C-(Halide) Oxidative Addition Routes to Ruthenium Carbenes

Montserrat Oliván and Kenneth G. Caulton*

Department of Chemistry, Indiana University, Bloomington, Indiana 47405-4001

Received January 22, 1998

Ru(H)₂(H₂)₂L₂ (L = PCy₃) reacts with CHRCl₂ (R = H, Ph) to give Ru(CHR)Cl₂L₂ and H₂. Using Cl₂C=CH₂ as the *gem*-dihalide gives Ru(CHCH₃)Cl₂L₂, due to hydrogenation of the C=C bond of the presumed vinylidene primary product by released H₂. Released H₂ also reacts with Ru(CHR)Cl₂L₂ (R = H, Ph) to give H₃CR, HCl and RuHCl(H₂)L₂. This undesirability of H₂ as a coproduct can be diminished by using Ru(H)₂(N₂)₂L₂ as the reagent, giving Ru(CHR)Cl₂L₂ and 1H₂ and 2N₂ as products. Reaction of Ru(H)₂(N₂)₂L₂ with Cl₂CHEt gives RuCl₂-(CHEt)L₂ and RuHCl(N₂)L₂, the latter apparently by competitive β -H migration from an intermediate RuHCl-(CHClEt)L₂ species. When Ru(H)₂(N₂)₂L₂ is reacted with the *monochloride* PhCH₂Cl, the primary product RuCl(CH₂Ph)(H₂)L₂ slowly (hours) evolves further to give RuHCl(N₂)L₂ and PhCH₃. Reaction of Ru(H)₂(N₂)₂L₂ with Cl₆F₆, BrHC=CHPh, and CH₃I give RuHX(N₂)L₂ (X = F, Br, I, respectively). The N₂ ligand in RuHCl(N₂)L₂ can be displaced by H₂ and by CO, while H₂ converts RuHF(N₂)L₂ to Ru(H)₂(H₂)₂L₂ and HF.

Introduction

Synthetic routes to nonheteroatom-stabilized carbene ligands are relatively limited in type; new approaches would not be unwelcome. The present state of the art has been reviewed.¹ Geminal dihalide compounds $RR'CX_2$ represent an attractive potential route,² by oxidative addition (eq 1), especially if the

$$L_n M + RR'CX_2 \xrightarrow{?} L_n X_2 M = CRR'$$
(1)

halide ligands in the product complex are subsequently used to introduce additional functionality (e.g., hydride, halide, alkoxide). Since two available C–X bonds react, eq 1 is likely to be a two-step process and might go wrong at the L_nXM–CRR'X stage; α -halo alkyl complexes are known to be very susceptible to nucleophilic attack at C_{α},³ and migration of a β -H (within R or R') to M could also occur. The oxidative addition of two C–X bonds to one M also represents a four-electron oxidation, which few metals are prepared to endure. The electron count of M increases by four during eq 1, which indicates that L_nM must be no more than a 14-valence electron species; this is rarely available. Finally, several halides on a single carbon can encourage electron transfer (eq 2), and the resulting radical anion

$$L_n M + RR'CX_2 \rightarrow L_n M^{\bullet +} + RR'CX_2^{\bullet -}$$
(2)

can fail to accomplish the desired oxidative addition of C and X to M; it will therefore be necessary to avoid L_nM being too electron-rich and too easily oxidized by single-electron transfer.

A rich source of successful examples is the reaction of an iminium salt with unsaturated or electron-rich metal complexes.⁴ One example involves Ir(I) containing a good leaving group (eq 3).

 $IrCl(PPh_3)_2(N_2) + [CHNMe_2Cl]Cl \rightarrow$ $IrCl_3(PPh_3)_2[C(H)(NMe_2)] (3)$

We report here our results toward the above goal, which accomplishes the objective in part by *not* using a highly reduced metal, but instead relying on an (oxidatively induced) reductive elimination (of two hydrides, as H₂) to generate the needed reduced metal at a later stage of reaction than would make it vulnerable to eq 2. Part of this work has been reported in a preliminary communication.⁵ Simultaneous with our initial report of *gem*-dihalides as sources of RuCl₂(CHR)L₂ species was a related report,⁶ which differed primarily in the ruthenium source employed. While this paper was in review, another related route was reported, motivated by the utility of Ru(CRR')-Cl₂L₂ complexes as olefin metathesis catalysts.⁷

Experimental Section

General. All reactions and manipulations were conducted using standard Schlenk and glovebox techniques under prepurified argon or nitrogen. Solvents were dried and distilled under argon, and stored in airtight solvent bulbs with Teflon closures. All NMR solvents were dried, vacuum-transferred, and stored in a glovebox. Vinylidene chloride, α , α -dichlorotoluene, 1,1-dichloropropane, and benzyl chloride were purchased from Aldrich and used after degassing. Gaseous reagents (H₂, N₂) were purchased from Air Products and used as received. Ru(H)₂(H₂)₂(PCy₃)₂⁸ and Ru(H)₂(N₂)₂(PCy₃)₂⁹ were prepared

^{*} Corresponding author. E-mail: caulton@indiana.edu.

 ⁽a) Hill, A. F. In *Comprehensive Organometallic Chemistry II*; Abel, E. W.; Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 7, p 336. (b) Gallop, M. A.; Roper, W. R. *Adv. Organomet. Chem.* **1986**, 25, 121.

