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A general solution of the exchange problem in the high-nuclearity spin clusters (HNSC) containing arbitrary
number of exchange-coupled centers and topology is developed. All constituent magnetic centers are supposed to
possess well-isolated orbitally non-degenerate ground states so that the isotropic Heisenberg-Dirac-Van Vleck
(HDVV) term is the leading part of the exchange spin Hamiltonian. Along with the HDVV term, we consider
higher-order isotropic exchange terms (biquadratic exchange), as well as the anisotropic terms (anisotropic and
antisymmetric exchange interactions and local single-ion anisotropies). All these terms are expressed as irreducible
tensor operators (ITO). This allows us to take full advantage of the spin symmetry of the system. At the same
time, we have also benefitted by taking into account the point group symmetry of the cluster, which allows us to
work with symmetrized spin functions. This results in an additional reduction of the matrices to diagonalize. The
approach developed here is accompanied by an efficient computational procedure that allows us to calculate the
bulk magnetic properties (magnetic susceptibility, magnetization, and magnetic specific heat) as well as the
spectroscopic properties of HNSC. Special attention is paid to calculate the magnetic excitations observed by
inelastic neutron scattering (INS), their intensities, and theirQ and temperature dependencies. This spectroscopic
technique provides direct access to the energies and wave functions of the different spin states of the cluster;
thus, it can be applied to spin clusters in order to obtain deep and detailed information on the nature of the
magnetic exchange phenomenon. The general expression for the INS cross-section of spin clusters interacting by
all kinds of exchange interactions, including also the single-ion zero-field splitting term, is derived for the first
time. A closed-form expression is also derived for the particular case in which only the isotropic exchange
interactions are involved. Finally this approach has been used to model the magnetic properties as well as the
INS spectra of the polyoxometalate anion [Ni9(OH)3(H2O)6(HPO4)2(PW9O34)3]16-, which contains a central magnetic
cluster formed by nine exchange-coupled Ni(II) ions surrounded by diamagnetic phosphotungstate ligands
(PW9O34)9-.

Introduction

Magnetic molecular clusters, i.e., molecular assemblies
formed by a finite number of exchange-coupled magnetic
moments, are currently receiving much attention in several active
areas of research as molecular chemistry, magnetism, and
biochemistry. A reason for this interest lies in the possibility to
use simple molecular clusters as magnets of nanometer size
exhibiting unusual magnetic properties as superparamagnetic-
like behavior or quantum tunneling of magnetization.2 Organic
molecules of increasing sizes and large number of unpaired
electrons are also being explored as a means of obtaining
building blocks for molecule-based magnets.3 Magnetic clusters
of metal ions are also relevant in biochemistry. We mention,
for instance, the mixed-valence Fe4S4 clusters contained in

ferredoxins,4 the manganese clusters present in photosystem II,5

and the magnetic particles of iron found in the storage protein
ferritin.6

This area between molecule and bulk will require new
theoretical concepts and techniques for investigation of their
peculiar properties. Still, the theoretical treatment required to
understand the electronic and magnetic structures as well as
the resulting magnetic and spectroscopic properties of this wide
variety of compounds is a challenging problem in molecular
magnetism.7 For a long time, this problem has been mostly
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restricted to treat comparatively simple clusters comprising a
reduced number of exchange-coupled centers and special spin
topologies.8 In these a quantitative description of the properties
can be usually achieved using a spin Hamiltonian approach.
Thus, in contrast to extended systems, exact solutions of the
effective spin Hamiltonian are obtained either analytically or
numerically. In this sense, simple spin clusters have been shown
to be ideal model systems to test the validity of the theoretical
models. In fact, they have significantly contributed in the past
in our understanding of the exchange interaction phenomenon.9

However, on increasing the spin nuclearity of the cluster, the
problem rapidly becomes unapproachable because the lack of
translational symmetry in the clusters precludes an efficient
reduction of the size of the matrices to be diagonalized. An
additional complication is the increase in the number of
exchange parameters required to analyze the experimental data
as the nuclearity of the cluster increases and the cluster
symmetry decreases. In such a situation the usual magnetic
techniques (magnetic susceptibility, EPR) are often insufficient
to provide a clear picture of the coupling situation and other
complementary techniques are necessary to obtain unambiguous
and accurate values of these parameters. A powerful technique
that has been used in this context is inelastic neutron scattering
(INS). This spectroscopic technique has proved to be extremely
well suited to provide direct access to both the energies and
eigenfunctions of the different spin states of a cluster and
therefore to the resulting exchange parameters.10-12

Note that a large spin nuclearity is not the only difficulty
one can encounter. Other effects as the electron delocalization
within the cluster (in the mixed-valence case),13 or the presence
of exchange interactions between orbitally degenerate ions,14

bring also serious limitations since these effects cannot be
expressed in terms of a simple spin Hamiltonian. Hence, the
general form of the effective Hamiltonian for these two types
of systemssmixed-valence clusters and clusters of orbitally

degenerate ionssis unknown and requires a particular procedure
for each considered system.

