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Highly Emissive Hexanuclear Rhenium(lll) Clusters Containing the Cubic Cores [RgSg]?" and [ResSe]?"
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Substantial current interégtattends hexanuclear rhenium(lil) 5
chalcogenide clusters with cubic [Res-Q)g]?" cores® (inset,
Figure 1), lately available in soluble molecular form by the proto-
col of dimensional reductiotf Oxidized anions [Ré' ReV SBr¢]~
and [ReSel¢]® 7 sustain reductive dehalogenation by'Ag-
agents or phosphines, affording cluster solvateg$Résolv)s]>*
and phosphine-substituted [iRB(PEL)s—nXn] @V (n=4-6; Q
=S, X=Br; Q= Se, X=1).871% Diversely ligated clusters are
now readily accessible, with adjustable microsymmetries secured
using nonlabile phosphines as protecting groups. These clusters
are isoelectronic with [Muz-X)gX's]>~ (M = Mo, W; X, X' = 1L
Cl, Br, 1), which phosphoresce with established photoredox and
energy-transfer capabilitié$:*é Although their terminal ligand
substitution reactions are extensive, spectroscopic investigations 300 400 500 600 700 800 900 1000
have emphasized perhalogenated spé¢iebotophysical under- A (nm)
standing of cluster-based luminescence hinges upon identifying
consequences of altered core compositions, peripheral IigandFigure 1. Absorption and corrected_emission.spect_ra_(436 nm excitation,
spheres, and local symmetries, ideally suitingdB#" clusters gl?gtszsofg in neat dimethyl sulfoxide. Inset: depiction of [R&Le]?
for detailed experimentation. We report that these clusters emit '

vivid red phosphorescence upon YVisible excitation, with Table 1. Excited-State Parameters for Hexanuclear Rhenium(lll)
microsecond-scale emissive lifetimes. Luminescence maxima andChalcogenide Clustets

g (10°M™" em™)
ws

Sggrla;(il,:latlve decay constants are correlated through the energy clusteré Een(1FCmY)  gend 70 (1S)
Collected in Table 1 are luminescence data at 296 K for L [RE&SClel(BuN). 13.27 0031 51
LA _ - _ 2 [ResSeBr](BusN)s 12.85 0012 3.9
compc_)undsl 16.18 Depicted in Figure _1 are absorptlor_l and 3 [ResSslg(BuaN).° 1250 0.011 26
emission spectra of [RBe(Me,SO)]?" (9) in dimethyl sulfoxide 4 [ResSs(PEb)e|Br2 13.90 0.044 10.0
solution, selected as a representative example. lll-resolved LMCT 5 [ResSe(PEb)d]l» 13.70 0.068 10.8
6 [ResSe(MeCN)](ShF), ¢ 14.40 0.100 14.8
T Massachusetts Institute of Technology. 7 [ResSey(pyridine}](SbFs)z © 14.50 0.163 14.0
*Harvard University. 8 [ResSe(DMF)g)(SbFs), © 14.70 0.203 189
(1) Saito, T.J. Chem. Soc., Dalton Trang999 97. 9 [ResSe(Me SOY|(SbF) © 15.10 0.238 224
2) éérzagiai-&egezl,lz.;lgserﬁadez-Acevedo, LJ. Chem. Phys1999 110, 10 trans[ResSe(PEt)JlJ] 13.40 0.037 5.4
(3) Lee, S. C.; Holm, R. HAngew. Chem., Int. Ed. Engl99q 29, 1304. ﬁ fésiggfﬁ,%(glz‘lﬁ)“'ﬂ 1135’8 8'853 2'50
(4) Perrin, A.; Sergent, MNew J. Chem1988§ 12, 337. 3 5 353 0.043 0
(5) Long, J. R.; McCarty, L. S.; Holm, R. H. Am. Chem. S0d996 118 13 [ResSe(PEg)sBr]Br 135 04 7.
2603, 14  trans[ResSs(PEL)4Br2] 13.48 0.008 5.7
(6) Long, J. R.; Williamson, A. S.; Holm, R. HAngew. Chem., Int. Ed. 15 cis[ResSs(PES)4Brs] 13.33 0.010 438
Engl. 1995 34, 226. 16 (BusN)mer[ResSg(PEt)sBrs] 13.04 0.019 4.2
(7) Zheng, Z.; Gray, T. G.; Holm, R. Hnorg. Chem.1999 38, 4888. . L . . o
(8) Willer, M. W.; Long, J. R.; Holm, R. HInorg. Chem.1998 37, 328. 3 Eemis the corrected emission energy maximukris the radiative
(9) Zheng, Z.; Long, J. R.; Holm, R. H. Am. Chem. S04997, 119, 2163. decay ratek, is the nonradiative decay ratgsmis the quantum yield
(10) Zheng, Z.; Holm, R. Hinorg. Chem.1997, 36, 5173. for emission, and, is the observed luminescence lifetinid?arameters
(11) Maverick, A. W.; Gray, H. BJ. Am. Chem. Sod.981, 103 1298. were measured in deoxygenated O at 23+ 2 °C unless otherwise

(12) Maverick, A. W.; Najdzionek, J. S.; MacKenzie, D.; Nocera, D. G.; Gray, poted.c Parameters for compoun@sand6—9 were measured in neat

13) ';éﬁb* ?’.“éf'ﬁ%rgkiﬁg a,\a?%_.lgaralyégﬁ' Bl Solid State Chem 985 or excess ligand! +10%; absorbance of all solutions wa<.1.€40.1

