B–H Bond Protonation in Mono- and Diprotonated Borane Complexes H_3BX (X = N_2H_4 , NH₂OH, and H_2O_2) Involving Hypercoordinate Boron¹

Golam Rasul, G. K. Surya Prakash, and George A. Olah*

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661

Received August 5, 1999

Structures of mono- and diprotonated borane complexes H_3BX (X = N_2H_4 , NH_2OH , and H_2O_2) as well as their neutral analogues were calculated using the density functional theory method at the B3LYP/6-311+G** level. Global minimum structures (**3**, **9**, and **14**) for all of the monocations H_4BX^+ are B-H protonated with a threecenter two-electron bond. Remarkably, in the case of monoprotonated hydrazine-borane $H_3BNH_2NH_2$ (**1**), the B-H protonated $H_4BNH_2NH_2^+$ (**3**) was calculated to be 6.3 kcal/mol more stable than the N-protonated H_3 -BNH₂NH₃⁺ (**2**), unexpectedly indicating that the bonded electron pair of the B-H bond is a better donor than the nonbonded nitrogen electron pair in hydrazine-borane complex **1**.

Introduction

Recently we reported² the ab initio calculated structures of protonated borane–Lewis base complexes H_4BX^+ (X = NH₃, PH₃, OH₂, SH₂, and CO). All of the H_4BX^+ complexes were found to be B–H protonated, involving hypercoordinate boron with a three-center two-electron (3c-2e) bond. The protonation energies of H_3BX to form H_4BX^+ were calculated to be highly exothermic.² The neutron diffraction structure of BH₃NH₃ has recently been reported by Crabtree et al., which shows that the molecules tend to have close N–H···H–B contacts as a result of a novel type of intermolecular hydrogen or dihydrogen bonding.^{3a} In continuation of our study we have now extended our investigations to mono- and diprotonated borane complexes H₃BX (X = N₂H₄, NH₂OH, and H₂O₂) as well as their neutral analogues using density functional theory (DFT) calculations.

Calculations

Calculations were carried out with the Gaussian 98 program system.^{3b} The geometry optimizations were performed using the DFT⁴ method at the $B3LYP^{5}/6-311+G^{**}$ level.⁶ Vibrational frequencies at the

- Rasul, G.; Prakash, G. K. S.; Olah, G. A. Inorg. Chem. 1999, 38, 44.
 (a) Klooster, W. T.; Koetzle, T. F.; Siegbahn P. E. M.; Richardson, T. B.; Crabtree, R. H. J. Am. Chem. Soc. 1999, 121, 6337. (b) Gaussian 98 (Revision A.5): Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, R. E.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; M. Head-Gordon, M.; Pople, J. A., Gaussian, Inc., Pittsburgh, PA, 1998.
- (4) Ziegler, T. Chem. Rev. 1991, 91, 651.
- (5) Becke's three-parameter hybrid method using the LYP correlation functional: Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- (6) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley-Interscience: New York, 1986.

Table 1. Total Energies (-au), ZPE,^{*a*} and Relative Energies (kcal/mol)^{*b*}

	B3LYP/6-311+G**// B3LYP/6-311+G**	ZPE	rel energy
	120 502 00	52.7	262.1
$\Pi_3 D \Pi \Pi_2 \Pi \Pi_2 (\mathbf{I})$	136.363 60	52.7	205.1
$H_3BNH_2NH_3^+$ (2)	138.893 13	60.7	77.0
$H_4BNH_2NH_2^+$ (3)	138.900 00	58.7	70.7
$H_2BNH_2NH_2^+(4)$	137.701 94	46.8	
$H_4BNH_2NH_3^{2+}(5)$	139.024 78	66.3	0.0
$H_5BNH_2NH_2^{2+}$ (6)	138.947 01	62.8	45.3
$H_3BNH_2OH(7)$	158.439 03	44.6	217.9
$H_3BOHNH_2(8)$	158.402 97	43.7	239.6
$H_4BNH_2OH^+$ (9)	158.740 95	50.6	34.0
$H_2BNH_2OH^+$ (10)	157.542 37	38.8	
$H_4BNH_2OH_2^{2+}$ (11)	158.805 37	56.6	0.0
$H_5BNH_2OH^{2+}(12)$	158.783 51	55.1	12.2
H ₃ BOHOH (13)	178.245 28	35.8	187.8
H_4BOHOH^+ (14)	178.540 35	41.5	8.4
H_2BOHOH^+ (15)	177.353 15	30.5	
H ₅ BOHOH ²⁺ (16)	178.560 56	45.8	0.0
H ₂	1.179 57	6.1	