In the present paper we restrict our discussion to the study
of high-nuclearity clusters of exchange-coupled spins (abbrevi-
ated as HNSC), which constitute the more broad class of
magnetic clusters (and also the simplest one). An efficient
computing procedure has been suggested for the calculation of
the energy levels and the magnetic properties of these systems
in the isotropic-exchange case (Heisenberg model).15 The
approach uses the method of the irreducible tensor operators
(ITO) to take full advantage of the spin symmetry of the system,
reducing the time required to calculate the energy matrices.
Furthermore, it can use point group symmetry to reduce the
dimension of the matrices.16 Nevertheless, it considers neither
the non-Heisenberg exchange contributions17 to the spin Hamil-
tonian that are high-order perturbation terms (as the biquadratic,
antisymmetric, and anisotropic exchange interactions) nor the
single-ion anisotropy. Being usually relatively small compared
to the isotropic exchange, these terms play a prominent role in
many physical manifestations of the exchange interactions. For
example, the magnetic anisotropy of the clusters has been shown
to be a key factor for observing superparamagnetic-like behavior
and quantum-tunneling of the magnetization.2 The antisymmetric
exchange has shown to produce nonlinear spin structures in
trimeric clusters formed by half-integer spins,17 an effect that
is closely related to the spin-frustration concept.18,19On the other
hand, in small magnetic clusters these terms have shown to
produce important effects in the observed INS spectra. In fact,
the position of the magnetic excitations, as well as their
intensities and their dependencies with the scattering vectorQ,
depend on both the energy pattern and the wave functions of
the different spin states of the cluster. In dimers the INS cross-
section (proportional to the intensity) has been derived for the
Heisenberg and the Ising Hamiltonians and used to analyze the
Q-dependence in Yb3+-Yb3+ and Yb3+-Cr3+ pairs.10i The
cross-section has also been calculated in isotropic systems with
special symmetries like trimers and tetramers (Fe3+

2M2+, M )
Mn(III) or Ni(II) and Cr3+

4)11 and for radial clusters like Ti2+-
(Mn2+)6.12 In clusters with higher spin multiplicities and
nuclearities, or lower exchange network symmetries and/or
exchange anisotropies, the evaluation of the cross-section is a
very difficult task since the formulae become quite complicated
and intractable using the existing conventional approaches.

Here we develop a quite general approach for the calculation
of the energy levels as well as the spin eigenfunctions and the
INS cross-section of HNSC. The approach is based on the
successive use of the ITO techniques, which allow us to take
fully into account all kinds of magnetic exchange interactions
between the metal ions comprised in clusters of arbitrary
nuclearity and spin values. This includes the isotropic exchange
terms (bilinear and biquadratic) as well as the anisotropic ones.
The approach is accompanied by an efficient computing program
that allows us to calculate the bulk thermodynamical properties
(magnetic susceptibility, magnetization, magnetic specific heat),
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as well as spectroscopic properties (intensities of the INS
magnetic excitations and theirQ and temperature dependencies)
in clusters for a given network of the exchange parameters
implied by the symmetry conditions. The first part of this paper
is devoted to present this theoretical approach. In the second
part the potentialities of this approach are illustrated from an
example comprising nine exchange-coupled Ni(II) ions encap-
sulated in a polyoxowolframate framework.

Theoretical Approach

Generalized Spin Hamiltonian. Let us consider a spin
cluster formed by an arbitrary number of magnetic sites,N, with
local spinsS1, S2, ..., SN which can have different values. A
successive spin coupling scheme is adoptedS1 + S2 ) S̃2, S̃2 +
S3 ) S̃3, ..., S̃N-1 + SN ) S, whereS̃2 ) S12, S̃3 ) S123, etc. are
the intermediate spin values, andS is the full spin. The spin
states can be labeled as

where (S̃) stands for the full set ofS̃k (N - 1 intermediate spin
states). In the general case of considering both isotropic and
anisotropic exchange interactions, the spin stateν is the
superposition of all (S̃)SM states:

where the summation is carried out over all sets (S̃). The
coefficients 〈(S̃)SM|ν〉 are found by solving the eigenvector
problem with the given spin-Hamiltonian of the system. The
generalized spin-Hamiltonian operating in the spin space of the
whole system is as follows:

whereT̂q
(k)(k1k2(k̃2)...kN-1(k̃N-l)kN) is theqth component of the

complex ITO of rankk composed from the ITO’sŜqi

(ki)(i) ≡ Sqi

(ki)

acting in the spin space of the individual spins (ki ) 0, 1, ...,
2Si):

whereX is the symbol of the tensor product,k̃2 ) k12, k̃3 )
k123, etc. andk̃2 ) k1 + k2, k1 + k2 - 1, ..., |k1 - k2|, etc.