^{(2) (}a) Earlier applications include reaction of Cr(CO)₅²⁻ with Cl₂C-(CPh)₂: Öfele, K. *Angew. Chem., Int. Ed. Engl.* **1968**, 7, 950. (b) See also the heterogeneous reaction of (tetraphenylporphyrin)Fe, iron metal, and Cl₂CRR': Battioni, J.-P.; Chottard, J.-C.; Mansuy, D. *Inorg. Chem.* **1982**, *21*, 2056, and references therein.

 ^{(3) (}a) Werner, H. Angew. Chem., Int. Ed. Engl. 1983, 22, 927. (b) Friedrich, H. B.; Moss, J. R. Adv. Organomet. Chem. 1991, 33, 235.

⁽⁴⁾ Hartshorn, A. J.; Lappert, M. F.; Turner, K. J. Chem. Soc., Dalton Trans. 1978, 348. Cetinkaya, B.; Lappert, M. F.; McLaughlin, G. M.; Turner, K. J. Chem. Soc., Dalton Trans. 1974, 1591.

⁽⁵⁾ Oliván, M.; Caulton, K. G. Chem. Commun. 1997, 1733.

⁽⁶⁾ Belderrain, T.; Grubbs, R. H. Organometallics 1997, 16, 4001.

⁽⁷⁾ Wolf, J.; Stüer, W.; Grünwald, C.; Werner, H.; Schwab, P.; Schulz, M. Angew. Chem., Int. Ed. 1998, 37, 1124.

 ^{(8) (}a) Chaudret, B.; Poilblanc, R. Organometallics 1985, 4, 1722. (b) Borowski, A. J.; Sabo-Etienne, S.; Christ, M. L.; Donnadieu, B.; Chaudret, B. Organometallics 1996, 15, 1427.

as reported. ¹H, ¹³C{¹H} and ³¹P NMR spectra were obtained on a Varian Gemini 300, while ²H NMR spectra were recorded on a Varian Inova 400 instrument. Chemical shifts are referenced to residual solvent peaks (¹H, ²H, ¹³C{¹H}), or external H₃PO₄ (³¹P). Infrared spectra were recorded on a Nicolet 510P FT-IR spectrometer.

Preparation of RuCl₂(=CH₂)(PCy₃)₂ from Ru(H)₂(H₂)₂(PCy₃)₂. Method A. To a suspension of Ru(H)₂(H₂)₂(PCy₃)₂ (100 mg, 0.15 mmol) in pentane (7 mL) was added CH₂Cl₂ (38 μ L, 0.60 mmol) via syringe. The resulting suspension was stirred under argon at room temperature for 3 h. During this time, the color of the suspension changed from white to brown-red. The red solid obtained by filtration was washed with pentane and dried in vacuo. Yield: 70 mg (63%).

Method B. The reaction could also be carried out heating at 60 °C for 15 min, starting from Ru(H)₂(H₂)₂(PCy₃)₂ (100 mg, 0.15 mmol) and CH₂Cl₂ (14.4 μ L, 0.22 mmol) in pentane (5 mL). Yield: 75 mg (67%). All the spectroscopic data are consistent with those reported previously.¹⁰ When the crude suspension was dried in vacuo and dissolved in benzene-*d*₆, ¹H and ³¹P NMR show the presence of RuHCl-(H₂)(PCy₃)₂ (yield <15%) in addition to RuCl₂(=CH₂)(PCy₃)₂. This monochloride was shown independently to be formed by the action of H₂ on RuCl₂(=CH₂)(PCy₃)₂ (vide infra).

Preparation of RuCl₂(=CD₂)(PCy₃)₂ from Ru(H)₂(H₂)₂(PCy₃)₂. This compound was prepared analogously as described for RuCl₂(= CH₂)(PCy₃)₂ (Method A) by starting from Ru(H)₂(H₂)₂(PCy₃)₂ (50 mg, 0.075 mmol) and CD₂Cl₂ (19 μL, 0.30 mmol). ²H NMR (61 MHz, C₆H₆): δ 19.4 (s, Ru=CD₂).

Preparation of RuCl₂(=CH₂)(PCy₃)₂ from Ru(H)₂(N₂)₂(PCy₃)₂. A solution of Ru(H)₂(N₂)₂(PCy₃)₂ (107.5 mg, 0.15 mmol) was prepared in situ by bubbling N₂ through a suspension of Ru(H)₂(H₂)₂(PCy₃)₂ (100 mg, 0.15 mmol) in pentane (15 mL) for 15 min (shorter bubbling times resulted in mixtures of Ru(H)₂(H₂)₂(PCy₃)₂, Ru(H)₂(H₂)(N₂)-(PCy₃)₂, and Ru(H)₂(N₂)₂(PCy₃)₂. We have found that complete conversion to the bis-dinitrogen compound strongly depends on the flow rate of nitrogen. For this reason, it is highly advisable to ascertain complete conversion to Ru(H)₂(N₂)₂(PCy₃)₂ by ³¹P NMR spectroscopy prior to any further reaction). To this *freshly* prepared solution of Ru-(H)₂(N₂)₂(PCy₃)₂ was added CH₂Cl₂ (38 μ L, 0.60 mmol) via syringe. After stirring at room temperature for 20 min, a brown-red suspension was obtained. The red solid obtained by filtration was washed with pentane and dried in vacuo; yield 78 mg (70%).

Spectroscopic Data for Ru(H)₂(H₂)(N₂)(PCy₃)₂. ¹H NMR: δ -8.48 (br s, 4H, Ru(H)₂(H₂)), 1.22-2.10 (m, 66H, PCy₃). ³¹P{¹H} NMR: δ 69.6 (s).

