Undecafluorodiarsenate Anion: Synthesis and Crystal Structure of (MeS)₂CSH⁺As₂F₁₁⁻

Rolf Minkwitz* and Frank Neikes

Anorganische Chemie, Fachbereich Chemie der Universität Dortmund, D-44221 Dortmund, Germany

Received March 5, 1999

Dimethyltrithiocarbonate reacts with the superacidic systems HF/MF₅ and DF/MF₅ (M = As, Sb) to form (MeS)₂CSX⁺MF₆⁻ (X = H, D). With an excess of AsF₅ the reaction leads to (MeS)₂CSX⁺As₂F₁₁⁻ (X = H, D). The latter salt crystallizes in the monoclinic space group $P2_1/c$ (No. 14 with a = 7.687(1) Å, b = 21.327(6) Å, c = 8.704(1) Å, and $\beta = 91.99(1)^\circ$) with four formula units per cell. The undecafluorodiarsenate anion contains an As-F-As bridge with two As-F bonds significantly longer than the nonbridging bonds and an As-F-As angle of 159.1(6)°. The Raman, IR, and ¹H, ⁷⁵As, ¹⁹F, and ¹³C NMR spectra of (MeS)₂CSX⁺SbF₆⁻ and (MeS)₂CSX⁺As₂F₁₁⁻ (X = H, D) are reported.

Introduction

A considerable amount of information has been accumulated on the behavior of pentafluorides as Lewis acids in anhydrous hydrogen fluoride. Gillespie and Moss used conductivity data and ¹⁹F NMR to show that at about 20 mol % SbF₅ in HF the dominant anionic species is Sb₂F₁₁⁻. Up to 10 mol % SbF₅ in HF the principal anion is SbF₆⁻, and beyond 30 mol % SbF₅ the Sb₃F₁₆⁻ anion and higher polymeric species are formed.¹ In 1969, Brownstein reported the formation of an AsSbF₁₁⁻ (eq 1) and an As₂F₁₁⁻ anion, which were characterized by NMR and IR spectroscopy.²

$$X^{+}SbF_{6}^{-} + AsF_{5} \rightarrow X^{+}AsSbF_{11}^{-}$$
(1)

Christe and Maya observed a band at 491 cm⁻¹ in the lowtemperature spectrum of NOF₃/2AsF₅ which was attributed to polymeric arsenic fluoro anions because on pumping on the solid this band disappeared and the composition changed to NOF₃/ AsF₅.³ Subsequent investigations of solutions of the Lewis acids SbF₅, AsF₅, and PF₅ in HF by Gillespie and co-workers provided evidence for an As₂F₁₁⁻ anion. They compared the conductivity of an AsF₅ solution to that of a SbF₅ solution. On the basis of their measurements at 0 and -83.6 °C, they concluded that the As₂F₁₁⁻ anion is formed essentially quantitatively according to eq 2.⁴ Furthermore they were able to measure the ¹⁹F NMR

$$2HF + 2AsF_5 \rightarrow H_2F^+ + As_2F_{11}^-$$
(2)

$$R_4 N^+ A_5 F_6^- + A_5 F_5 \rightarrow R_4 N^+ A_5 F_{11}^-$$
 (R = Bu, Et) (3)

spectra of $Bu_4N^+As_2F_{11}^-$ and $Et_4N^+As_2F_{11}^-$ (eq 3) in SO₂ solution.^{4,5} At higher temperature the spectra consist of only one sharp single signal, in contrast to the quartet of an AsF₆⁻ anion, due to As-F spin-spin coupling, and on cooling, the line was replaced by a more complex spectrum. O'Donnel et

- (2) Brownstein, S. Can. J. Chem. 1969, 47, 605.
- (3) Christe, K. O.; Maya, W. Inorg. Chem. 1969, 8, 1253.
- (4) Gillespie, R. J.; Dean, P. A. W.; Hulme, R.; Humphreys, D. A. J. Chem. Soc. A 1971, 341.
- (5) Dean, P. A. W.; Gillespie, R. J.; Hulme, R. J. Chem. Soc. D 1969, 990.