This Hamiltonian involves all intercenters interactions. It can
be applied to obtain the energy levels and the intensities of the
INS magnetic excitations of the exchange system (see below).
In both problems we must evaluate the matrix elements ofT̂q

(k)

operators in the basis set of coupled spin states (eq 1). Using
the Wigner-Eckart theorem we obtain

where 〈(S̃′)S′|T̂(k)(k1k2(k̃2)...kN-1(k̃N-1)kN)|(S̃)S〉 is the reduced
matrix element of the ITOT̂(k) for the coupled spin state, [S] )

2S+ 1, andCSMkq
S′M′ is a Clebsch-Gordan coefficient.20 Finally,

using the successive decoupling procedure, these reduced matrix
elements can be expressed in terms of single-spin reduced matrix
elements and 9j-symbols:17

where{l l l} are the 9j-symbols. Fork ) 0, 1, and 2, the single-
spin reduced matrix elements〈S′i|Ŝ(ki)|Si〉 are as follows:

Exchange Hamiltonian. We present the exchange Hamil-
tonian in the following form:

where HO is the Heisenberg-Dirac-van Vleck (HDVV)
Hamiltonian,HBQ is the biquadratic exchange Hamiltonian,HAS

is the antisymmetric exchange, andHAN is the anisotropic
exchange Hamiltonian. In the conventional form these terms
are expressed as

We do not consider here more complicated terms of biqua-
dratic exchange, like (SiSj)(SkSl) that are responsible for mul-
ticenter interactions in polynuclear compounds. For the sake of
simplicity we consider highly symmetric systems omitting thus
the low-symmetry contributions (likeSi

R Si
â) in HAN. In eqs

9-12, Jif are the isotropic exchange parameters,jif are the
biquadratic exchange interactions,Jif

R are the parameters as-
sociated to the components of the anisotropic exchange interac-
tions, and Gif () -Gif) are the antisymmetric exchange
parameters, i.e., antisymmetric vectors, [Ŝi × Ŝf] is a vector
product.

Single-Ion Anisotropy Hamiltonian. We can add to the
exchange Hamiltonian the term due to the axial and rhombic
single-ion anisotropy:

(20) Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K.Quantum
Theory of Angular Momentum; World Scientific: Singapore, 1988.

〈(S̃′)S′|T̂q
(k)(k1k2(k̃2)...kN-1(k̃N-1)kN)|(S̃)S〉 )

〈SN|Ŝ(kN)|SN〉∏
i)1

N-1

{[k̃i+1][ S̃i+1][ S̃′i+1]}
1/2 ×

〈Si|Ŝ
(ki)|Si〉{k̃i ki+1 k̃i+1

S̃′i Si+1 S̃′i+1

Si Si+1 S̃i+1
} (6)

〈S′|Ŝ(0)|S〉 ) [S]δS′S

〈S′|Ŝ(1)|S〉 ) xS(S+ 1)(2S+ 1) δS′S (7)

〈S′|Ŝ(2)|S〉 ) 1

x6
x(2S+ 3)(2S+ 1)(S+ 1)S(2S- 1) δS′S

Ĥ ) ĤO + ĤBQ + ĤAS + ĤAN (8)

ĤO ) -2∑
i,f

JifŜiŜf (9)

ĤBQ ) -∑
i,f

j if(ŜiŜf)
2 (10)

ĤAS ) ∑
i,f

Gij[Ŝi × Ŝf] (11)

ĤAN ) -2∑
i,f

∑
R

Jif
R Ŝi

R Ŝf
R, with R ) x, y, z (12)

ĤZF ) ∑
i

Di Ŝz
2(i) + ∑

i

Ei(Ŝx
2(i) - Ŝy

2(i)) (13)

|S1S2(S̃2)S3(S̃3)...SN-1(S̃N-1)SNM〉 ≡ |(S̃)SM〉 (1)

|ν〉 ) ∑
(S̃)SM

〈(S̃)SM|ν〉|(S̃)SM〉 (2)

ĤS ) ∑
k1k2...kN

∑
k̃1k̃2...k̃N-1

∑
kq

Cq
(k)(klk2(k̃2)...kN-1(k̃N-1)kN) ×

T̂q
(k)(k1k2(k̃2)...kN-1(k̃N-1)kN) (3)

Tq
(ki)(...) ) {...{S(k1) X S(k2)}(k̃2) X

S(k3)}(k̃3)...}(k̃N-1) X S(kN)} q
(k) (4)

〈(S̃′)S′M′|T̂q
(k)(k1k2(k̃2)...kN-1(k̃N-1)kN)|(S̃)SM〉 )

(-1)2k

[S′]1/2
CSMkq

S′M′ 〈(S̃′)S′|T̂(k)(k1k2(k̃2)...kN-1(k̃N-1)kN)|(S̃)S〉 (5)
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Spin Hamiltonian in Terms of the ITO’s. The three parts
of the exchange Hamiltonian (eq 7) can be expressed in terms
of the ITO’s S̃q

(k)(i):

where

and

where

The operatorsTq
(k)(kikf|if) so far introduced describe the pair-

wise interactions. They are obtained from the complex tensor
Tq

(k)(...) (eq 3) with the corresponding values ofki and kf and
with all kl ) 0 if l * k,f.