Spectroscopic Data for Ru(H)₂(**N**₂)₂(**PCy**₃)₂. ¹H NMR is consistent with that reported previously.⁹ ${}^{31}P{}^{1}H$ NMR: δ 60.1 (s).

Reaction of RuCl₂(=CH₂)(PCy₃)₂ with H₂. A solution of RuCl₂-(=CH₂)(PCy₃)₂ (10 mg, 0.013 mmol) in benzene- d_6 (0.5 mL) was placed in an NMR tube with a Teflon closure. The solution was frozen in liquid N₂, the headspace was evacuated, and it was filled with H₂ (1 atm). Monitoring the reaction by ¹H and ³¹P{¹H} NMR spectroscopies showed a clean conversion to RuHCl(H₂)(PCy₃)₂^{11,12} within 18 h at 24 °C. In the ¹H NMR, a sharp singlet at 0.13 ppm was also observed, assigned, by comparison with a pure sample, to methane. This identification as CH₄ was also confirmed by evacuating the H₂ atmosphere of the tube and refilling it with CH₄. The ¹H NMR spectrum shows growth of the singlet at 0.13 ppm.

Reaction of RuCl₂(=CH₂)(PCy₃)₂ with H₂ in the Presence of NEt₃. The reaction was performed similarly as the one described above, but Et₃N (3.7 μ L, 0.027 mmol) was added to the solution. After 18 h, a cloudy solution was obtained, and ³¹P{¹H} and ¹H NMR spectroscopies showed conversion to RuHCl(H₂)(PCy₃)₂ and CH₄. [HNEt₃]Cl was observed as a cloudy white precipitate.

- (9) (a) Christ, M. L.; Sabo-Etienne, S.; Chung, G.; Chaudret, B. *Inorg. Chem.* 1994, 33, 5316. (b) Sabo-Etienne, S.; Hernandez, M.; Chung, G.; Chaudret, B. *New J. Chem.* 1994, 18, 175.
- (10) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100.
- (11) Chaudret, B.; Chung, G.; Eisenstein, O.; Jackson, S. A.; Lahoz, F. J.; Lopez, J. A. J. Am. Chem. Soc. 1991, 113, 2314.
- (12) Christ, M. L.; Sabo-Etienne, S.; Chaudret, B. Organometallics 1994, 13, 3800.

Reaction of RuCl₂(=CH₂)(PCy₃)₂ with H₂ in the Presence of Ru-(H)₂(H₂)₂(PCy₃)₂. An equimolar solution of RuCl₂(=CH₂)(PCy₃)₂ (10 mg, 0.013 mmol) and Ru(H)₂(H₂)₂(PCy₃)₂ (8.9 mg, 0.013 mmol) in C₆D₆ (0.5 mL) was placed in an NMR tube. The solution was frozen in liquid N₂, the headspace was evacuated, and it was filled with H₂ (1 atm). Monitoring the reaction by ¹H and ³¹P{¹H} NMR spectroscopies showed a clean conversion to RuHCl(H₂)(PCy₃)₂ within 18 h.

Reaction of Ru(H)₂(**H**₂)₂(**PCy**₃)₂ with HCl. A solution of Ru(H)₂-(H₂)₂(PCy₃)₂ (10 mg, 0.015 mmol) in C₆D₆ (0.5 mL) was placed in an NMR tube with a Teflon closure. The solution was frozen in liquid N₂, the headspace was evacuated, and HCl (0.015 mmol) was condensed into the tube using a calibrated gas manifold. When the solution warmed to room temperature and the tube was shaken, immediate gas evolution was observed, together with a color change from beige to orange. ¹H and ³¹P{¹H} NMR spectroscopies show clean conversion to RuHCl-(H₂)(PCy₃)₂.

Preparation of RuCl₂(=CHCH₃)(PCy₃)₂ from Ru(H)₂(H₂)₂-(PCy₃)₂. To a suspension of Ru(H)₂(H₂)₂(PCy₃)₂ (100 mg, 0.15 mmol) in pentane (7 mL) was added Cl₂C=CH₂ (36 \muL, 0.45 mmol) via syringe. Immediately a brown-red solution was obtained from which a purple solid precipitated within 2 min. The purple solid obtained by filtration was washed with pentane and dried in vacuo. Yield 80 mg (70%).

From Ru(H)₂(N₂)₂(PCy₃)₂. This reaction was carried out in a similar way to that described for RuCl₂(=CH₂)(PCy₃)₂, starting from a *freshly* prepared solution of Ru(H)₂(N₂)₂(PCy₃)₂ (107.5 mg, 0.15 mmol) and Cl₂C=CH₂. Yield 80 mg (70%). This reaction was quantitative by NMR spectroscopies using a ratio Ru/Cl₂C=CH₂ of 1:1. All the NMR data are consistent with those reported previously.¹⁰

Reaction of Ru(H)₂(H₂)₂(PCy₃)₂ with Cl₂C=CH₂ in an NMR Tube. To a solution of Ru(H)₂(H₂)₂(PCy₃)₂ (8.4 mg, 0.0126 mmol) in C₆D₆ (0.5 mL) was added Cl₂C=CH₂ (1 μ L, 0.0126 mmol) via syringe. The reaction was monitored by ¹H and ³¹P{¹H} NMR spectroscopies. ¹H and ³¹P{¹H} NMR spectra recorded after 5 min showed clean conversion to RuCl₂(=CHCH₃)(PCy₃)₂. ¹H and ³¹P{¹H} NMR spectra recorded after 5 h show a mixture of RuCl₂(=CHCH₃)(PCy₃)₂ (75%) and Ru(H)₂Cl₂(PCy₃)₂ (25%); in the ¹H NMR spectrum there is also a singlet at 0.77 ppm, assigned (by comparison with a pure sample) to ethane. Spectroscopic data for Ru(H)₂Cl₂(PCy₃)₂:¹⁴ ¹H NMR (300 MHz, C₆D₆, 20 °C): δ -11.93 (t, J_{P-H} = 32.1 Hz, 2H, Ru-H), 1.20-2.10 (m, 66H, PCy₃). ³¹P{¹H} NMR (121.4 MHz, C₆D₆, 20 °C): δ 89.9 (s).