al. and Holloway, Schrobilgen, and co-workers reported Raman spectra of dimeric arsenic fluoro anions.^{6,7} In 1979, Holloway et al. carried out X-ray powder diffraction studies on $M^{2+}(As_2F_{11}^{-})_2$ species, but until now no crystal structure with an $As_2F_{11}^{-}$ anion has been published.⁸ It should be noted that the structure of the (MeS)₂CSH⁺ cation is unprecedented in the literature, too.

Recently we were informed by K. O. Christe that he and coworkers also were able to determine the crystal structure of an $As_2F_{11}^{-}$ anion and that this result was submitted for publication.⁹ Nevertheless, except Raman and IR spectra, all previous attempts to characterize the undecafluorodiarsenate anion were made in solutions, but to compare the conformations of polymeric arsenic and antimony fluoro anions it is necessary to characterize them by X-ray studies. Polymeric fluoro anions of antimony are known, the $As_3F_{16}^{-}$ anion was mentioned once by Gillespie, and no polymeric phosphorus fluoro anions are known in the literature. In 1997, we successfully isolated an $As_2F_{11}^{-}$ salt. The first attempt to solve its crystal structure failed, but a later attempt succeeded. The existence of the $As_2F_{11}^{-}$ anion was also confirmed by a second additional crystal structure of $Me_3AsH^+As_2F_{11}^{-}$ which was solved by our work group.¹⁰

Experimental Section

Apparatus and Materials. All synthetic work and sample handling were performed by employing standard Schlenk techniques and a standard vacuum line (stainless steel or glass). SbF₅ (Merck) was fractionally distilled. The syntheses of (MeS)₂CS and DF, using D₂SO₄ and CaF₂, and the drying of HF with F₂ and SO₂ with CaH₂ were carried out by known literature methods.^{11,12} Reactions in HF/DF were carried out in a KEL-F reactor with a KEL-F valve. Infrared

- (7) Al-Mukhtar, M.; Holloway, J. H.; Hope, E. G.; Schrobilgen, G. J. J. Chem. Soc., Dalton Trans. 1991, 2831.
- (8) Frlec, B.; Gantar, D.; Holloway, J. H. Vestn. Slov. Kem. Drus. 1979, 26 (4), 415.
- (9) Christe, K. O. Submitted communication.
- (10) Minkwitz, R.; Hirsch, C. Eur. J. Inorg. Chem. 1999, 2249-2254.
- (11) Challenger, F.; Mason, E. A.; Holdsworth, E. C.; Emmott, R. J. Chem. Soc. 1953, 292.
- (12) Brauer, G. *Handbuch der präparativen anorganischen Chemie*, 2nd ed.; F. Enke, Stuttgart 1975.

⁽¹⁾ Gillespie, R. J.; Moss, K. C. J. Chem. Soc. A 1966, 1170.

⁽⁶⁾ Barraclough, C. G.; Besida, J.; Davies, P. G.; O'Donnel, T. A. J. Fluorine Chem. 1988, 38, 405.

spectra were recorded with a Bruker IFS 113v spectrophotometer. Spectra of dry powders were obtained on a CsI plate in a cooled IR cell.¹³ The Raman spectra were recorded with a T64000 (ISA) using a CCD detector (EEV CCD15-11) and an Ar⁺ ion laser (514.5 nm) from Spectra Physics. The spectra were recorded in a glass cell cooled with liquid nitrogen. The NMR spectra were recorded with a Bruker DPX 300 spectrometer with TMS, CFCl₃, and KAsF₆ as external standards. Single crystals were placed in Lindemann capillaries in a cooled stream of dry nitrogen, and an X-ray diffraction study was carried out at -100 °C using an Enraf Nonius Mach3 automated diffractometer.