From eqs 14 and 17 one can see that both biquadratic and
anisotropic exchange hamiltonians contain scalar terms
(≈ T̂(0)(11|if)) that can be included in the isotropic HDVV
Hamiltonian. The redefined components of the exchange Hamil-
tonian are as follows:

where J̃if is the effective isotropic exchange parameter (J̃if )
Jif + 1/3(Jif

x + Jif
y + Jif

z) - 1/4jif).

Using the same procedure, the local anisotropy Hamiltonian
expressed in terms of ITO’s becomes

The three considered terms of the above exchange Hamilto-
nian can be viewed as particular contributions to the generalized
Hamiltonian (eq 3). Thus, Heisenberg and biquadratic exchanges
can be obtained providingk ) 0. In fact, operatorT̂(0)(11|if) in
eqs 18-20 corresponds toT̂(0)(k1k2(k̃2)...kN-1(k̃N-1)kN) in eq 3,
providing ki ) kf ) 1 and allkl ) 0 if l * i,f. Similarly, to
express the biquadratic interaction in eq 18 in terms of eq 3 we
put ki ) kf ) 2, andkl ) 0 if l * i,f. Since these two exchange
interactions are isotropic, the correspondingĤO and ĤBO

matrices are blocked according to the value of the total spin,S,
in such a way that the nonzero matrix elements can be found
only between states with the same values ofS andM. On the
other hand, for all terms ofĤAN k ) 2. OperatorsT̂q

(2)(11|if) in
eq 20 correspond toki ) kf ) 1 and allkl ) 0 (l * i, f). In
general the matrices forĤAN are not blocked according to the
full-spin Sdue to the mixing of the differentSMvalues (for the
T(2) tensor the selection rule is∆S) 0, 1, 2). Finally, in eq 20
one can see that the local anisotropic term implies an ITO with
k ) 2, so in generalĤZF mixes SM states but when rhombic
local anisotropy is zero the matrix is blocked according to the
total spin projection,M. AS exchange (T(1)) mixes the spin states
with ∆S ) 0, 1.

Symmetry Considerations.The dimension of the matrices
to be diagonalized for these systems increases dramatically with
the increase in the number of centers. In the case of isotropic
systems the matrices are reduced by classifying the states
according to the total spin values. For a cluster exhibiting high
symmetry, this problem can be attacked more efficiently by
taking advantage of the point group symmetry of the cluster,
which results in an additional reduction of the matrices.13,14

For the isotropic systems, the eigenmatrix is blocked accord-
ing to the value of total spinS, its projection M, and the
irreducible representationΓ of the point symmetry group of the
cluster. The point group operator produces interchanges of the
sites (permutation of the orbitals in the Slater determinants),
thus mixing the|(S̃)SM〉 states with different (S̃) that belong
however to the sameSM space

whereG is the matrix ofR̂ in the {(S̃)SM} representation

The wave function|(S̃)SM〉 can be expressed in terms of a
linear combination of Slater determinants

Applying the symmetry operators to each determinant of these
linear combinations one can calculate all the elementsGS̃′S̃(R̂)
and then find the character of the representationΓR̂. Decompos-

ĤO ) 2x3∑
i,j

JifT̂
(0)(11|if) (14)

ĤBQ ) ∑
i,f

j if[x5T̂(0)(22|if) +
x3

2
T̂(0)(11|if) +

1

3
S0

2(S0
2 + 1)2]

(15)

ĤAS ) -ix2∑
i,f

∑
q

(-1)qGq,if
(1) T-q

(1)(11|if) (16)

Gq,ij
(1) ) {-(Gx ( iGy)/x2, q ) (1

Gz, q ) 0

ĤAN ) 2∑
i,f

Jif
aT̂(0)(11|if) + 2∑

i,f

Jif
u 1

x2

[T̂2
(2)(11|if) +

T̂-2
(2)(11|if)] + 2∑

i,f

Jif
V T̂0

(2)(11|if) (17)

Jif
a ) 1

x3
(Jif

x + Jif
y + Jif

z)

Jif
u ) 1

x2
(Jif

y - Jif
x)

Jif
V ) 1

x6
(Jif

x + Jif
y - 2Jif

z)

ĤO ) 2x3∑
i,f

J̃ifT̂
(0)(11|if) (18)

ĤBO ) -x5∑
i,f

j ifT̂
(0)(22|if) (19)