Reaction of Ru(H)₂(**N**₂)₂(**PCy**₃)₂ with Cl₂CHPh. To a solution of Ru(H)₂(N₂)₂(PCy₃)₂ (11.2 mg, 0.0156 mmol) in C₆D₆ (0.5 mL) was added Cl₂CHPh (2 μ L, 0.0156 mmol) via syringe. ¹H and ³¹P{¹H} NMR spectra recorded after 5 min of reaction showed a mixture of RuCl₂-(=CHPh)(PCy₃)₂¹⁰ (65%), RuH₂Cl₂(PCy₃)₂ (7%) and RuHCl(H₂)(PCy₃)₂ (28%).

Reaction of Ru(H)₂(N₂)₂(PCy₃)₂ with Cl₂CHCH₂CH₃. To a solution of Ru(H)₂(N₂)₂(PCy₃)₂ (14.4 mg, 0.02 mmol) in C₆D₆ (0.5 mL) was added Cl₂CHCH₂CH₃ (2 μ L, 0.02 mmol) via syringe. The reaction was monitored by ¹H and ³¹P{¹H} NMR spectroscopies. After 10 min of reaction ¹H and ³¹P{¹H} NMR spectroscopies revealed a mixture of unreacted Ru(H)₂(N₂)₂(PCy₃)₂, RuCl₂(=CHCH₂CH₃)(PCy₃)₂¹⁰ and RuHCl-(N₂)(PCy₃)₂ (vide infra). After 20 h, RuHCl(N₂)(PCy₃)₂ is the only Rucontaining compound present in the solution. 1-Chloropropane was detected by ¹H NMR spectroscopy upon vacuum transfer of the volatiles to another NMR tube.

Reaction of Ru(H)₂(N₂)₂(PCy₃)₂ with PhCH₂Cl: Formation of RuHCl(N₂)(PCy₃)₂. To a solution of Ru(H)₂(N₂)₂(PCy₃)₂ (12.5 mg, 0.017 mmol) placed in an NMR tube, PhCH₂Cl (2 μ L, 0.017 mmol) was added via syringe, causing an immediate color change from

⁽¹³⁾ The CH₂ example is the least stable of all the Ru(CRR')Cl₂L₂ compound class. See: Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. **1996**, 118, 100.

^{(14) (}a) This compound has been reported previously. However, no spectroscopic details were given. Wilhelm, T. E.; Belderrain, T. R.; Brown, S. T.; Grubbs, R. H. *Organometallics* **1997**, *16*, 3867. (b) After submission of this paper, this compound was also reported: Rodriguez, V.; Sabo-Etienne, S.; Chaudret, B.; Thoburn, J.; Ulrich, S.; Limbach, H.-H.; Eckert, J.; Barthelat, J.-C.; Hussein, K.; Marsden, C. J. *Inorg. Chem.* **1998**, *37*, 3475–3485.

yellowish to red. After 10 min of reaction, the ¹H and ³¹P{¹H} NMR spectra show a mixture of starting material (70%) and signals corresponding to a new species (30%) RuCl(CH₂Ph)(H₂)(PCy₃)₂. ¹H NMR (300 MHz, C₆D₆, 20 °C): δ –8.45 (br, 2H), 1.20–2.20 (m, 66H, PCy₃), 4.27 (t, *J*_{PH} = 3.6 Hz, PhCH₂), 7.01 (m, 3H, Ph), 7.72 (d, *J*_{H-H} = 7.6 Hz, 2H, Ph ortho). ³¹P{¹H} NMR (121.4 MHz, C₆D₆, 20 °C): δ 18.3 (s). The lifetime of this compound was too short to allow *T*₁ measurement. After 18 h, an orange solution was obtained and the ¹H and ³¹P{¹H} NMR spectra show clean conversion to RuHCl(N₂)(PCy₃)₂ and toluene. Spectroscopic data for RuHCl(N₂)(PCy₃)₂. ¹H NMR (300 MHz, C₆D₆, 20 °C): δ –27.26 (t, *J*_{P-H} = 18.3 Hz, Ru–H), 1.22–2.59 (m, 66H, PCy₃). ³¹P{¹H} NMR (121.4 MHz, C₆D₆, 20 °C): δ 43.7 (s; doublet under off-resonance conditions). IR (C₆D₆, cm⁻¹): ν (N=N) 2060. The extreme air sensitivity of this compound resulted in unsatisfactory elemental analysis determinations.