Synthesis of (MeS)₂CS. Na₂S (256 mmol, 20 g) was dissolved in 50 mL of H₂O, and 260 mmol (20.3 g) of CS₂ was added. After 1 h the solvent and unreacted CS₂ were removed under a dynamic vacuum at room temperature. Afterward 300 mmol (15.12 g) of CH₃Cl was added to the remaining salt. The mixture was kept at -10 °C for 1 h, and then the excess of CH₃Cl was removed under a dynamic vacuum at 0 °C. The remaining yellow liquid was dried with MgSO₄ and distilled at 25 °C with a yield of about 70% (24.7 g) based on the used Na₂S.

Synthesis of (MeS)₂CSX⁺SbF₆⁻ (X = H, D). In a 50 mL KEL-F reactor, 4 mmol (0.87 g) of SbF₅ was dissolved in 3 g of HF/DF. The solution was frozen at -196 °C, and 4 mmol (0.55 g) of (MeS)₂CS was added under an inert atmosphere (N₂). The mixture was warmed to -78 °C, and the excess of HF/DF was slowly removed under a dynamic vacuum at -78 °C. The remaining colorless solid was identified as (MeS)₂CSX⁺SbF₆⁻ (X = H, D) by vibrational and NMR spectroscopy. The colorless salt is unstable at room temperature but can be held under inert conditions at -70 °C without decomposition.

Synthesis of (MeS)₂CSX⁺As₂F₁₁⁻ (X = H, D). In a 50 mL KEL-F reactor, 4 mmol (0.68 g) of AsF₅ was dissolved in 3 g of HF/DF. The solution was frozen at -196 °C, and 1 mmol (0.14 g) of (MeS)₂CS was added under an inert atmosphere (N₂). The mixture was warmed to -78 °C, and the excess of HF/DF and AsF₅ was removed slowly under a dynamic vacuum at -78 °C. The remaining colorless solid was identified as (MeS)₂CSX⁺As₂F₁₁⁻ (X = H, D) by vibrational and NMR spectroscopy. The colorless salt can be stored under inert conditions at -70 °C without decomposition. The remaining (MeS)₂CSH⁺As₂F₁₁⁻ contained crystals suitable for X-ray diffraction studies.

Results and Discussion

Synthesis and Properties. The $(CH_3S)_2CS$ starting material is prepared by using Na₂CS₃ and an alkyl halogenide, such as CH₃Cl or CH₃I. By distillation at 0 °C under reduced pressure, the excess of alkyl halogenide can be removed, and the $(CH_3S)_2CS$ residue is distilled at room temperature under reduced pressure (eq 4). Dimethylthiomercaptocarbenium hexaflu-

$$Na_2CS_3 + 2CH_3X \rightarrow (CH_3S)_2CS + 2NaX$$

(X = Cl, I) (4)

oroantimonate can be isolated at -78 °C (eq 5) by protonation of dimethyltrithiocarbonate in the superacidic systems XF/SbF₅ (X = H, D) with stoichiometric amounts of pentafluorometalates. The resulting slightly yellow salt is sensitive toward

$$(CH_3S)_2CS + XF + SbF_5 \rightarrow (CH_3S)_2CSX^+SbF_6^-$$

$$(X = H, D) (5)$$

moisture and soluble in SO₂ and decomposes above -20 °C. Under inert conditions the salt can be stored for several weeks without decomposition at -70 °C. With an excess of AsF₅ in XF (X = H, D), the corresponding As₂F₁₁⁻ salt is formed (eq 6). The resulting slightly yellow crystals are well soluble in HF and SO₂ and decompose at -38 °C to products which were not further characterized.