ĤAN )
2

x2
∑
i,f

[Jif
u(T̂2

(2)(11|if) + T̂-2
(2)(11|if))] +

2∑
i,f

Jif
V T̂0

(2)(11|if) (20)

ĤZF ) ∑
i

Di[-
1

x3

Ŝ0
(0)(i) +

x2

x3

Ŝ0
(2)(i)] +

∑
i

Ei[Ŝ2
(2)(i) + Ŝ-2

(2)(i)] (21)

R̂|(S̃)SM〉 ) ∑
S̃′

GS̃′S̃(R̂)|(S̃′)SM〉 (22)

GS̃′S̃(R̂) ) 〈(S̃′)SM|R̂|(S̃)SM〉 (23)

|(S̃)SM〉 )

∑
m1m2‚‚‚mN

CS1m1S2m2

S̃2m̃2 CS̃2m̃2S3m3

S̃3m̃3 ‚‚‚ CSN-1m̃N-1SNmN

SM |m1m2‚‚‚mN| (24)
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ing ΓR̂ into irreducible parts one can find allSΓ terms. The
group-theoretical procedure of classification of spin multiplets
is developed in ref 17.

To obtain the|SΓMγ〉 basis belonging to the total spinSand
irreducible representationΓ, the point group projection operator
is applied:

wherefΓ is the dimension of the irreducible representationΓ.
Gγγ′

(Γ)(R̂) is the matrix element of the matrix of the irreducible
representationΓ corresponding to the operatorR̂.

The symmetry-adapted wave functions built in this way are
linear combinations of the wave functions|(S̃)SM〉 of the initial
set:

It should be noted, however, that the advantage of signifi-
cantly reducing the size of the matrices, due to the use of a
symmetry-adapted basis, increases drastically the time consump-
tion (for high symmetries, sometimes this factor increases by 1
or 2 orders of magnitude). In these cases a compromise between
the size of the matrices (degree of symmetry) and time
consumption is necessary. When the size of the problem is close
to the computing possibilities, the consideration of a single
symmetry element (an inversion center or a plane, for example)
may be enough to make possible the evaluation of the problem
with a reasonable time consumption.

INS Cross-Section of Spin Clusters.When neutrons having
an incident wave vectorkB interact with a magnetic sample, they
are scattered in such a way that their final wave vector iskB′
(Figure 1). The difference between these two vectors defines
the scattering vectorQB. The differential cross-section is defined
by the number of neutrons that are scattered per second into a
solid angle dΩ in the directionθ, φ, having an energy comprised
betweenE′ and E′ + dE′, divided by the number of incident
neutrons. This is a useful measure of the intensity of the
magnetic excitations. For a cluster of interacting spins this cross-
section can be expressed as21

whereR, â ) x, y, z; i and f number the magnetic ions;Fi(QB)

is the magnetic form factor;pQB ) p(kB - kB′) is the transferred
momentum;pω ) ε(ν) - ε(ν′) is the energy gap between the
two spin levels of the clusterν andν′ that are involved in the
transition. The spin functions associated with these levels are
defined in eq 2.RBi are the spin position vectors; andA ) (γe2/
mec2)(k′/k) exp(-2W).

In eq 27 the spin operators can be expressed in terms of ITOs
components withk ) 1 andq ) 0, (1:

By applying the Wigner-Eckart theorem the matrix elements
of these operators can be expressed as

In order to calculate the magnetic cross-section for a powder
sample, an average over all directions ofQB should be performed.
By transforming QB from the Cartesian coordinates to the
spherical ones, the following expression for the magnetic cross-
section is obtained:

This formula is valid for spin systems interacting by all kinds
of exchange interactions, including also the single-ion zero-
field splitting term.

In the framework of the isotropic exchange model the above
general expression can be significantly simplified. Using the
basis (eq 2), the Wigner-Eckart theorem, and the following
property of Clebsch-Gordan coefficients,

(21) (a) Halpern, O.; Johnson, M. H.Phys. ReV. 1939, 55, 898. (b) Lovesey,
S. W. Theory of Neutron Scattering from Condensed Matter, Vol. 2,
International Series of Monographs on Physics; Oxford Science
Publications: Oxford, 1987; p 1.

Figure 1. INS spectroscopy: schematic representation of the neutron
scattering process.

