B-**H** Bond Protonation in Mono- and Diprotonated Borane Complexes H_3BX ($X = N_2H_4$, $NH₂OH$, and $H₂O₂$) Involving Hypercoordinate Boron¹

Golam Rasul, G. K. Surya Prakash, and George A. Olah*

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661

*Recei*V*ed August 5, 1999*

Structures of mono- and diprotonated borane complexes H_3BX ($X = N_2H_4$, NH₂OH, and H₂O₂) as well as their neutral analogues were calculated using the density functional theory method at the B3LYP/6-311+G** level. Global minimum structures $(3, 9, \text{ and } 14)$ for all of the monocations H_4BX^+ are $B-H$ protonated with a threecenter two-electron bond. Remarkably, in the case of monoprotonated hydrazine-borane H3BNH2NH2 (**1**), the $B-H$ protonated $H_4BNH_2NH_2^+$ (3) was calculated to be 6.3 kcal/mol more stable than the N-protonated H₃-
BNH₂NH₂⁺ (2) unexpectedly indicating that the bonded electron pair of the B–H bond is a better donor than $BNH₂NH₃⁺ (2)$, unexpectedly indicating that the bonded electron pair of the B-H bond is a better donor than the nonbonded nitrogen electron pair in hydrazine-borane complex 1 nonbonded nitrogen electron pair in hydrazine-borane complex **¹**.

Introduction

Recently we reported² the ab initio calculated structures of protonated borane-Lewis base complexes H_4BX^+ (X = NH₃, PH_3 , OH_2 , SH_2 , and CO). All of the H_4BX^+ complexes were found to be B-H protonated, involving hypercoordinate boron with a three-center two-electron (3c-2e) bond. The protonation energies of H₃BX to form H_4BX^+ were calculated to be highly exothermic.² The neutron diffraction structure of $BH₃NH₃$ has recently been reported by Crabtree et al., which shows that the molecules tend to have close N-H $\cdot\cdot$ H-B contacts as a result of a novel type of intermolecular hydrogen or dihydrogen bonding.^{3a} In continuation of our study we have now extended our investigations to mono- and diprotonated borane complexes H_3BX (X = N₂H₄, NH₂OH, and H₂O₂) as well as their neutral analogues using density functional theory (DFT) calculations.

Calculations

Calculations were carried out with the Gaussian 98 program system.^{3b} The geometry optimizations were performed using the DFT4 method at the B3LYP⁵/6-311+G^{**} level.⁶ Vibrational frequencies at the

- (2) Rasul, G.; Prakash, G. K. S.; Olah, G. A. *Inorg. Chem.* **1999**, *38*, 44. (3) (a) Klooster, W. T.; Koetzle, T. F.; Siegbahn P. E. M.; Richardson, T. B.; Crabtree, R. H. *J. Am. Chem. Soc.* **1999**, *121*, 6337. (b) Gaussian 98 (Revision A.5): Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, R. E.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; M. Head-Gordon, M.; Pople, J. A., Gaussian, Inc., Pittsburgh, PA, 1998.
- (4) Ziegler, T. *Chem. Re*V. **¹⁹⁹¹**, *⁹¹*, 651.
- (5) Becke's three-parameter hybrid method using the LYP correlation functional: Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648.
- (6) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley-Interscience: New York, 1986.

Table 1. Total Energies (-au), ZPE,^{*a*}and Relative Energies $(kcal/mol)^b$

	B3LYP/6-311+G**// $B3LYP/6-311+G**$	ZPE.	rel energy
H_3 BN H_2 N H_2 (1)	138.583.80	52.7	263.1
H_3 BN H_2 N H_3 ⁺ (2)	138.893 13	60.7	77.0
H_4 BNH ₂ NH ₂ ⁺ (3)	138,900 00	58.7	70.7
H_2 BNH ₂ NH ₂ ⁺ (4)	137.70194	46.8	
H_4 BNH ₂ NH ₃ ²⁺ (5)	139.02478	66.3	0.0
H_5 BNH ₂ NH ₂ ²⁺ (6)	138.947 01	62.8	45.3
H_3 BN H_2 OH (7)	158.439 03	44.6	217.9
H_3BOHNH_2 (8)	158.402 97	43.7	239.6
H_4 BN H_2 OH ⁺ (9)	158.74095	50.6	34.0
H_2 BN H_2 OH ⁺ (10)	157.542.37	38.8	
H_4 BN H_2 O H_2^{2+} (11)	158.80537	56.6	0.0
H_5 BNH ₂ OH ²⁺ (12)	158.783 51	55.1	12.2
$H_3BOHOH (13)$	178.245 28	35.8	187.8
$H_4BOHOH^+(14)$	178.54035	41.5	8.4
$H_2BOHOH^+(15)$	177.353 15	30.5	
$H_5BOHOH^{2+} (16)$	178.560 56	45.8	0.0
H۶	1.179.57	6.1	