$$(CH_3S)_2CS + XF + 2A_3F_5 \rightarrow (CH_3S)_2CSX^+A_{S_2}F_{11}^-$$

$$(X = H, D) (6)$$

¹H and ¹³C NMR Spectra of $(MeS)_2CSH^+SbF_6^-$ and $(MeS)_2CSH^+As_2F_{11}^-$. The ¹H NMR spectra of freshly prepared $(MeS)_2CSH^+As_2F_{11}^-$ and $(MeS)_2CSH^+SbF_6^-$ dissolved in SO₂ with TMS as external standard at -60 °C show singlets at 3.31 and 3.33 ppm, respectively, for the methyl groups and singlets at 7.25 and 7.54 ppm, respectively, for the mercapto group. In the ¹³C NMR, the singlets at 22.1 and 22.2 ppm are assigned to the CH₃ groups and the singlets in the region of 231 ppm are assigned to the carbon of the CS₃ group. These results are comparable to the spectra of the $(HS)_3C^+$ cation observed by Olah.¹⁴

¹⁹F and ⁷⁵As NMR Spectra of (MeS)₂CSH⁺As₂F₁₁⁻. The ¹⁹F NMR spectrum of freshly prepared (MeS)₂CSH⁺As₂F₁₁⁻ dissolved in SO₂ with CFCl₃ and KAsF₆ as external standard at -60 °C shows a singlet at 51.3 ppm. As reported, on further cooling the signal will collapse and be replaced by signals comparable to those of Bu₄N⁺As₂F₁₁⁻ (21.1, 48.6, and 85 ppm at -140 °C).⁴ Due to As-F spin-spin coupling, the ⁷⁵As spectrum shows no signal in the measured range whereas KAsF₆ shows a septet.

Crystal Structure of (MeS)₂**CSH**⁺**As**₂**F**₁₁⁻. Dimethylthiomercaptocarbenium undecafluorodiarsenate crystallizes in the monoclinic space group $P2_1/c$ (No. 14) with four molecules per unit cell (Table 1).¹⁵ In Table 2, the bond lengths and angles are listed. Figure 1 shows the salt with atom labels, and the arrangement of the (MeS)₂CSH⁺As₂F₁₁⁻ in the unit cell is depicted in Figure 2. For the data reduction, a semiempirical correction determined from ψ -scan data and structure solution and refinement programs in the SHELXTL package and PARST were used.^{16–19} The arsenic atoms were found by the Patterson method. All other atoms except the mathematically added methyl protons were determined by difference Fourier synthesis. A final refinement with anisotropic (except H atoms) thermal parameters gave a value of R = 0.088.

The anion consists of two strongly distorted octahedrons which are linked at one corner. The bridging As(1)–F(1) and As(2)–F(1) bonds with lengths of about 186.7(4) and 192.0(6) pm are significantly longer than the other As–F bonds, which are in the range of 163.8(7)–169.6(8) pm. By comparison with known crystal structures of Sb₂F₁₁⁻ salts, the As(1)–F(1)–As(2) angle of 159.1(6)° is larger than the Sb–F–Sb angle of 146.2(4)° in (CF₃)₂C(F)OH₂+Sb₂F₁₁⁻ or 147.6(3)° in [Hg(CO)₂]-[Sb₂F₁₁]₂.^{20,21} Due to the strong cationic and anionic interactions, a maximum deviation of 7.1(3)° from an ideal octahedron is observed for the AsF₆ units. The two octahedral AsF₆ units are

- (16) Nardelli, M. Comput. Chem. 1983, 7, 95.
- (17) Sheldrick, G. SHELXS 86; University of Göttingen: Göttingen, Germany, 1986.
- (18) Sheldrick, G. SHELXL 93; University of Göttingen: Göttingen, Germany 1993.
- (19) Keller, E. SCHAKAL, Program for the Graphic Representation of Molecular and Crystallographic Models; Albert Ludwig University of Freiburg: Freiburg, 1988.
- (20) Minkwitz R.; Reinemann, S. Z. Anorg. Allg. Chem. 1999, 625, 121.
- (21) Willner, H.; Aubke, F. Angew. Chem., Int. Ed. 1997, 36, 2402.