P̂(Γ)
γγ′ )

fΓ

g
∑
R

Gγγ′
(Γ)(R̂)* R̂ (25)

|(S̃)SM〉 )
fΓ

g
∑
R

Gγγ′
(Γ)(R̂)∑

S̃′
GS̃′S̃(R̂)|(S̃′)SM〉 (26)

∂
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E(ν)
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QRQâ
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×

Fi
/(QB)Ff(QB) exp{iQB(RB i - RBf)}〈ν|Ŝi

R|ν′〉〈ν′|Ŝf
â|ν〉δ(pω +
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∑
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∑
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(QBRB if)
+
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one can find the following expression (eq 32) for the cross-
section of the INS:

where〈(S̃)S|Ŝ(1)(i)|(S̃′)S′〉 is the reduced matrix element of the
first-order tensorŜ(l)(i) operating in the full-spin space. As far
as the isotropic model is used, it is expressed exclusively in
terms of reduced matrix elements and does not involve
Clebsch-Gordan coefficients. Since the basic functions belong
to the coupled states, we shall employ the generalized spin
Hamiltonian approach in order to evaluate these matrix elements.
All matrix elements ofŜ(1)(i) in eqs 30 and 32 can be obtained
from the general expression of eq 6. In order to evaluate〈(S̃′)-
S′|Ŝ(1)(i)|(S̃)S〉 we must substitute in eq 6ki ) 1, all kf ) 0 if
f ) i (Ŝ(0)(f) are simply the identity operators), in this case all
k̃f ) 0 if f < i, all k̃f ) 1 if f g i, finally k ) 1. Equation 6
proves to be considerably simplified due to the fact that 9j-
symbols with one of the arguments equal to zero are proportional
to 6j-symbols; thus, the probabilities of the INS do not contain
9j-symbols and can be expressed in terms of 6j-symbols only.

Application of the Approach to Magnetic Clusters. The
above developed approach is accompanied by a fast and efficient
computational procedure for the calculation of the spin levels
and derived properties of HNSC.22 Using this procedure we can
model the magnetic properties and the inelastic neutron scat-
tering spectra of a variety of magnetic clusters including the
anisotropic ones. Thus, the tetranuclear Co(II) cluster encap-
sulated in between two diamagnetic ligands (PW9O34)9- have
been modeled assuming an anisotropic-exchange Hamiltonian.23

In this case the power of the INS to provide information on the
energy levels and wave functions has been combined with the
power of the computational approach to quantify such informa-
tion in terms of the relevant magnetic parameters. Just to
illustrate the potentialities of the theoretical approach in the
isotropic case we will focus in a higher nuclearity magnetic
cluster formed by nine exchange-coupled Ni(II) ions recently
reported by our group.24 The compound is a giant polyoxo-
metalate formulated as (Ni9(OH)3(H2O)6(HPO4)2(PW9O34)3)16-.
The Ni(II) cluster is formed by a triangle of triangular Ni3O12

clusters surrounded by three diamagnetic ligands (PW9O34)9-

which guarantee the magnetic insulation (Figure 2a). The three
Ni3O12 triangles are joined together through three OH- bridging
groups and two central HPO42- groups. The presence of two
types of connections between the NiO6 octahedra, one within
the Ni3 triangles (with Ni-O-Ni angles in the range 90-100°)
and the other between the triangles (with Ni-O-Ni angles close
to 120°), leads to two types of pairwise isotropic exchange
interactions between theS) 1 Ni(II) spins (J andJ′ in Figure
2b).

The magnetic properties of the Ni9 cluster have been modeled
assuming a fully isotropic exchange model (Figure 3). The best

fit of the magnetic susceptibility data indicates a ferromagnetic
intra-triangle interaction (J ) 3.9 cm-1 ≡ 0.49 meV) and a
smaller antiferromagnetic (AF) inter-triangle interaction (J′ )
-1.4 cm-1 ≡ -0.17 meV) (Figure 3a).22 In this treatment the
spin anisotropy of nickel(II) has been neglected to take full
advantage of the spin symmetry, as otherwise the problem
becomes intractable using our computational capabilities. Then,
using the ITOs we have exploited the symmetry associated to
the total spin functions in such a way that the exchange matrix,
initially of size 19683× 19683, is formed by S-block matrices
of maximum size 750× 750. We can also exploit the point
group symmetry of the cluster in order to obtain a further
reduction of these S-block matrices. For example, the size of
the matrices can be divided by 2 by taking into consideration
the symmetry plane of the cluster. In this case each S-matrix is
blocked into two submatrices associated to the symmetrical and
antisymmetrical functions with respect to the plane. The results
are shown in Table 1.

The energy spectrum of Ni9 is reported in Figure 4 and
compared to that calculated for the ferromagnetic Ni3 cluster.
We observe that while the energy spectrum of Ni3 is formed
by four discrete levels at energiesE(S) ) -JS(S + 1), the

(22) Clemente-Juan, J. M. Ph.D. Thesis, University of Valencia, Spain,
1998.

(23) Andres, H.; Clemente-Juan, M.; Aebersold, M.; Gu¨del, H. U.;
Coronado, E.; Bu¨ttner, H.; Kearly, G.; Melero, J.; Burriel, R.J. Am.
Chem. Soc.1999, 121, 10028.

(24) Clemente-Juan, M.; Coronado, E.; Gala´n-Mascaro´s, J. R.; Go´mez-
Garcı́a, C. J.Inorg. Chem.1999, 38, 55.