Reaction of Ru(H)₂(N₂)₂(PCy₃)₂ with C₆F₆: Formation of RuHF-(N₂)(PCy₃)₂. To a freshly prepared solution of Ru(H)₂(N₂)₂(PCy₃)₂ (9.4 mg, 0.013 mmol) in C₆D₆ (0.5 mL) placed in an NMR tube was added C₆F₆ (3 μL, 0.026 mmol) via syringe. After 18 h, ¹H and ³¹P NMR spectroscopies showed clean conversion to RuHF(N₂)(PCy₃)₂. In the ¹H and ¹⁹F NMR spectra peaks corresponding to C₆F₅H were observed. ¹H NMR (300 MHz, C₆D₆, 20 °C): δ –25.39 (broad triplet, *J*_{P-H} = 17 Hz, Ru−H), 1.06−2.36 (m, 66H, PCy₃). ³¹P{¹H} NMR (121.4 MHz, C₆D₆, 20 °C): δ 47.4 (d, *J*_{P-F} = 20.4; under off-resonance conditions: vt, *J*_{P-F} = *J*_{P-H} = 20 Hz). ¹⁹F NMR (279 MHz, C₆D₆, 20 °C): δ –306.7 (br, Ru−F). IR (C₆D₆, cm⁻¹): ν(N≡N) 2054 (s), ν(Ru−H) 2039 (w).

Reaction of Ru(H)₂(N₂)₂(PCy₃)₂ with BrCH=CHPh: Formation of RuHBr(N₂)(PCy₃)₂. To a solution of Ru(H)₂(N₂)₂(PCy₃)₂ (11 mg, 0.015 mmol) in C₆D₆ (0.5 mL) placed in an NMR tube, BrCH=CHPh (2 μ L, 0.015 mmol) was added via syringe. After 10 min ¹H and ³¹P NMR spectroscopies show clean conversion to RuHBr(N₂)(PCy₃)₂. In the ¹H NMR spectrum, together with the peaks corresponding to the Ru compound, were observed signals assigned to styrene by comparison with a pure sample. Spectroscopic data of RuHBr(N₂)(PCy₃)₂. ¹H NMR (C₆D₆, 300 MHz, 20 °C): δ –27.51 (t, J_{P-H} = 18.3 Hz, 1H, Ru–H), 1.04–2.67 (m, 66H, PCy₃). ³¹P{¹H} NMR (121.4 MHz, C₆D₆, 20 °C): δ 42.6 (s). IR (C₆D₆, cm⁻¹): ν (N=N) 2060.

Reaction of Ru(H)₂(N₂)₂(PCy₃)₂ with CH₃I: Formation of RuHI-(N₂)(PCy₃)₂. To a solution of *freshly* prepared Ru(H)₂(N₂)₂(PCy₃)₂ (18.3 mg, 0.025 mmol) in C₆D₆ (0.5 mL), CH₃I (2 μ L, 0.025 mmol) was added via syringe, causing an immediate color change from yellowish to brown, accompanied by gas evolution. The ¹H and ³¹P{¹H} NMR spectra recorded after 10 min show quantitative conversion to RuHI-(N₂)(PCy₃)₂. In addition, the ¹H NMR spectrum shows a singlet at 0.13 ppm, assigned to methane. ¹H NMR (C₆D₆, 300 MHz, 20 °C): δ –27.65 (t, *J*_{P-H} = 17.8 Hz, 1H, Ru–H), 0.90–2.80 (m, 66H, PCy₃). ³¹P{¹H} NMR (121.4 MHz, C₆D₆, 20 °C): δ 41.2 (s). IR (C₆D₆, cm⁻¹); ν (N≡N) 2062.

Reaction of RuHCl(N₂)(PCy₃)₂ with H₂. A solution of RuHCl-(N₂)(PCy₃)₂ in C₆D₆ was placed in an NMR tube fitted with a Teflon closure. The solution was frozen in liquid N₂, the headspace was evacuated, and it was filled with H₂ (1 atm), ¹H and ³¹P{¹H} NMR spectra recorded after 20 min showed quantitative conversion to RuHCl-(H₂)(PCy₃)₂.

Reaction of RuHCl(N₂)(PCy₃)₂ with CO. A solution of RuHCl-(N₂)(PCy₃)₂ in C₆D₆ was placed in an NMR tube fitted with a Teflon closure. The solution was frozen in liquid N₂, the headspace was evacuated, and it was filled with CO (1 atm). Upon warming immediate color change from orange to very pale yellow was observed. ¹H and ³¹P{¹H} NMR recorded after 20 min showed the presence of two products: RuHCl(N₂)(CO)(PCy₃)₂ and RuHCl(CO)₂(PCy₃)₂¹² in a ratio of 1:1. After 8 h, the ratio among this two products was 3:7, and only after 44 h under CO atmosphere, RuHCl(CO)₂(PCy₃)₂ was the only compound present in the solution.

Spectroscopic data for RuHCl(N₂)(CO)(PCy₃)₂: ¹H NMR (300 MHz, C₆D₆, 20 °C): δ -3.97 (t, J_{P-H} = 20.7, 1H, Ru-H), 1.10–2.40 (m, 66H, PCy₃). ³¹P{¹H}NMR (121.4 MHz, C₆D₆, 20 °C): δ 48.7 (s).

Reaction of RuHF(N_2)(**PCy**₃)₂ with H_2 . A solution of RuHF(N_2)-(PCy₃)₂ in C₆D₆ was placed in an NMR tube fitted with a Teflon closure. The solution was frozen in liquid N_2 , the headspace was evacuated, and it was filled with H_2 . Upon warming, immediate color change from

orange to yellowish was observed. 1H and $^{31}P\{^1H\}$ NMR spectroscopies showed quantitative formation of $Ru(H)_2(H_2)_2(PCy_3)_2.^8$

Results

The work of Chaudret,^{8,11,15} who established that RuH_6L_2 (L = PCy₃) is in fact $\text{Ru}^{II}(\text{H})_2(\text{H}_2)_2\text{L}_2$, revealed that this divalent Ru complex is nevertheless a reducing agent, subject to oxidative addition of C–Cl and C–I bonds (e.g., CH₃I, PhI, or excess CH₂Cl₂) to give RuH₃XL₂, which is *still* a complex of Ru^{II}/RuHX(H₂)L₂. A full mass balance of this reaction type is lacking: the fate of the R moiety in R–X and of the hydride and H₂ ligands is not established. The mechanism is also unknown.