⁽¹³⁾ Bayerdorfer, L.; Minkwitz, R.; Jander, J. Z. Anorg. Allg. Chem. 1972, 392, 137.

⁽¹⁴⁾ Olah, G. A.; Ku, A. T.; White, A. M. J. Org. Chem. 1969, 34, 1827.

⁽¹⁵⁾ More details about the crystal structure are available at the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, U.K., under the number CCDC 134476 for (MeS)₂CSH⁺-As₂F₁₁⁻.

Table 1. Crystal Data and Structure Refinement for $(MeS)_2CSH^+As_2F_{11}^-$

/	
empirical formula	$C_3H_7As_2F_{11}S_3$
fw	498.11
temp (K)	173(2)
wavelength (Å)	0.710 69
cryst syst	monoclinic
space group	$P2_{1}/c$
a (Å)	7.687(1)
b (Å)	21.327(6)
<i>c</i> (Å)	8.7040(10)
β (deg)	91.99(1)
vol (Å ³)	1426.1(5)
Z	4
density (calcd) (mg/m ³)	2.320
abs coeff (mm^{-1})	5.229
F(000)	952
cryst size (mm)	$0.3 \times 0.25 \times 0.2$
θ range for data collection (deg)	3.02-27.97
index ranges	$-10 \le h \le 10$
	$-28 \le k \le 28$
	$-11 \le l \le 11$
reflns collected	4801
indept reflns	2327 ($R_{\rm int} = 0.0413$)
abs correction	ψ -scans
max and min transm	0.9974 and 0.6327
refinement meth	full-matrix least squares on F^2
data/restraints/params	2327/0/176
goodness-of-fit on F^2	0.991
final R^{a} indices $[I > 4\sigma(I)]$	R1 = 0.0482, wR2 = 0.1097
<i>R</i> ^a indices (all data)	R1 = 0.0882, wR2 = 0.1227
extinction coeff	0.0040(6)
largest diff peak and hole (e $Å^{-3}$)	0.752 and -0.625
^{<i>a</i>} $R = \sum F_{\rm o} - F_{\rm c} / \sum F_{\rm o} .$	

Table 2. Bond Lengths (pm), Selected Angles (deg), and Interionic Distances (pm) for $(MeS)_2CSH^+As_2F_{11}^-$

As(1)-F(1)	186.7(4)	F(1) - As(1) - F(2)	87.8(4)
As(1)-F(2)	165.2(7)	F(1) - As(1) - F(3)	83.6(4)
As(1) - F(3)	169.6(8)	F(1) - As(1) - F(4)	177.9(4)
As(1)-F(4)	167.3(4)	F(1) - As(1) - F(5)	86.0(3)
As(1) - F(5)	169.4(5)	F(1) - As(1) - F(6)	86.1(3)
As(1) - F(6)	168.7(5)	F(1) - As(2) - F(7)	175.9(3)
As(2) - F(1)	192.0(6)	F(1) - As(2) - F(8)	82.9(3)
As(2)-F(7)	167.6(4)	F(1) - As(2) - F(9)	84.5(3)
As(2)-F(8)	168.8(8)	F(1) - As(2) - F(10)	87.7(4)
As(2) - F(9)	165.4(5)	F(1) - As(2) - F(11)	87.7(4)
As(2)-F(10)	166.4(5)		
As(2) - F(11)	163.8(7)	As(1)-F(1)-As(2)	159.1(6)
C(1) - S(1)	172.2(6)	S(2) - C(1) - S(3)	121.2(4)
C(1) - S(2)	168.1(8)	S(2)-C(1)-S(1)	120.6(5)
C(1) - S(3)	168.2(8)	S(3) - C(1) - S(1)	118.2(5)
S(2) - C(2)	180.4(9)	C(1) - S(2) - C(2)	103.7(4)
S(3) - C(3)	177.4(8)	C(1)-S(3)-C(3)	104.2(4)
S(1) - H(1)	133(12)	C(1) - S(1) - H(1)	96(4)

positioned in a gauche conformation with a torsion angle F(11)– As(2)···As(1)–F(6) of 47.24° to assume the maximum F···F range.