^a Zero point vibrational energies at B3LYP/6-311+G**//B3LYP/6- $311 + G^{**}$ scaled by a factor of 0.96. ^{*b*}At the B3LYP/6-311+G**// $B3LYP/6-311+G** + ZPE$ level.

B3LYP/6-311+G**//B3LYP/6-311+G** level were used to characterize stationary points as minima (number of imaginary frequencies $(NIMAG) = 0$) and to evaluate zero point vibrational energies (ZPE), which were scaled by a factor of 0.96. Final energies were calculated at the B3LYP/6-311+G**//B3LYP/6-311+G** + ZPE level. Calculated energies are given in Table 1. B3LYP/6-311+G** geometrical parameters and final energies will be discussed throughout, unless stated otherwise.

Results and Discussion

Mono- and Diprotonated Hydrazine-**Borane Complex H3BNH2NH2.** The calculated structure of hydrazine-borane H3- BNH2NH2 (**1**) is depicted in Figure 1. Two possible structures of monoprotonated **1**, **2**, and **3** were calculated. Both structures, terminal N-protonated $H_3BNH_2NH_3^+$ (2) and B-H protonated $H_4BNH_3^+$ (3) are minima on the potential energy surface H_4 BN H_2 N H_2 ⁺ (3), are minima on the potential energy surface (PES). Remarkably **3** is 6.3 kcal/mol more stable than **2**. This indicates that the bonded electron pair of the B-H bond is a

⁽¹⁾ Chemistry in Superacids. 48. Part 47: Rasul, G.; Prakash, G. K. S.; Olah, G. A. *J. Phys. Chem.,* in press.

Figure 1. B3LYP/6-311+G** structures of **¹**-**6**.

better donor than the nitrogen nonbonded electron pair in the hydrazine-borane complex **¹**. Other possible conformers of H4- BNH_2NH_2 ⁺ were found to be less stable than **3**. Cation **3** is characterized as having a five-coordinate boron atom with a three-center two-electron (3c-2e) bond (Figure 1). The B-^N bond distance of **3** is 1.577 Å, 0.048 Å shorter than that in **1**, indicating stronger B-N bonding in **³** than in **¹**. The cation can be considered as a complex between hydrazine N_2H_4 and superelectrophile⁷ BH₄⁺. Tetracoordinate boronium ion BH₄⁺ can be readily prepared^{8,9} in the gas phase. Protonation of $BH₃$ was shown to be exothermic by 137.9 kcal/mol.10 Structure **2** is an analogue of hydrazinium dication $NH_3NH_3^{2+}$. Leban et al. reported 11 the X-ray crystal structure of hydrazinium salt $NH_3NH_3^{2+}GeF_6^{2-}$. The N-N bond length of 1.428 Å in
NH₃NH₃²⁺GeF₆²⁻ is slightly shorter than the calculated N-N
bond length of 1.459 Å in 2. However the N-N bond length bond length of 1.459 \AA in 2. However, the N-N bond length of 1.459 Å in 2 is close to the HF/6-31G* calculated N-N bond length of 1.442 Å in $NH₃NH₃²⁺.¹²$

Protonation of **1** to form **3** was calculated to be highly exothermic by 192.4 kcal/mol (Table 1). In comparison protonation of N_2H_4 was calculated to be exothermic by 204.4 kcal/ mol. The dissociation of **3** into $H_2BNH_2NH_2^+$ (**4**) and molecular H2 was found to be endothermic by 5.8 kcal/mol (Table 2). On the other hand, dissociation of **3** into BH_4 ⁺ and N_2H_4 was calculated to be highly endothermic by 82.1 kcal/mol (Table 2).