^{*a*} Zero point vibrational energies at B3LYP/6-311+G**//B3LYP/6-311+G** scaled by a factor of 0.96. ^{*b*}At the B3LYP/6-311+G**//B3LYP/6-311+G** + ZPE level.

B3LYP/6-311+G**//B3LYP/6-311+G** level were used to characterize stationary points as minima (number of imaginary frequencies (NIMAG) = 0) and to evaluate zero point vibrational energies (ZPE), which were scaled by a factor of 0.96. Final energies were calculated at the B3LYP/6-311+G**//B3LYP/6-311+G** + ZPE level. Calculated energies are given in Table 1. B3LYP/6-311+G** geometrical parameters and final energies will be discussed throughout, unless stated otherwise.

Results and Discussion

Mono- and Diprotonated Hydrazine–Borane Complex $H_3BNH_2NH_2$. The calculated structure of hydrazine–borane H_3 -BNH₂NH₂ (1) is depicted in Figure 1. Two possible structures of monoprotonated 1, 2, and 3 were calculated. Both structures, terminal N-protonated $H_3BNH_2NH_3^+$ (2) and B–H protonated $H_4BNH_2NH_2^+$ (3), are minima on the potential energy surface (PES). Remarkably 3 is 6.3 kcal/mol more stable than 2. This indicates that the bonded electron pair of the B–H bond is a

Chemistry in Superacids. 48. Part 47: Rasul, G.; Prakash, G. K. S.; Olah, G. A. J. Phys. Chem., in press.

Figure 1. B3LYP/6-311+G** structures of 1-6.

better donor than the nitrogen nonbonded electron pair in the hydrazine-borane complex 1. Other possible conformers of H₄- $BNH_2NH_2^+$ were found to be less stable than 3. Cation 3 is characterized as having a five-coordinate boron atom with a three-center two-electron (3c-2e) bond (Figure 1). The B-N bond distance of **3** is 1.577 Å, 0.048 Å shorter than that in **1**, indicating stronger B-N bonding in 3 than in 1. The cation can be considered as a complex between hydrazine N₂H₄ and superelectrophile⁷ BH_4^+ . Tetracoordinate boronium ion BH_4^+ can be readily prepared^{8,9} in the gas phase. Protonation of BH₃ was shown to be exothermic by 137.9 kcal/mol.¹⁰ Structure 2 is an analogue of hydrazinium dication NH₃NH₃²⁺ Leban et al. reported¹¹ the X-ray crystal structure of hydrazinium salt $NH_3NH_3^{2+}GeF_6^{2-}$. The N–N bond length of 1.428 Å in $NH_3NH_3^{2+}GeF_6^{2-}$ is slightly shorter than the calculated N–N bond length of 1.459 Å in 2. However, the N-N bond length of 1.459 Å in 2 is close to the HF/6-31G* calculated N-N bond length of 1.442 Å in NH₃NH₃²⁺.¹²

Protonation of **1** to form **3** was calculated to be highly exothermic by 192.4 kcal/mol (Table 1). In comparison protonation of N_2H_4 was calculated to be exothermic by 204.4 kcal/mol. The dissociation of **3** into $H_2BNH_2NH_2^+$ (**4**) and molecular H_2 was found to be endothermic by 5.8 kcal/mol (Table 2). On the other hand, dissociation of **3** into BH_4^+ and N_2H_4 was calculated to be highly endothermic by 82.1 kcal/mol (Table 2).