Looking at the central carbon atom, the S–C(1)–S angles correspond within the 3σ range to an ideal 120° angle as expected for an sp² hybridization. The geometry of the CS₃ skeleton with a longer C(1)–S(1) bond of 172.2(6) pm and two shorter C(1)–S(CH₃) bonds of about 168.1(8) pm and 168.2(8) pm indicates that the positive charge is not equally distributed over the CS₃ fragment, and obviously the shorter methylthio carbon bonds show a higher degree of double-bond character. The proton H(1) and the two methyl carbon atoms C(2) and C(3) are positioned slightly out of the CS₃ plane.

Overall the crystal consists of AC planes with alternating ion pairs. Along the B axis the layers are piled up with hydrogen bridges between two planes. The distance between the donor

Figure 1. Projection of $(MeS)_2CSH^+As_2F_{11}^-$. Thermal ellipsoids are drawn at the 25% probability level.

Figure 2. Projection of the $(MeS)_2CSH^+As_2F_{11}^-$ salt with contacts.

Figure 3. Infrared spectrum (trace a) and Raman spectrum (trace b) of $(MeS)_2CSH^+As_2F_{11}^-$.

atom S(1) and acceptor atom F(10) is about 300.3(7) pm and thus 10% below the sum of the van der Waals radii.²² There

⁽²²⁾ Bondi, A. J. Phys. Chem. 1964, 68, 441.

 $(M, q) = (q M^+ q) = -$

Table 3. Raman and IR Frequencies and Possible Assignment of $(MeS)_2CSX^+SbF_6^-$ and $(MeS)_2CSX^+As_2F_{11}^-$ (X = H, D)

 $(M, G) = GGX^{\pm}A = F$

$(MeS)_2CSX^{+}SDF_6$		$(MeS)_2CSX^TAS_2F_{11}$						
X = H		X = D	X = H		X = D			
IR	Raman	IR	Raman	IR	Raman	IR	Raman	possible assignment
3035w	3028(13)		3029(20)		3028(12)	3028w	3028(16) 3019(14)	νCH_3
	2936(43)	2937w	2935(47)	2933vw	2936(62)	2934vw	2936(84)	
2498w	2506(9)	1819m	1824(13)	2536w	2552(12)	1852w	1856(16)	νSX
1419w	1424(10)	1423m	1425(10)	1422m	1424(10)	1419m	1423(15)	
1314w	1317(4)	1317w	1318(4)	1320w 1269w	1325(4)	1320w	1326(3)	δCH_3
				1215vw		1224w		
						1197w		
1096m	1101(3)	1098vw		1099w	1101(4)	1097w	J	
1078w		1063w					}	$\nu C = S$
1031w	1034(8)	1034s	1033(8)	1032w	1038(12)	1036s	1039(13)	
		972w	968(5)	964w		968m	l	CU
035m	940(4)	904III 036c	937(3)		946(11)	0306	943(8)	$\rho C \Pi_3$
955III	940(4)	9508	939(1)	908m	940(11)	9398)43(0) J	
861m	875(3)	876vw		J 00III	878(6)	875vw	Į	vCS
818m	0/5(5)	822vw		824w	0/0(0)	819w	(100
010111	708(7)	708vs	711(10)	0240	710(9)	714vs	711(9) j	
703m	100(1)	700vs	/11(10)		/10())	/11/5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\nu S-CH_3$
, oc		6778	683(4)				(
	645(29)	650vs	646(28)				, 1	CON
					608(3)		608(4)	τCSX
		560m	568(3)				ົ່ງ	
		552m		544w				2C-5
				531w)	VC = S
496w	505(100)	497m	504(100)		508(100)		507(100)	
469s		467w		461w		465m		γCS_3
434m							J	
403s								
349m	353(8)	353m	354(8)		353(11)		353(11)	δCS_2
	212(12)	327W	200(12)		210(25)	211	207(26)	
	313(13)		309(12)		310(23) 221(7)	311W	307(20)	
			208(4)		231(7) 200(5)		108(6)	τCH .
			208(3)		200(3)		198(0)	<i>t</i> CH ₃
				767m	=0.4440	757vs]	
				=0.4	736(10)	=0.0	/3/(18)	νMF
655vs	657(5)	659vs	57(2)	701vs	(02(20))	703vs	(02(20))	
5728	575		576(3)	49.4	683(28)	492	683(38) J	
200	280(12)	297	280(10)	484vw	202(4)	482W	202(6)	VAS-F-AS
289VS	280(12)	287VS	280(10)		392(4)	390VS	392(0)	OMF