CH₂Cl₂ as a Carbene Source. We find that RuH₆L₂ reacts with CH₂Cl₂ slowly (3 h) under argon at 25 °C in pentane to give RuCl₂(CH₂)L₂ (63% isolated yield). If the crude suspension was dried under vacuum, its ¹H and ³¹P NMR spectra showed the presence of some RuHCl(H₂)L₂ (around 15%) together with the major product RuCl₂(=CH₂)L₂.¹³ It was shown independently that RuCl₂(CH₂)L₂ reacts with H₂ (1 atm) in benzene over a period of 18 h at 25 °C to give RuHCl(H₂)L₂,^{11,12} CH₄, and HCl. Given the fact that RuH₆L₂ reacts with HCl to give RuHCl(H₂)(PCy₃)₂ (see Experimental Section), equimolar RuH₂-(H₂)₂(PCy₃)₂ was added to the released HCl. Under these conditions, only RuHCl(H₂)(PCy₃)₂ was formed (Scheme 1).

Scheme 1

 $RuCl_{2}(CH_{2})L_{2} + 3 H_{2} \longrightarrow RuHCl(H_{2})L_{2} + CH_{4} + HCl$ $Ru(H)_{2}(H_{2})_{2}L_{2} + HCl \longrightarrow RuHCl(H_{2})L_{2} + 2 H_{2}$

Overall: $RuCl_2(CH_2)L_2 + Ru(H)_2(H_2)_2L_2 + H_2 \longrightarrow 2 RuHCl(H_2)L_2 + CH_4$

Also, the addition of a stoichiometric amount of NEt₃ to the reaction of $RuCl_2(CH_2)L_2$ with H_2 leads to $RuHCl(H_2)L_2$, [HNEt₃]Cl, and CH₄.

Thus, H_2 released in the presumed eq 4 undergoes a secondary reaction to consume the primary product. In fact, when the

$$Ru(H)_{2}(H_{2})_{2}L_{2} + CH_{2}Cl_{2} \rightarrow RuCl_{2}(CH_{2})L_{2} + 3H_{2} \quad (4)$$

reaction of Ru(H)₂(H₂)₂L₂ with CH₂Cl₂ (ratio 1:2) is carried out in an NMR tube (closed system) after 15 min we observe, in the ³¹P NMR spectrum, peaks corresponding to $Ru(H)_2(H_2)_2L_2$ (90%), RuCl₂(=CH₂)(PCy₃)₂ (5%), and RuHCl(H₂)(PCy₃)₂ (5%). Monitoring the reaction by ¹H and ³¹P NMR spectroscopies over a period of 24 h reveals that (under these conditions) RuCl₂(=CH₂)(PCy₃)₂ never constitutes more than 20% of the ruthenium-containing compounds. It also reveals how the decrease in the amount of $Ru(H)_2(H_2)_2L_2$ in the mixture is accompanied by an increase in the amount of RuHCl(H2)- $(PCy_3)_2$, which is, after 24 h, the only Ru-containing product present in the solution. This confirmed that, as RuCl₂(CH₂)L₂ is formed, it undergoes a reaction with the released H₂ present in the reaction medium, giving rise to $RuHCl(H_2)(PCy_3)_2$. This is presumably why, in the earlier report,^{11,12} RuH ₆L₂ reacts with halocarbons to give simply RuHX(H₂)L₂ and why no carbene product was reported.

The reaction of $RuH_2(H_2)_2L_2$ with CH_2Cl_2 exhibits some curious behavior whose origin furnishes mechanistic insight:

⁽¹⁵⁾ Arliguie, T.; Chaudret, B.; Morris, R. H.; Sella, A. *Inorg. Chem.* **1988**, 27, 598.

the reaction proceeds to completion (3 h) in a round-bottom flask with a considerable headspace, while in an NMR tube, the reaction is much slower (i.e., after 3 h, there is still RuH₂-(H₂)₂L₂ (60%) present in the solution). Working on the hypothesis that this represented competitive inhibition by the gaseous product, H₂, the reagents were combined in 5 mL of pentane in a 100 mL reaction flask under 1 atm H₂; there was then no reaction over 3 h at 25 °C. This suggests a mechanism dissociative in H₂, with only the unsaturated product of the preequilibrium (eq 5) being reactive with CH₂Cl₂. This rules

$$\operatorname{Ru}(H)_2(H_2)_2L_2 - \operatorname{Ru}(H)_2(H_2)L_2 + H_2$$
(5)

out an outer-sphere electron-transfer mechanism and implicates an adduct, $Ru(H)_2(H_2)(\eta^1-CH_2Cl_2)L_2$, on the path to the first C-Cl oxidative addition. Reaction of $RuH_2(H_2)_2L_2$ with CD₂-Cl₂ gave only $RuCl_2(CD_2)L_2$ (by ¹H and ²H NMR), and so excludes any hydrogen scrambling in the reaction. It was found that all $RuH_2(H_2)_2L_2$ was consumed at a CH₂Cl₂/Ru stoichiometry as low as 1.5:1, but, for reasons of convenient rate, reactions were generally run at 3:1.