The reported X-ray structure¹³ of $H_3BNH_2NH_2$ showed a B–N bond distance of 1.56 Å, which is significantly shorter than the calculated B–N distance of 1 (1.625 Å). On the basis of our present calculations, it is now probable that the Lewis

- (9) DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E.; Krempp, M.; Damrauer, R. J. Am. Chem. Soc. 1998, 120, 5086.
- (10) Rasul, G.; Olah, G. A. Inorg. Chem. 1997, 36, 1278.
- (11) Frlec, B.; Gantar, D.; Golic, L.; Leban, I. Acta Crystallogr. **1981**, *b37* 666.
- (12) Bouma, W.; Radom, L. J. Am. Chem. Soc. 1985, 107, 345.
- (13) Andrianov, V. I.; Atovmyan, L. O.; Golovina, N. I.; Klitzkaya, G. A.; *Zh. Strukt. Khim.* **1967**, *8*, 303.

Table 2. Calculated ΔH for Various Dissociations^a

dissociation process	ΔH (kcal/mol)	
$H_3BNH_2NH_2$ (1) \rightarrow H_2NNH_2 + BH_3	+27.8	
$H_3BNH_2NH_3^+$ (2) \rightarrow $H_2NNH_3^+$ + BH_3	+9.4	
$H_4BNH_2NH_2^+$ (3) $\rightarrow BH_4^+ + H_2NNH_2$	+82.1	
$H_4BNH_2NH_2^+$ (3) \rightarrow $H_2BNH_2NH_2^+$ (4) + H_2	+5.8	
$H_3BNH_2OH(7) \rightarrow H_2NOH + BH_3$	+27.5	
$H_4BNH_2OH^+$ (9) $\rightarrow BH_4^+ + H_2NOH$	+72.8	
$H_4BNH_2OH^+$ (9) \rightarrow $H_2BNH_2OH^+$ (10) + H_2	+6.2	
$H_3BOHOH (13) \rightarrow HOOH + BH_3$	+9.2	
H_4BOHOH^+ (14) $\rightarrow BH_4^+ + HOOH$	+51.0	
H_4BOHOH^+ (14) \rightarrow H_2BOHOH^+ (15) $+$ H_2	-0.1	

 $^{\it a}$ At the B3LYP/6-311+G**//B3LYP/6-311+G** + ZPE level.

acid or protolytic interaction (protosolvolytic activation⁷) with the B–H bond of $H_3BNH_2NH_2$ is responsible for the observed shorter B–N distance in the solid state. This type of interaction is also suggested to be responsible for the shorter B–N distance of H_3BNH_3 in the solid state compared to the gas-phase calculated data.²

Further protonation of **3** can take place on the terminal nitrogen atom to give $H_4BNH_2NH_3^{2+}$ (**5**) or on the B–H bond to give $H_5BNH_2NH_2^{2+}$ (**6**) (Figure 1). **5** was found to be 45.3 kcal/mol more stable than **6**. Dication **5** also contains a 3c-2e bond and can be considered as a complex of BH_4^+ and hydrazinium ion $N_2H_5^+$. Interestingly, protonation of **3** to form **5** was also calculated to be significantly exothermic by 70.7 kcal/mol.