The reported X-ray structure¹³ of $H_3BNH_2NH_2$ showed a ^B-N bond distance of 1.56 Å, which is significantly shorter than the calculated $B-N$ distance of 1 (1.625 Å). On the basis of our present calculations, it is now probable that the Lewis

- (10) Rasul, G.; Olah, G. A. *Inorg. Chem.* **1997**, *36*, 1278.
- (11) Frlec, B.; Gantar, D.; Golic, L.; Leban, I. *Acta Crystallogr.* **1981**, *b37* 666.
- (12) Bouma, W.; Radom, L. *J. Am. Chem. Soc.* **1985**, *107*, 345.
- (13) Andrianov, V. I.; Atovmyan, L. O.; Golovina, N. I.; Klitzkaya, G. A.; *Zh. Strukt. Khim.* **1967**, *8*, 303.

Table 2. Calculated ∆*H* for Various Dissociations*^a*

dissociation process	ΔH (kcal/mol)	
$H_3BNH_2NH_2(1) \rightarrow H_2NNH_2 + BH_3$	$+27.8$	
$H_3BNH_2NH_3^+(2) \rightarrow H_2NNH_3^+ + BH_3$	$+9.4$	
H_4 BNH ₂ NH ₂ ⁺ (3) \rightarrow BH ₄ ⁺ + H ₂ NNH ₂	$+82.1$	
$H_4BNH_2NH_2^+(3) \rightarrow H_2BNH_2NH_2^+(4) + H_2$	$+5.8$	
H_3 BNH ₂ OH (7) \rightarrow H ₂ NOH + BH ₃	$+27.5$	
$H_4BNH_2OH^+(9) \rightarrow BH_4^+ + H_2NOH$	$+72.8$	
H_4 BNH ₂ OH ⁺ (9) \rightarrow H ₂ BNH ₂ OH ⁺ (10) + H ₂	$+6.2$	
$H_3BOHOH (13) \rightarrow HOOH + BH_3$	$+9.2$	
$H_4BOHOH^+(14) \rightarrow BH_4^+ + HOOH$	$+51.0$	
$H_4BOHOH^+(14) \rightarrow H_2BOHOH^+(15) + H_2$	-0.1	

a At the B3LYP/6-311+G**//B3LYP/6-311+G** + ZPE level.

acid or protolytic interaction (protosolvolytic activation⁷) with the B-H bond of $H_3BNH_2NH_2$ is responsible for the observed shorter B-N distance in the solid state. This type of interaction is also suggested to be responsible for the shorter B-N distance of H_3BNH_3 in the solid state compared to the gas-phase calculated data.²

Further protonation of **3** can take place on the terminal nitrogen atom to give $H_4BNH_2NH_3^{2+}$ (5) or on the B-H bond
to give H-BNH-NH-²⁺ (6) (Figure 1) 5 was found to be 45.3 to give $H_5BNH_2NH_2^{2+}$ (6) (Figure 1). **5** was found to be 45.3 kcal/mol more stable than **6**. Dication **5** also contains a 3c-2e bond and can be considered as a complex of $BH₄⁺$ and hydrazinium ion N2H5 ⁺. Interestingly, protonation of **3** to form **5** was also calculated to be significantly exothermic by 70.7 kcal/mol.

Mono- and Diprotonated Hydroxylamine-**Borane Complex H3BNH2OH.** The structures of both N-coordinated borane-hydroxylamine complex H3BNH2OH (**7**) and O-coordinated borane-hydroxylamine complex H₂NO(H)BH₃ (8) were calculated (Figure 2). Complex **7** was found to be 21.7 kcal/ mol more stable than complex **8**. Protonation of **7** can take place either on oxygen or on the B-H bond. No minimum structure could be located for the oxygen protonated structure at the B3LYP/6-311+G** level because of its immediate dissociation into $H_2BNH_3^+$ and H_2O . B-H protonation of 7 leads to H_4 -
RNH₂OH⁺ (9) which was calculated to be a stable minimum $BNH₂OH⁺$ (9), which was calculated to be a stable minimum at the B3LYP/6-311+G** level. Cation **⁹** also contains a fivecoordinate boron atom with a 3c-2e bond (Figure 2) and can

⁽⁷⁾ Olah, G. A. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 767.