A Ru Source of Decreased H Content. The combination of competitive inhibition and carbene complex consumption by released H₂ led us to seek an alternative ruthenium reagent. Ru- $(H)_2(N_2)_2L_2$, formed immediately on exposing a solution of RuH₂(H₂)₂L₂ to N₂, is an improvement. It reacts reproducibly and rapidly (20 min) with CH₂Cl₂ at 25 °C in pentane to give cleanly RuCl₂(CH₂)L₂. Since the primary reaction is faster, earlier workup is possible; this, together with the lower amount of released H₂ accounts for this improvement.

Other *gem***-Dihalides.** We tested the ability of vinylic gemdichlorides to participate in the reaction. Both $Ru(H)_2(H_2)_2L_2$ and $Ru(H)_2(N_2)_2L_2$ react (time of mixing at room temperature) with $Cl_2C=CH_2$ in pentane to give $RuCl_2(=CHCH_3)L_2$ in good yields (eq 6). When the reaction of $Cl_2C=CH_2$ with $Ru(H)_2$ -

 $(N_2)_2(PCy_3)_2$ is carried out in an NMR tube, the reaction is quantitative and occurs in time of mixing. By mixing the reagents in an NMR tube at low temperature (-78 °C) and then putting it into an NMR precooled probe, no intermediate could be observed. There is no trace of a vinylidene intermediate: $RuCl_2(=C=CH_2)(PCy_3)_2$. The H₂ released in the reaction thus participates in a secondary reaction, and one which is highly selective for C=C over Ru=C unsaturation. When the reaction of Ru(H)₂(H₂)₂L₂ with Cl₂C=CH₂ is carried out in an NMR tube (*closed system*) instead of a Schlenk flask, a secondary reaction takes place more slowly between the released H₂ and RuCl₂(=CHCH₃)L₂ to give Ru(H)₂Cl₂L₂¹⁶ and ethane.

Other aliphatic *gem*-dichloride compounds were examined to establish the scope of this reaction. Benzylidene chloride, PhHCCl₂, reacts with Ru(H)₂(N₂)₂L₂ in benzene- d_6 at 25 °C to give RuCl₂(CHPh)L₂ (65%), Ru(H)₂Cl₂L₂ (7%) and RuHCl-(H₂)L₂ (28%).

Reaction of $Ru(H)_2(N_2)_2L_2$ with 1,1-dichloropropane in benzene- d_6 at 25 °C gives a mixture of products whose composition varies with time. RuCl₂(=CHCH₂CH₃)L₂ was detected as a minor product at short reaction times, together with unreacted starting material. After 24 h, there is no trace of RuCl₂(=CHCH₂CH₃)L₂ and in the ³¹P{¹H} NMR spectrum, there is a new peak at 43.7 ppm. In the high-field region of the ¹H NMR spectrum, we observe a new triplet at -27.26 ppm. This chemical shift suggests that it is trans to a vacant site. In the IR spectrum, there is a strong band at 2060 cm⁻¹ that is within the range of $\nu(N=N)$ stretching frequencies. We assign all these spectroscopic data as belonging to the complex RuHCl-(N₂)(PCy₃)₂. This reaction is understood (eq 7) in terms of the

$$Ru(H)_{2}(N_{2})_{2}L_{2} + Cl_{2}HCEt \xrightarrow{} Ru - C - H$$

$$Ru - C - H$$

$$A CI$$

$$(7)$$

primary product **A** having β -hydrogens that can migrate to Ru at a rate competitive with the second C–Cl scission. This new behavior arises because this is the first *gem*-dihalide employed here that offers the possibility of such β -hydrogen migration.

Reactivity of a Monochloride. To support the supposition that *gem*-dichloro compounds react via a two-step mechanism, we investigated the reaction of a monochloro reagent, benzyl chloride. Ru(H)₂(N₂)₂L₂ reacts with PhCH₂Cl to give a product that shows a ¹H NMR triplet at 4.27 ppm ($J_{P-H} = 3.6$ Hz) and a doublet at 7.72, corresponding, respectively, to the benzyl and ortho phenyl protons of a benzyl ligand, assigned to RuCl(CH₂-Ph)(H₂)(PCy₃)₂. After 18 h, the reaction solution has transformed completely, yielding an orange solution, and shows toluene and RuHCl(N₂)(PCy₃)₂.

Preparation of $RuHX(N_2)(PCy_3)_2$ (X = F, Cl, Br, I). We next explored routes to the full set of halo complexes RuHX- $(N_2)L_2$. The compound $Ru(H)_2(N_2)_2(PCy_3)_2$ reacts with C_6F_6 , PhCH₂Cl, BrCH=CHPh and CH₃I (under N_2 atmosphere) to give $\operatorname{RuHX}(N_2)(\operatorname{PCy}_3)_2$ and $\operatorname{C_6F_5H}(X = F)$, $\operatorname{PhCH_3}(X = Cl)$, PhCH=CH₂ (X = Br), or CH₄ (X = I) in quantitative yields. The complexes RuHX(N₂)(PCy₃)₂ are extremely air sensitive in solution and in the solid state. In the ¹H NMR spectra, the most characteristic feature is a triplet at very high field, with a phosphorus coupling constant of about 18 Hz. The IR spectra exhibit a strong $\nu(N=N)$ stretching band. This band, like the ν (CO) band in the complexes RuHX(CO)(P^tBu₂Me)₂, is a gauge of the donor ability of the X ligand. According to the values found, we can estimate that $\sigma + \pi$ donation increases in the order: $I < Br \sim Cl < F$, which agrees with previous estimations based on $\nu(CO)$.¹⁷ The coordinated nitrogen ligand in RuHCl- $(N_2)(PCy_3)_2$ is readily replaced by H_2 , giving the known complex $RuHCl(H_2)(PCy_3)_2$. However, when the same reaction is carried out with $RuHF(N_2)(PCy_3)_2$, $Ru(H)_2(H_2)_2(PCy_3)_2$ is obtained; the Ru-F bond is thus subject to hydrogenolysis, forming HF, under very mild conditions.