∂
2σ

∂Ω∂ω
) A

2

3
exp{-

E(ν)

kT }∑
ief

Fi(QB)Fj
/(QB)(-1)S-S′ ×

[δif + 2(1 - δif) cos(QBRB if)] ∑
S̃S̃′S̃′′S̃′′′

〈νS|(S̃)S〉〈(S̃′)S′|ν′S′〉 ×

〈ν′S′|(S̃′′)S′〉〈(S̃′′′)S|νS〉〈(S̃)S|Ŝ(1)(i)|(S̃′)S′〉 ×
〈(S̃′′)S′|Ŝ(1)(f)|(S̃′′′)S〉δ(pω + E(ν) - E(ν′)) (32)

Figure 2. (a) Polyhedral representation of the [Ni9(OH)3(H2O)6-
(HPO4)2(PW9O34)3]16- anion. (b) Exchange network of the M9O33 cluster
showing the two different exchange parametersJ andJ′.

Figure 3. Magnetic properties of the [Ni9(OH)3(H2O)6(HPO4)2-
(PW9O34)3]16- anion. (a) Thermal dependence of the product of the
magnetic susceptibility times the temperature; (b) experimental and
calculated magnetization curve vs H at 2 and 5 K.
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increase in the magnetic nuclearity leads in Ni9 to a complex
spectrum in which the energy levels tend to merge into a
continuum as in an extended solid, although the lowest lying
energy levels are still well separated one from the other. This
structure of levels can be rationalized taking as starting point
the spin structure of the ferromagnetic trimer (Figure 3a). If
we consider the presence of three non-interacting ferromagnetic
trimers, the resulting energy diagram of the nonanuclear cluster
will be the sum of all the possible combinations of these four
levels (Figure 3b). This gives rise to a diagram with many
degenerate spin levels. Such a degeneracy is broken as soon as
the antiferromagnetic exchange interactions between the trimers
are taken into account. As a result the fully degenerate ground
level is split, leading to the stabilization of the lower spin states
in such a way that theS ) 0 spin state becomes the ground
state of the Ni9 cluster.

Besides the calculation of the magnetic susceptibility, the
computational approach can calculate the magnetization of the
cluster as a function of the applied magnetic field and the
temperature. Figure 3b compares the experimental magnetization
(at 2 and 5 K) with the theoretical prediction. This last has been
calculated from the parameters deduced from the fitting of the
magnetic susceptibility data. As we can see, the model
quantitatively reproduces the linear dependence of the magne-
tization with the field. This result constitutes an additional

support of the validity of the proposed magnetic model and of
the structure of the lowest-lying spin levels. The small discrep-
ancies between theory and experiment observed at 2 K may be
due to the fact of neglecting the spin anisotropy of the cluster
coming from the zero-field splitting of the Ni(II) ion. In fact,
the model reproduces better the curve at 5 K, as at this
temperature the splitting of the lower spin levels caused by the
anisotropy is smaller than the thermal energy and therefore, all
these split levels are populated. Notice that spin anisotropy is
expected to have significant effects in the magnetization curves,
especially in clusters having magnetic ground spin state. In these
cases the magnetization becomes anisotropic and difficult to
evaluate in a simple way, due to the spin anisotropy. An
averaging of the magnetization, calculated with the magnetic
field applied in the different directions of the space, is then
required in order to reproduce the measurements performed on
powder samples. The computational approach reported here
allows to perform such a calculation. However, the size of the
nonanuclear cluster is too large to be treated in the anisotropic
case. In smaller clusters such a possibility has been exploited.
For example, in the related Ni4 cluster encapsulated by two
diamagnetic ligands (PW9O34)9-, the low-temperature experi-
mental magnetization curves have been closely reproduced25

by a model that considers both ferromagnetic exchange interac-
tions and single-ion anisotropies in the range 4-6 cm-1.

A powerful possibility of the developed approach is that of
simulating the INS spectra of large-spin clusters, i.e., the
energies and intensities of the magnetic excitations, and their
Q and temperature dependencies. This is well-illustrated by
solving the problem of the INS cross-section in the Ni9 cluster.
Until now, this problem was solved only in relatively simple
and small clusters having fully isotropic (Heisenberg) or fully
anisotropic (Ising) exchange interactions.9,16 The present com-
puting approach represents a significant advance in this area as
it allows to treat the problem in a quite general and efficient
way, including the non-Heisenberg terms as well as the spin
anisotropy (see refs 23 and 24). In the case under consideration,
the INS spectra calculated for Ni9 can be better understood if
they are compared with the predictions made for the Ni3 cluster,
as the energy level patterns of these two systems are closely
related. In fact, the energy spectrum of Ni9 can be derived from
the spectrum of three independent Ni3 clusters by considering
a small perturbation due to the antiferromagnetic interaction
between them (see Figure 4). From these spectra and using the
formulae derived for the cross-section of the INS we can
evaluate the magnetic excitations in these two clusters. In Figure
5 is reported the calculated INS spectra at two different
temperatures. We observe that while the lowT spectrum of Ni3
has only an inelastic peak at energy 6J ) 2.9 eV corresponding
to the excitation from the ground spin stateS ) 3 to the state
S ) 2, the presence of inter-triangle AF exchanges leads to a
splitting of this single line into many excitations in the range
2.9-3.5 meV. Thus, a broad and complex band is observed in
this region of the spectrum. For the same reason, intense
excitations appear near to the elastic peak (in the range 0-0.2
meV) forming a second band. At higherT the complexity of
the INS spectrum calculated for Ni9 is even larger. Thus, from
the simple spectrum calculated for Ni3 consisting in three peaks
(associated to the three allowed transitions ofSf S′: 3 f 2, 2
f 1, 1 f 0), we pass in Ni9 to an INS spectrum formed by a
large number of broad bands arising from the many allowed