⁽⁸⁾ DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E. *J. Am. Chem. Soc.* **1997**, *119*, 427.

⁽⁹⁾ DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E.; Krempp, M.; Damrauer, R. *J. Am. Chem. Soc.* **1998**, *120*, 5086.

Figure 2. B3LYP/6-311+G** structures of **⁷**-**12**.

also be considered as a complex between $NH₂OH$ and $BH₄⁺$. Structure **9** is also characterized by a significant shortening of the B-N bond (1.582 Å) as compared to that of the parent 7 (1.702 Å) .

Protonation of **7** to form **9** was also calculated to be highly exothermic by 205.2 kcal/mol (Table 1), which is even more exothermic than the protonation of hydrazine analogue **1** (192.4 kcal/mol). The dissociation of 9 into 10 and molecular H_2 was calculated to be endothermic by 6.2 kcal/mol (Table 2). This indicates that the 3c-2e BHH bond is rather weak. Dissociation of **9** into BH_4 ⁺ and NH_2OH was calculated to be endothermic by 72.8 kcal/mol (Table 2).

Further protonation of **9** can take place on oxygen to give H_4 BNH₂OH₂²⁺ (11) or on the B-H bond to give H_5 BNH₂OH²⁺
(12) (Figure 2) Structure 11 is however 12.2 kcal/mol more (**12**) (Figure 2). Structure **11** is, however, 12.2 kcal/mol more stable than **12**. Protonation of **9** to form **11** was also calculated to be exothermic by 34.4 kcal/mol.

Mono- and Diprotonated Hydrogen Peroxide-**Borane Complex H3BOHOH.** The calculated structure of hydrogen peroxide-borane complex H3BOHOH (**13**) is depicted in Figure 1. Protonation of **13** can take place either on terminal oxygen

or on the B-H bond. Similar to the hydroxylamine complex **⁷**, no minimum structure could be located for the terminal O-protonated structure at the B3LYP/6-311+G** level because of its immediate dissociation into $H_2BOH_2^+$ and H_2O . B-H protonation of 13 leads to H-BOHOH⁺ (14) (Figure 3) which protonation of 13 leads to H_4BOHOH^+ (14) (Figure 3), which was calculated to be a stable minimum at the B3LYP/6- ³¹¹+G** level. Protonation of **¹³** to form **¹⁴** was calculated to be exothermic by 179.4 kcal/mol (Table 1). Further protonation on 14 seems to occur primarily on the B-H bond to give H_5BOHOH^{2+} (16) (Figure 3) since on PES the terminal oxygen protonated structure $H_4BOHOH_2^{2+}$ was not a true minimum. The structure $H_4BOHOH₂²⁺$ was found to dissociate into $HOOH_2$ ⁺ and BH_4 ⁺ upon optmization at the B3LYP/6-³¹¹+G** level.

Conclusion

The structures and stabilities of mono- and diprotonated borane complexes H_3BX ($X = N_2H_4$, NH₂OH, and H₂O₂) and their neutral analogues were calculated using the density functional theory method at the B3LYP/6-311+G** level. All three global minimum structures of the monoprotonated H_3BX , **3**, **9**, and **14**, were found to be B-H protonated H_4BX^+ and were characterized as containing a hypercoordinate boron with a 3c-2e bond. The protonation energies of H_3BX to form H_4 - BX^+ were calculated to be highly exothermic. For hydrazine analogues, although both terminal N-protonated $H_3BNH_2NH_3^+$ (2) and B-H protonated $H_4BNH_2NH_2^+$ (3) are minima on the PFS of monoprotonated H₂RNH₂NH₂ 3 is significantly more PES of monoprotonated H₃BNH₂NH₂, 3 is significantly more stable than **2** by 6.3 kcal/mol. This indicates that the bonded electron pair of the B-H bond is a better donor than the nonbonded nitrogen electron pair in hydrazine-borane complex **1**.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

IC990939P