These results contrast to those for *gem*-dihalide and serve to show that the species $RuX(CR_2Y)(H_2)L_2$ react more rapidly by C-Y oxidative addition to Ru when Y = Cl, while hydrogenolysis (by coordinated H₂) of the Ru-C bond is the primary reaction when Y = H.

Discussion

In a recent synthetic report with the same goal as ours, it was concluded that the zerovalent reagent tested for reaction

⁽¹⁶⁾ A PⁱPr₃ analogue has been reported: Grünwald, C.; Gevert, O.; Wolf, J.; González-Herrero, P.; Werner, H. *Organometallics* **1996**, *15*, 1960.

⁽¹⁷⁾ Poulton, J. T.; Sigalas, M. P.; Folting, K.; Streib, W. E.; Eisenstein, O.; Caulton, K. G. *Inorg. Chem.* **1994**, *33*, 1476.

with gem-dihalides, Ru(COD)(COT) (COD = 1,5-cyclooctadiene; COT = cyclooctatriene), suffered several limitations, and RuH(olefin)(η^2 -P~C)(PCy_3), a molecule where a PCy_3 C–H bond has oxidatively added to the metal, yielding Ru(II), showed superior performance. Confronted with the same need to "create" reducing equivalents at the metal, C–H reductive elimination, stimulated by the RHCX₂ reagent, became the source of Ru(0). However, the olefin incorporated in this synthesis can then undergo olefin metathesis with the first-formed ruthenium carbene, to "lose" the primary product Ru=CHR. Thus, both that report (olefin) and ours (H₂) must deal with the fact that "leaving groups" on the ruthenium source are not benign.

The strategy for generation of carbene complexes from gemdichlorides is attractive, yet it has not been widely exploited. Why is synthesis of Cp₂W(CPh₂) not already reported from $Cp_2W(CO)$ and Cp_2TiCH_2 from $Cp_2Ti(CO)_2$ or $Cp_2Ti(C_2H_4)$? Our success clearly relies in part on the fact that RuCl₂(CRR')-L₂ contains, as ligands, the entirety of a RR'CCl₂ reagent; no chloride need be lost, and the carbene complex has a relatively high formal oxidation number. However, the reagents employed illustrate several general features which should be recognized in any attempt to generalize the synthesis of carbene complexes from gem-dihalides. The need for coordination of RR'CCl2¹⁸ prior to C-Cl cleavage helps to avoid outer-sphere electron transfer, with the associated uncontrolled character of the resulting radicals. The empty metal orbital allows coordination of both C and Cl after C-Cl bond scission, which would not be true for a saturated metal complex (e.g., $Cp_2W(CO)$). Thus, both N₂ and intact (i.e., preformed) H₂ in Ru(H)₂(N₂)₂L₂ and Ru(H)₂(H₂)₂L₂ represent "good leaving groups". Perhaps ethylene and other olefins and even arenes (i.e., $(C_6H_6)RuL_2$) could serve this role in future efforts. However, H_2 is also a liability in being reactive toward the resulting unsaturated ruthenium carbene. At least 1 mol of H_2 is absolutely fundamental to the success of this synthetic route, however. It keeps the ruthenium *initially* at the poorly reducing divalent state, to avoid outersphere electron transfer. However, during or after the first C–Cl oxidative addition, the $Ru^n(H)_2$ can undergo intramolecular redox change to $Ru^{n-2}(H_2)$, thereby supplying the reducing equivalents (and leaving group) needed for the second C–Cl scission.

With this background, some candidates for four-electron oxidative addition of *gem*-dihalides are $Pt(C_2H_4)_3$, $L_2Pt(H)_2$, L_2 - $Ru(\eta^3$ -styrene)_2 and all polyhydride complexes MH_mL_n . Particularly since non-heteroatom-stabilized carbene complexes of the late transition metals are not abundant, this could be a rewarding effort.

In the early days of olefin metathesis catalysis, one catalyst recipe involved $W(CO)_6$ with CCl_4 . While it was never verified that $W(CCl_2)(CO)_5$ or $W(CCl_2)Cl_2(CO)_4$ was actually formed, the fact that the Ru(CRR')Cl_2L_2 species synthesized here *are* olefin metathesis catalysts¹⁹ suggests that a broader study of this synthetic route with middle and late transition metals could impact this hydrocarbon transformation.

Acknowledgment. This work was supported by the U.S. National Science Foundation. M.O. thanks the Spanish Ministerio de Educación y Cultura for a postdoctoral fellowship. We also thank Johnson Matthey/Aesar for material support.

IC980070V

⁽¹⁸⁾ CH₂Cl₂ has been shown to be a monodentate and even a bidentate ligand to Ag⁺, to Ru²⁺, and to Ru⁰. See: (a)Huang, D.; Huffman, J. C.; Bollinger, J. C.; Eisenstein, O.; Caulton, K. G., *J. Am. Chem. Soc.* **1997**, *119*, 7398. (b) Kulawiec, R. J.; Crabtree, R. H. Coord. Chem. Rev. **1990**, *99*, 89.

^{(19) (}a) Grubbs, R. H. Pure Appl. Chem. 1994, A31, 1829. (b) Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1997, 119, 3887 and references therein. (c) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446.