdtweck, E. J. Organomet. Chem. 1987, 327, 403.
 (24) Sellmann, D.; Binker, G.; Moll, M.; Herdtweck, E. J. Organomet.
- (35) Sellmann, D.; Kleine-Kleffmann, U. J. Organomet. Chem. 1983, 258, 315.

The results show that increasing the number of N donors increases the electron density at the metal centers of complexes with $[M(L)(N_xS_y)]$ cores. Exchange of aromatic thioether S vs aromatic amine NH donors has a major effect in comparison to an exchange of aliphatic thioether S vs NH and pyridine N donors or to a change of the metal donor core structure. The introduction of $[py(CH_2)_2]$ bridges into the pentadentate N_xS_y ligands caused steric constraints insofar as all complexes with $[M(pyN_2H_2S_2)]$ or $[M(pyS_4)]$ fragments invariably exhibit C_2 symmetrical core structures and trans coordination of the thiolate donors as found in the low-spin $[Fe(L)(NHS_4)]$ complexes (L = CO, PR₃, NO⁺, N₂H₂, etc.).

The steric constraints and the increase of the metal electron density effected by a growing number of N donors do not necessarily lead to kinetically more stable M–L bonds in [M(L)- (N_xS_y)] complexes. This result, which we cannot plausibly explain yet, is demonstrated by the pair of [Fe(CO)(pyN₂H₂S₂)] and [Fe(CO)(pyS₄)] complexes. Although the ν (CO) bands indicate stronger Fe–CO bonds in [Fe(CO)(pyN₂H₂S₂)] than in [Fe(CO)(pyS₄)], [Fe(CO)(pyN₂H₂S₂)] is much more labile than [Fe(CO)(pyS₄)] toward CO dissociation. The ability of the [Fe(pyN₂H₂S₂)] fragment to coordinate ligands other than CO is as limited as that of the related [Fe(N₂H₂S₃)] or [Fe(N₃H₃S₂)] fragments, which have a different core structure.

The complex fragment $[Ru(pyN_2H_2S_2)]$ is slightly more versatile in binding various coligands, but the resulting complexes proved extremely substitution inert and did not yield nitrogenase related series of complexes with N_xH_y ligands either. More detailed investigations of the $[Fe(pyS_4)]$ fragment, which is analogous to the $[Fe(NHS_4)]$ fragment, but sterically preorganized, are being carried out in order to test its binding capability toward nitrogenase related small molecules.

Acknowledgment. Support of these investigations by the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie is gratefully acknowledged.

Supporting Information Available: X-ray crystallographic data, in CIF format, for compounds **7**, **10**, **13**•1.5THF, **15**′•1.5CH₂Cl₂• 0.5DMSO, **16**•CH₂Cl₂, and **17**•MeOH. This material is available free of charge via the Internet at http://pubs.acs.org. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as depository nos. 132879 (**7**), 132880 (**10**), 132881 (**13**•1.5THF), 132882 (**15**′•1.5CH₂Cl₂•0.5DMSO), 132883 (**16**•CH₂Cl₂), and 132884 (**17**•MeOH). Copies of the data can be obtained free of charge upon application to The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: int. code +44(1223)336-033, E-mail: deposit@ chemcrys.cam.ac.uk).

IC990169H