(25) Clemente-Juan, M.; Andres, H.; Borra´s-Almenar, J. J.; Coronado,
E.; Güdel, H. U.; Aebersold, M.; Kearly, G.; Bu¨ttner, H.; Zolliker,
M. J. Am. Chem. Soc.1999, 121, 10021.

Figure 4. Energy-level diagram for Ni9 cluster derived from the fitting
of the magnetic susceptibility data (c). Comparison with the energy
levels of a ferromagnetic Ni3 trimer (a) and with three independent
ferromagnetic Ni3 trimers (b).

Table 1. Symmetry Classification of the Total Spin States of Ni9 in
the Point GroupCs

S A′ A′′ total

0 117 115 232
1 294 309 603
2 370 380 750
3 326 346 672
4 228 240 468
5 122 136 258
6 52 59 111
7 15 21 36
8 3 5 8
9 - 1 1
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magnetic excitations between the very close energy levels of
this cluster. In the near future an experimental INS study on
this nonanuclear cluster will be performed in order to check
these predictions.

Conclusion

Molecular chemists working in magnetism are producing
more and more complex clusters from elementary building
blocks. A variety of reasons, already mentioned in the introduc-
tion, justify the multidisciplinary interest for these complex
systems. A common central point in this area is that of obtaining
as much information as possible on the magnetic structure of
the cluster (energies and wave functions of the different spin
states), since it determines the peculiar properties of this class
of magnetic molecular materials. However, as the complexity
of the magnetic cluster increases, this information is more

difficult to extract and then a combination of bulk magnetic
techniques with spectroscopic techniques is needed. Such a
progress must be accompanied by a development of new
theoretical models adapted to quantitatively analyze these
experimental data. In this paper we have developed a quite
general approach from which exact solutions of an effective
spin Hamiltonian that considers all kinds of exchange couplings
(isotropic as well as anisotropic terms) between constituent
spins, along with the single-ion anisotropy, can be obtained.
This approach has allowed us to build an efficient computational
procedure to evaluate the eigenvalues and eigenfunctions of high
nuclearity spin clusters with the unique restriction of the
computer capacity. Both spin and point group symmetries of
the cluster have been considered in order to reduce the
computational work. The additional advantage of this approach
in comparison with other related programs is that the anisotropic
terms are also taken into account. This enables us to perform a
quantitative evaluation of these effects in clusters. On the other
hand, the present approach is not restricted to model the bulk
magnetic properties of a spin cluster (magnetic susceptibility,
magnetization, and specific heat). Spectroscopic properties, as
for example the inelastic neutron scattering, can also be treated.
In this respect, we have derived in this work a general expression
for the INS cross-section of spin clusters interacting by all kinds
of exchange interactions. This allows us to simulate the INS
spectra of large spin clusters, including an evaluation of the
intensities of the magnetic transitions as well as theirQ andT
dependencies. The study of the nonanuclear nickel(II) cluster
reported in this work illustrates the power of the developed
approach in the isotropic case. The study of the tetranuclear
nickel(II) and cobalt(II) clusters reported in refs 23 and 25
illustrates the application of the approach to treat anisotropic
clusters.

To finish we would like to emphasize that the present
approach is not restricted to the magnetic clusters. It can also
be applied to model the properties of other complex systems of
current interest in magnetism, as for example the one-
dimensional magnetic materials. In these cases the behavior of
the infinite chain is obtained by extrapolation of the exact results
performed on clusters of increasing size.
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Figure 5. Calculated INS spectra (in the neutron-energy loss part) for
a polycrystalline sample of K5Na11[Ni9(OH)3(H2O)6(HPO4)2(PW9O34)3]‚
nH2O with a neutron incident wavelength of 6.5 Å, at temperatures of
2 (upper panels, a and b) and 30 K (lower panels, c and d). (a, c)
Comparison with the calculated INS spectra of the ferromagnetic Ni3

trimer.
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