are additional hydrogen bonds, but because of their longer interatomic distances they are not considered.

Raman and IR Spectra of $(MeS)_2CSX^+SbF_6^-$ and $(MeS)_2CSX^+As_2F_{11}^-$ (X = H, D). The infrared and Raman spectra of $(MeS)_2CSH^+As_2F_{11}^-$ are shown in Figure 3. The observed frequencies of the $(MeS)_2CSX^+$ salts of $As_2F_{11}^-$ and SbF_6^- (X = H, D) are summarized in Table 3. The assignments for the $(CH_3S)_2CSX^+$ cation were made by comparison to the calculated frequencies of $(CH_3S)_2CS$ and several alkylxanthogenates.²³⁻²⁵

On assumption that the $(CH_3S)_2CSX^+$ cation (X = H, D) has C_1 point symmetry, 33 Raman and IR active fundamental vibrations are expected. The antisymmetric and symmetric stretching modes of the methyl groups are observed in the region of 2933 cm⁻¹-3035 cm⁻¹. The vSH mode is observed at 2500 cm⁻¹, and the H/D shift to 1819 cm⁻¹ for the SbF₆⁻ compound is nearly in accordance with the expected shift.²⁶ The vSH vibrational modes in the As₂F₁₁⁻ salt are shifted ca. 40 cm⁻¹ to higher frequencies because the interaction between anions and

(25) Mattes, R.; Pauleickhoff, G. Spectrochim. Acta 1973, 29A, 1339.

cations is weaker than in the SbF₆⁻ compound. The deformation and rocking modes of the methyl groups are observed in their normal ranges of 1425–1269 and 972–900 cm⁻¹. A sharp Raman line and IR band is detected at 465 cm⁻¹ and is assigned to the CS₃ out of plane deformation mode.

A comparison of the spectra of the $As_2F_{11}^-$ and the SbF_6^- salts shows that the frequencies of 767 and 736 cm⁻¹ occur only in the arsenic species. The symmetric degradation is responsible for the two additional As–F stretching modes. The band at 484 cm⁻¹ is assigned to the stretching modes of the bridging As–F–As.³⁷ A complete assignment of the vibrational frequencies would require force field calculations.

Supporting Information Available: Tables listing detailed crystallographic data, atomic positional parameters, and bond lengths and angles and figures depicting the projection of $(MeS)_2CSH^+As_2F_{11}^-$ and IR and Raman spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

IC9902673

⁽²³⁾ Herzog, K.; Fabian, J. Z. Phys. Chem. 1995, 191, 159.

⁽²⁴⁾ Klaesser, K.; Gattow, G. Z. Anorg. Allg. Chem. 1981, 481, 135.

⁽²⁶⁾ Weidlein, J.; Müller, U.; Dehnicke, K. Schwingungsspektroskopie; G. Thieme: Stuttgart, 1982.