Mono- and Diprotonated Hydroxylamine–Borane Complex H₃BNH₂OH. The structures of both N-coordinated borane–hydroxylamine complex H₃BNH₂OH (7) and O-coordinated borane–hydroxylamine complex H₂NO(H)BH₃ (8) were calculated (Figure 2). Complex 7 was found to be 21.7 kcal/ mol more stable than complex 8. Protonation of 7 can take place either on oxygen or on the B–H bond. No minimum structure could be located for the oxygen protonated structure at the B3LYP/6-311+G** level because of its immediate dissociation into H₂BNH₃⁺ and H₂O. B–H protonation of 7 leads to H₄-BNH₂OH⁺ (9), which was calculated to be a stable minimum at the B3LYP/6-311+G** level. Cation 9 also contains a fivecoordinate boron atom with a 3c-2e bond (Figure 2) and can

⁽⁷⁾ Olah, G. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 767.

⁽⁸⁾ DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E. J. Am. Chem. Soc. 1997, 119, 427.

Figure 2. B3LYP/6-311+G** structures of **7–12**.

also be considered as a complex between NH_2OH and BH_4^+ . Structure **9** is also characterized by a significant shortening of the B–N bond (1.582 Å) as compared to that of the parent **7** (1.702 Å).

Protonation of **7** to form **9** was also calculated to be highly exothermic by 205.2 kcal/mol (Table 1), which is even more exothermic than the protonation of hydrazine analogue **1** (192.4 kcal/mol). The dissociation of **9** into **10** and molecular H₂ was calculated to be endothermic by 6.2 kcal/mol (Table 2). This indicates that the 3c-2e BHH bond is rather weak. Dissociation of **9** into BH₄⁺ and NH₂OH was calculated to be endothermic by 72.8 kcal/mol (Table 2).

Further protonation of **9** can take place on oxygen to give $H_4BNH_2OH_2^{2+}$ (**11**) or on the B-H bond to give $H_5BNH_2OH^{2+}$ (**12**) (Figure 2). Structure **11** is, however, 12.2 kcal/mol more stable than **12**. Protonation of **9** to form **11** was also calculated to be exothermic by 34.4 kcal/mol.

Mono- and Diprotonated Hydrogen Peroxide-Borane Complex H₃BOHOH. The calculated structure of hydrogen 5 2 10

peroxide-borane complex H₃BOHOH (13) is depicted in Figure 1. Protonation of **13** can take place either on terminal oxygen or on the B-H bond. Similar to the hydroxylamine complex 7, no minimum structure could be located for the terminal O-protonated structure at the B3LYP/6-311+G** level because of its immediate dissociation into $H_2BOH_2^+$ and H_2O . B-H protonation of 13 leads to H_4BOHOH^+ (14) (Figure 3), which was calculated to be a stable minimum at the B3LYP/6-311+G** level. Protonation of 13 to form 14 was calculated to be exothermic by 179.4 kcal/mol (Table 1). Further protonation on 14 seems to occur primarily on the B-H bond to give H_5BOHOH^{2+} (16) (Figure 3) since on PES the terminal oxygen protonated structure H₄BOHOH₂²⁺ was not a true minimum. The structure H₄BOHOH₂²⁺ was found to dissociate into HOOH₂⁺ and BH₄⁺ upon optmization at the B3LYP/6-311+G** level.

Conclusion

The structures and stabilities of mono- and diprotonated borane complexes H_3BX (X = N_2H_4 , NH_2OH , and H_2O_2) and their neutral analogues were calculated using the density functional theory method at the B3LYP/6-311+G** level. All three global minimum structures of the monoprotonated H₃BX, 3, 9, and 14, were found to be B-H protonated H_4BX^+ and were characterized as containing a hypercoordinate boron with a 3c-2e bond. The protonation energies of H₃BX to form H₄-BX⁺ were calculated to be highly exothermic. For hydrazine analogues, although both terminal N-protonated H₃BNH₂NH₃⁺ (2) and B-H protonated $H_4BNH_2NH_2^+$ (3) are minima on the PES of monoprotonated H₃BNH₂NH₂, **3** is significantly more stable than 2 by 6.3 kcal/mol. This indicates that the bonded electron pair of the B-H bond is a better donor than the nonbonded nitrogen electron pair in hydrazine-borane complex 1.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

IC990939P