57, 112. us.
(14) Mussell, R. D.; Nocera, D. Gl. Am. Chem. S0d.988 110, 2674. o ] )
(15) Jackson, J. A.; Tufre.; Newsham, M. D.; Nocera, D. G. Phys. Chem. transition8*° dominate absorption spectra of [f&g]*" clusters

199Q 94, 4500. ; . o >
(16) Jackson, J. A Mussell, R. D.; Nocera, D. IBorg. Chem 1993 32, in the region 216-500 nm. EXC|tat|on_ of any such band elicits

2643, broad, structureless emission extending from ca. 600 to 1000 nm.
(17) Prokopuk, N.; Shriver, D. FAdv. Inorg. Chem 1998 46, 1. Maximal quantum yieldspen occur for 6—9, with oxygen- or

(18) Emission spectra were corrected for grating and detector sensitivity using nitrogen-based terminal ligands; phosphine ligatiob ireduces

the correction curve generated from an NBS standard lamp using the 24 i - ) e
appropriate red-sensitive Hamamatsu R3Q8 photomultiplier tube the [ReSe]*" yield by roughly a third. Sulfido clusters exhibit

cooled to —40 °C. Integrated emission quantum yieldgs, were

determined in dry, deoxygenated solvents at23 °C relative to (19) For a discussion of charge-transfer transitions within cyanide-bridged
(BusN)2[MoeCli4) as a standardgem = 0.19, 436 nm excitation in [ResQg]?*" (Q =S, Se, Te) framework solids,.Shores, M. P.; Beauvais,
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Here, Inj incorporates the nuclear momentum matrix element

and varies weakly aken, Sis the dimensionless Huandrhys
parameter, which quantifies excited-state distortiog; is the
frequency of the deactivating mode(s), gner In(Een/ Shaom) —
1. The quantitie€.m, and Ink,, are linearly related; the equation
assumes validity in the low temperatule T < hwy) and weak
coupling Eem> hwwS) limits.2* We infer closely similar vibronic
overlaps in [ReSs)?" and [ReSeg]?" species and conclude that
[ResQg]?" lumophores discriminate little among core or apical
ligands. Relaxation modes are similar in sulfides and selenides,
validating the supposition that nonradiative decay from excited
| | A | | | clusters is interpretable by the energy gap law.
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120 125 13.0 135 140 145 150 155 The resu_lts present_ed here provide an affirmative reply to the
recently raised question of whether these clusters are lumines-
cent?25 Further, the photophysics of hexanuclear rhenium(lll)
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Figure 2. Energy gap plot of compounds-16; O, [ResSg]?t; ®, [Res- chalcogenide clusters provides opportunities for syntheses and
Se]?*. 1, 2, 4, 5, 10—16 in neat CHCI,; 3 in CH.Cl, containing 16- optical applications. [R&g]?" clusters phosphoresce with mi-
fold excess of BiNI; and 69 in neat terminal ligand. crosecond-scale lifetimes and emission maxima spanning a 135-
. . o nm range. Quantitative, linear correlation betweek,jandEen,
attenuated sensitivity to he'avy atom tgrmml, v@mﬁmlnlshlng supports assignment of [R@s]2"-predominated excited states.
as4~ 1> 27 3; progressive phosphine substitutionxerts  1grminal ligands modulate the energy gap between emissive and

erratic effects. Luminescence from compourid, 4, 5, and  grqund states, influencing quantum yields: thos©dfondeds
10-16 decays monoexponentially with the lifetimes shown in 5,49 surpass 20%. The energy gap law presupposes corgtant
Table 1. . ) ) In 5, andy, a reasonable but inexact assumption. Rigorous studies
Photoph_ysmal properties of five compound3 Q_nd 6—9)__ of the parameters governing [R&]2" photoprocesses are
contrast with the remainder and are notably medium-sensitive. underway. Core-confined excited states sustain emission with

In the absence of excess ligand, these clusters display marginaljjminished influence from ligand-based vibrational de-excitation
quantum yields £1%) and abbreviated lifetimes. These results ,5des. Synthetic flexibility 1 affords a range of clusters for

indicate exci'Fed-state photolab.il.ity, which inhibits emission. In developing innovative luminescent materi@sAn available,
suppor'g of _thls contention, addition of a“{ld excess of Bu_ rhomb-linked [Re;Sac(PEL)1*t dimee invites scrutiny of

NI to 3in dichloromethane causes a 900 ¢remission red shift  jyierciuster energy transfer. To date, these prospects are lacking
and restores _m_onoexponentlal decgy._ Moreoyer, s_olvate clustersq, Group 6 [MXg)** clusters. Excited-state decomplexation
7—9in acetonitrile reproduce the emission profilegotvith nearly suggestphotomediatedyntheses of species with yet unrealized

equal quantum yields and lifetimes, also suggesting terminal jigand termini, a preparative strategy potentially applicable to
ligand expulsion with attendant solvent coordination. Our experi- analogous clusters and myriad ligands alike.

ence in synthesis indicates the iodide is the most labile halide in
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= 98.3%) results from fitting all data to a single line. In ~qg1195,

dichloromethane, labile clusteBand 6—9 lie above the line;

_renjeafsure_:ment in the respective ne_at Sqlvents orin fan_ excess 06‘24) E.m approximatesAE, the internal energy gap between emissive and
iodide in dichloromethane3J restores linearity. From radiationless ground states. This substitution realizes that a medium dependence
decay theory, excited states of common parentage exBibit intrudes from contributions of collective solvent vibrations, cf. Chen,

. 3 P.; Meyer, T. JChem. Re. 1998 98, 1439.
andk.r governed by the approximate energy gap Féw: (25) After this work was submitted for publication, two brief reports on the
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